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Abstract

Forerunners (precursors) in linear, temporally dispersive, bi-gyrotropic mate-
rials are investigated using time-domain techniques. Bi-gyrotropic materials
are characterized by twelve constitutive parameters (integral kernels). Specif-
ically, the four susceptibility dyadics are all gyrotropic with a common gy-
rotropic axis. Pulse propagation along this axis is analyzed using dispersive
(noncoupling) wave-splitting and complex time-dependent field vectors. Two
numerical examples illustrating the method are presented.

1 Introduction

Material temporal dispersion is an important but, nevertheless, often overlooked
phenomenon present at wave propagation in homogeneous dielectrics. Interaction
between an electromagnetic pulse and a dispersive medium gives rise to certain
characteristic transient fields referred to as forerunners or precursors. Sommerfeld’s
forerunner (the first precursor) is the leading-edge behavior of the propagating field
and is characterized by high frequencies and large amplitudes. Brillouin’s forerun-
ner (the second precursor) is due to propagating low-frequency components and
arrives later. This precursor is characterized by slow variations and comparatively
low amplitudes and contributes significantly to the build-up of the signal. Since all
materials are temporally dispersive to some extent, transient phenomena generally
cannot be neglected at pulse propagation. The use of ultra-short pulses in appli-
cations puts the dispersive response of the medium in focus. This motivates the
present study of precursors.

The first descriptions of forerunners were presented by Sommerfeld [28] and
Brillouin [3] in the beginning of the 20th century. In these classical works, the
saddle-point method was used to analyze the propagation of linearly polarized pulses
in single-resonance Lorentz materials. Sommerfeld obtained the first precursor in
terms of the Bessel function J1 with the argument proportional to

√
zt, where z is

the propagation distance and t the time measured from the wave front. Brillouin
showed that the second precursor can be expressed in terms of the Airy function Ai.
Over the years, the theory of precursors has been improved considerably; see, e.g.,
Oughstun and Sherman [21, 22] and Shen and Oughstun [26]. The traditional way
to deal with these problems is the standard Fourier-transform technique: decompose
the incident plane pulse into its Fourier components, propagate each such component
into the medium, and synthesize the field. The obtained Laplace integral can then
be analyzed using asymptotic methods [4, 21].

Attempts have been made to describe transient fields in complex media as well.
Zablocky and Engheta [30] studied transverse electric and magnetic pulse propaga-
tion in nonabsorbing, isotropic chiral (bi-isotropic) materials. The interest in these
materials is due to the new possibilities of design mainly for microwave applications
that the additional chirality parameter offers [16]. Knowledge of the performance
of transient fields in these materials would be of importance for pulsed radar and
ultra-fast laser applications [30]. Zablocky and Engheta decomposed the incident
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field in its elementary right-hand circularly polarized (RCP) and left-hand circu-
larly polarized (LCP) components, which, being eigenfields of the chiral medium,
can be treated independently, resulting in asymptotic analysis of two Laplace in-
tegrals. It was found that a linearly polarized excitation gives rise to precursors,
which rotate while propagating through the medium. Moreover, two first and two
second forerunners were distinguished in nonabsorbing, single-resonance materials.
In the present article, transient fields in lossy isotropic chiral materials are ana-
lyzed using time-domain techniques. Pulse propagation in other linear, complex
(bi-anisotropic) materials display similar effects, at least when the dynamics of the
charges is governed by resonance models. Our ambition is, therefore, to study pulse
propagation in general absorbing, complex materials. However, to avoid cumber-
some analysis, we restrict ourselves to bi-gyrotropic materials. A linear medium is
said to be bi-gyrotropic if all its constitutive dyadics are gyrotropic with a com-
mon gyrotropic axis [15]. Bi-gyrotropic materials support transverse electric and
magnetic (TEM) waves along the gyrotropic axis. Many interesting materials be-
long to this group. For instance, isotropic, bi-isotropic, and gyrotropic media are
bi-gyrotropic. Optical activity and Faraday effect are two examples of phenomena
exhibited by bi-gyrotropic materials.

In recent years, pure time-domain techniques have been used to obtain precur-
sors in stratified complex materials [8, 23]. A time-domain theory of Sommerfeld’s
forerunner in bi-isotropic media was presented by Rikte [23] and a corresponding
theory for anisotropic media was developed by Fridén and Kristensson [8]. The basic
idea in these works is that a two-term Maclaurin expansion of the time-dependent
susceptibility kernels of the medium would determine the behavior of a propagating
pulse shortly after the arrival of the wave front. A time-domain theory of Brillouin’s
forerunners in dispersive, isotropic dielectrics has been formulated by Karlsson and
Rikte [11]. In Ref. 11, the propagating field is expanded in a Taylor series about the
observation time. Truncating this series gives successively better approximations to
the slowly varying field components in the medium. The present article is aimed to
generalize the theory of forerunners presented in Ref. [11] to bi-gyrotropic media.

The outline of the present article is as follows. The problem is formulated in
Section 2, where also an account for the variety of bi-gyrotropic materials is given. In
Section 3, the basic concepts for discussing the propagation of TEM pulses along the
gyrotropic axis of an unbounded bi-gyrotropic medium are introduced. Specifically,
a dispersive wave splitting is adopted. Moreover, the fundamental solutions of the
first-order, dispersive wave operators associated with the up- and down-going fields
are presented. In Section 4, complex, time-varying electromagnetic field vectors
appropriate for the problem are introduced. In Section 5, these complex fields are
used to obtain the forerunners in the bi-gyrotropic medium. Sommerfeld’s forerunner
is discussed briefly and Brillouin’s forerunner extensively. Two examples illustrating
the theory are given in Section 6. Specifically, numerical results for an isotropic
chiral medium and for a gyrotropic medium are presented. Numerical techniques
are accounted for in Section 7. Conclusions are drawn in Section 8. Finally, in
Appendix A, some results for hyper-Airy functions of even orders and complex
arguments are given. These functions play a central role in the theory of Brillouin’s
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forerunner in bi-gyrotropic materials.

2 Problem formulation

In this section, the propagation problem is formulated. Using the dyadic notation
in Ref. 15, the constitutive relations of linear, homogeneous, temporally dispersive,
bi-anisotropic medium in the absence of an optical response read [10]{

cηD(r, t) = E(r, t) +
(
χee ∗ E

)
(r, t) + η

(
χem ∗ H

)
(r, t),

cB(r, t) =
(
χme ∗ E

)
(r, t) + ηH(r, t) + η

(
χmm ∗ H

)
(r, t),

(2.1)

where the space- and time-varying electromagnetic field vectors are written as

F (r, t) = uxFx(r, t) + uyFy(r, t) + uzFz(r, t), F = E,H ,D,B

and the time-varying dyadic susceptibility kernels as

χij(t) =
∑

k,l=x,y,z

ukulχ
ij
kl(t), i, j = e,m.

Temporal dispersion is modeled by time convolution in the constitutive relations:

(
χ ∗ F

)
(r, t) =

∫ t

−∞
χ(t− t′) · F (r, t′) dt′.

(Recall, that the dot product of a dyad ab and a vector c is a vector defined by
ab ·c = a(b ·c).) Throughout this article, all dyadics are written in Roman boldface
and all vectors in italic boldface. The unit vectors ux, uy, and uz are the usual
Cartesian basis vectors. Standard notation is used for the position vector, r, the
time, t, the speed of light in vacuum, c, and the intrinsic impedance of vacuum, η.
The entries χij

kl(t), i, j = e,m; k, l = x, y, z of the dyadic susceptibility kernels are
zero for t < 0 due to causality [10] and assumed to be sufficiently smooth for t > 0.

Usually, pulse propagation in dispersive materials and forerunners in particular
are discussed for a fixed direction of propagation, uz:

F (r, t) = F (z, t), F = E,H ,D,B. (2.2)

This situation arises, for instance, at normal plane-wave incidence on a bi-anisotropic
half-space. The analysis of the Maxwell equations at a preferred direction of propa-
gation can be simplified considerably by requiring that all the dyadic susceptibility
kernels of the medium commute with the anti-symmetric dyadic

JT = uz × I = uz × IT = uyux − uxuy,

where I = uxux + uyuy + uzuz is the identity dyadic and IT = uxux + uyuy. Note
that the dyadics IT and JT are two-dimensional. (Recall that the cross product of
a vector a and a dyad bc is a dyad defined by a× bc = (a× b)c.) The intention of
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the present discussion can now be formulated precisely: we wish to establish a time-
domain method for propagation of pulses in the preferred direction uz in dispersive
bi-anisotropic materials with the commutative property

χij(t) · JT = JT · χij(t), i, j = e,m (2.3)

in general and forerunners in these materials in particular. (Recall that the dot
product of the dyads ab and cd is a dyad defined by ab ·cd = a(b ·c)d.) Subjected
to the restriction (2.3), the constitutive dyadics can be written as

χij(t) = ITχ
ij
co(t) + JTχ

ij
cross(t) + uzuzχ

ij
z (t), i, j = e,m. (2.4)

In other words, these dyadics are all gyrotropic with a common gyrotropic axis, uz,
i.e., the medium is bi-gyrotropic [15].

In the actual propagation problem, the four kernels χij
z (t), i, j = e,m do not

interfere. The reason for this is that bi-gyrotropic media support the propagation
of TEM waves along the gyrotropic axis:

F (r, t) = F T (z, t) ≡ uxFx(z, t) + uyFy(z, t). (2.5)

To see this, recall that the Maxwell equations, in response to a current density of the
form (2.5) and restricted to solutions of the form (2.2), imply that the longitudinal
components of the flux densities are zero; hence,

0 = cηDz(z, t) = Ez(z, t) +
(
χee

z ∗ Ez

)
(z, t) + η

(
χem

z ∗Hz

)
(z, t),

0 = cBz(z, t) =
(
χme

z ∗ Ez

)
(z, t) + ηHz(z, t) + η

(
χmm

z ∗Hz

)
(z, t).

The longitudinal components of the electric and magnetic fields then satisfy the
linear Volterra integral equation of the second kind

(δ + χee
z + χmm

z + χee
z ∗ χmm

z − χem
z ∗ χme

z ) ∗ Fz = 0, Fz = Ez, Hz,

where δ(t) is the Dirac delta function. This equation is uniquely solvable in the space
of continuous functions in each bounded time interval [13]; consequently, Ez = 0 and
Hz = 0.

Although bi-gyrotropic media only comprises a 12-dimensional subspace of the
whole generality of bi-anisotropic materials with 36 degrees of freedom, there are
many important classes of materials that belong to this category. These include
all isotropic and bi-isotropic materials: dielectric, magnetic, chiral (Pasteur), and
nonreciprocal (Tellegen) media [16]. Also uniaxial materials, anisotropic and bi-
anisotropic, can be described by the relations (2.1) and (2.4). These include di-
electric and magnetic crystals belonging to the tetragonal, hexagonal, and trigonal
systems as well as chiral materials with alignment of helices. In addition to these me-
dia with symmetric constitutive dyadics, also various nonsymmetric material char-
acterizations are allowed: χee

cross �= 0 for magnetoplasma, χmm
cross �= 0 for magnetized

ferrite, which are two examples of nonreciprocal bi-gyrotropic materials. A moving
medium has the property χem

cross �= 0 [27], and an example of a reciprocal material
with χem

cross �= 0 is the so-called Omega-hat medium, where the magnetoelectric cou-
pling is generated by symmetrically placed Omega-shaped elements [17, 19, 20, 25].
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3 Basic equations

In this section, the basic concepts for discussing TEM pulse propagation, (2.5), along
the gyrotropic axis, uz, through an unbounded bi-gyrotropic medium are introduced.
To simplify the notation, the explicit dependence of the time- and space-coordinates
is often suppressed.

3.1 Wave splitting

The Maxwell equations model the dynamics of the electromagnetic fields:

∇× E = −∂tB, ∇× H = J e + ∂tD.

In this article, the current density J e = J e
T (z, t) is of the form (2.5) and hence

gives rise to TEM waves propagating along the gyrotropic axis. Note the difference
between the vector J e

T and the dyadic JT . Subjected to this excitation, the Maxwell
equations reduce to

∂zET = c−1∂tJT · (cBT ), ∂zJT · (ηHT ) = c−1∂t(cηDT ) + ηJ e
T ,

where the dyadic identity JT ·JT = −IT has been employed. The flux densities, DT

and BT , can be eliminated using the constitutive relations. The remaining depen-
dent vector field variables, the electric field intensity, ET , and the magnetic field
intensity, HT , satisfy a system of coupled hyperbolic integro-differential equations:{

∂zET = c−1∂tJT · (χme
T ∗ ET + ηHT + χmm

T ∗ ηHT ) ,

∂zJT · (ηHT ) = c−1∂t (ET + χee
T ∗ ET + χem

T ∗ ηHT ) + ηJ e
T ,

(3.1)

where χij
T (t) = ITχ

ij
co(t) + JTχ

ij
cross(t), i, j = e,m are two-dimensional constitutive

dyadics.
A generalization of the dispersive wave splitting proposed in Ref. [24] is now

adopted. Wave splitting is a change of the dependent vector field variables, such
that the new variables, say E± = E±(z, t), represent the up- and down-going waves
in the medium, respectively.

The total electric field is written as the sum of the split vector fields:

ET = E+ + E−. (3.2)

The total magnetic field is expressed in terms of these fields as

JT · (ηHT ) = −Y+ ∗ E+ + Y− ∗ E−, (3.3)

where the time-varying dyadics Y±(t) are of the form

F(t) = IT δ(t) + ITFco(t) + JTFcross(t). (3.4)

The dyadics Y±(t), which are referred to as the relative intrinsic admittances of the
bi-gyrotropic medium associated with up- and down-going waves along the gyrotropic
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axis, respectively, are specified below. The imposed conditions (3.2)–(3.3) imply that
the principal form of the temporally dispersive wave splitting is

2E± = Z ∗ Y∓ ∗ ET ∓ Z ∗ JT · (ηHT ) , (3.5)

where the time-varying dyadic Z(t) is of the form (3.4) and satisfies the linear,
dyadic Volterra integral equation of the second kind

Z ∗
(
Y+ + Y−)

= 2δIT .

Dyadic Volterra integral equations of the second kind are uniquely solvable in the
space of continuous functions in each bounded time interval. Therefore, the dyadic
Z(t), which is referred to as the relative intrinsic impedance of the bi-gyrotropic
medium, is well-defined.

An appropriate choice of the admittance dyadics Y± reduces the Maxwell equa-
tions (3.1) to one first-order integro-differential equation for E+ and one for E−.
To see this, differentiate equation (3.5) with respect to z and substitute (3.1) into
the result. Furthermore, let the admittance dyadics Y±(t) be the solutions of the
nonlinear, dyadic Volterra integral equations of the second kind

(δIT + χmm
T ) ∗ Y± ∗ Y± ∓ JT · (χem

T + χme
T ) ∗ Y± = δIT + χee

T . (3.6)

The dynamical equations for the split vector field variables then become

∂zE
± = ∓c−1∂t

(
N± ∗ E±)

∓ (Z ∗ ηJ e
T ) /2, (3.7)

where the time-varying dyadics

N± = (δIT + χmm
T ) ∗ Y∓ ± JT · χem

T (3.8)

are of the form (3.4) and are referred to as the indices of refraction of the bi-gyrotropic
medium for up- and down-going waves along the gyrotropic axis, respectively. Ob-
serve that the quantities N±(t), Y±(t), and Z(t) represent the intrinsic properties
of the medium, that is, they are independent of the field vectors and depend on the
susceptibility kernels of the medium only. Being solutions of Volterra integral equa-
tions of the second kind, these dyadics inherit the properties of the susceptibility
kernels; consequently, they are zero for t < 0 and smooth for t > 0.

The refractive indices can be computed directly from susceptibility data. Com-
bining equations (3.8) and (3.6) yields the nonlinear, dyadic Volterra integral equa-
tions of the second kind

(N± ∓ JT ·χem
T )∗(N± ± JT ·χme

T )=(δIT + χee
T ) ∗ (δIT + χmm

T ). (3.9)

In particular, for bi-isotropic materials, one obtains{
2N±

co(t) +
(
N±

co ∗N±
co

)
(t) = χee(t) + χmm(t) + (χee ∗ χmm) (t) − (L ∗ L) (t),

N±
cross(t) = ±κ(t),

where L(t) = (χem(t)+χme(t))/2 and κ(t) = (χem(t)−χme(t))/2 are the nonreciproc-
ity kernel and the chirality kernel, respectively, which is in concordance with known
results [24]. In the achiral case, N±

cross(t) = 0, cf. Ref. 11.
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3.2 Causal fundamental solutions

In this section, the first-order, dispersive vector wave equations (3.7) are studied.
Specifically, the retarded fundamental solutions (the causal Green’s functions)

E±(z; t) = ITE±
co(z; t) + JTE±

cross(z; t), (3.10)

of the dispersive, dyadic wave operators

±∂zIT · +c−1∂tN
± ∗ (3.11)

are discussed.
The fundamental solutions satisfy the dispersive dyadic wave equations(

±∂z + c−1∂t

)
E±(z, t) + c−1

(
ITN

±
co(+0) + JTN

±
cross(+0)

)
· E±(z, t)

+
(
K±(·) ∗ E±(z, ·)

)
(t) = IT δ(z)δ(t),

where the first term constitutes the free-space contribution, the second term causes
attenuation and rotation of the wave front, and the third term reflects material
dispersion. The kernels K±(t) are referred to as the wave-number kernels associated
with up- and down-going waves along the gyrotropic axis, respectively. Explicitly,
these kernels are

K±(t) = ITK
±
co(t) + JTK

±
cross(t), (3.12)

where K±
co(t) = c−1 {∂tN

±
co(t)} and K±

cross(t) = c−1 {∂tN
±
cross(t)} are classical time-

derivatives.
Under suitable assumptions, Schwartz’ kernel theorem [9, pp. 128-129] is ap-

plicable, and the solutions of the wave equations (3.7) can be written in the form

E±(z, t)=−1

2

∫ (∫
E±(z−z′; t−t′)·(Z ∗ ηJ e

T )(z′, t′) dt′
)
dz′. (3.13)

In the following theorem, the retarded fundamental solutions (3.10) of the disper-
sive wave operators (3.11) are defined in terms of the wave-number kernels (3.12).
The theorem can be proved by straightforward differentiation. The Heaviside step
function is denoted by H.

Theorem 3.1. The distributions,

E±(z; t)=H(±z)Q±(±z)·
(
IT δ (t∓z/c)+P±(±z; t∓z/c)

)
, (3.14)

where the regular wave-front dyadics,

Q±(z) = ITQ
±
co(z) + JTQ

±
cross(z),

satisfy the ordinary differential equations,

c∂zQ
±(z) = −

(
ITN

±
co(+0) + JTN

±
cross(+0)

)
· Q±(z), Q±(0) = IT ,
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and the regular dyadic propagator kernels,

P±(z; t) = ITP
±
co(z; t) + JTP

±
cross(z; t),

satisfy the integro-differential equations,

∂zP
±(z; t)=−K±(t)−

(
K±(·)∗P±(z; ·)

)
(t), P±(0; t)=0, (3.15)

are causal or retarded fundamental solutions of the dispersive dyadic wave opera-
tors (3.11), respectively. In particular, P±(z; t) = 0 for t < 0.

The dyadics Q±(z) determine the attenuation and rotation of the up- and down-
going wave fronts at the propagation depth z, respectively. Integrating the ODEs
for the wave-front dyadics gives

Q±(z) = exp
(
−z

(
ITN

±
co(+0) + JTN

±
cross(+0)

)
/c

)
=exp

(
−zN±

co(+0)/c
)(

IT cos
(
−zN±

cross(+0)/c
)
+JT sin

(
−zN±

cross(+0)/c
))
.

Similarly, the integro-differential equations (3.15) for the dyadic propagator kernels,
P±(z; t), can be integrated. In operator sense,

IT + P±(z, ·)∗ = exp
(
− zK±(·) ∗

)
,

where the star denotes dyadic temporal convolution and the exponentials are inter-
preted in terms of their Maclaurin series, i.e.,

P±(z; t) =
∞∑

n=1

(−z)n

n!

((
K±∗

)n−1
K±

)
(t). (3.16)

These series converge uniformly in each compact time interval to regular functions.
Multiplying both members in this equality by t and using the general rule for causal
convolutions,

t

k functions︷ ︸︸ ︷
(f ∗ . . . ∗ f)

k!
= (tf) ∗

k−1 functions︷ ︸︸ ︷
(f ∗ . . . ∗ f)

(k − 1)!
,

give the dyadic Volterra integral equations of the second kind

tP±(z; t)=−F±(t)−
(
F±(·)∗P±(z; ·)

)
(t), F±(t)=ztK±(t). (3.17)

Now consider a concentrated source distributed over the plane z = 0:

J e
T (z, t) = je(t)δ(z).

The wave splitting shows that this current density generates the electric field

E(0, t) = E+(+0, t) = E−(−0, t) = − (Z ∗ je) (t)η/2
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in the plane z = 0. Using these identities, equation (3.13) can be written as

E±(z, t) =

∫
E±(z; t− t′) · E(0, t′) dt′ (3.18)

or

E±(±z, t+ z/c) = H(z)Q±(z) ·
(

E(0, t) +

∫ t

−∞
P±(z; t− t′) · E(0, t′) dt′

)
.

Another way to put this is

E±(±z, t+ z/c) = H(z)
[
P±(z)δ

]
(t), (3.19)

where temporal integral operators

P± (z) = Q±(z) ·
(
IT δ(·) + P±(z; ·)

)
∗

are the wave propagators for up- and down-going fields, respectively. These opera-
tors propagate the fields a distance z through the bi-gyrotropic medium. Obviously,
the wave propagators can be written in the form

P±(z) = ITP±
co(z) + JTP±

cross(z),

where the operators P±
co(z) and P±

cross(z) are scalar. In operator sense,

P± (z) = exp
(
−z
c
∂t

(
ITN

±
co + JTN

±
cross

)
∗
)
. (3.20)

Wave propagators are useful in the analysis of normal-incidence problems for
isotropic and bi-isotropic half-spaces and slabs [11, 24], and it is conjectured that
this is the case for bi-gyrotropic half-spaces and slabs as well.

The propagators, P+(z), −∞ < z <∞, form a group under multiplication and
so do the propagators, P−(z), −∞ < z <∞:


P±(z1 + z2) = P±(z1) · P±(z2),

P±(0) = IT ,(
P±)−1

(z) = P±(−z),
(3.21)

Observe that a positive wave-propagator argument, z, corresponds to propagation of
up- or down-going waves a distance z through the bi-gyrotropic medium. A negative
argument, −z, indicates that the inverse (resolvent operator) of the operator P±(z)
is referred to. Negative propagator arguments arise at signal restoration. The first
propagator rule (3.21) is used below at numerical evaluations.
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4 Complex time-dependent EM fields

In this section, complex time-dependent electromagnetic field vectors are introduced.
The complex field-vector concept is well-known for isotropic and bi-isotropic mate-
rials [1, 18, 29] but seems to be new for general bi-gyrotropic media. The use of com-
plex field vectors simplifies the analysis in Section 3. Specifically, vector and dyadic
differential and integral equations for real-valued quantities reduce to scalar differen-
tial and integral equations for complex-valued functions. The obtained scalar equa-
tions are economical both theoretically and numerically. The electric field ET (z, t),
the magnetic field HT (z, t), and the split vector fields E±(z, t) can be replaced by
the scalar, complex fields Ec(t), Hc(t), and E±

c (z, t), respectively. Similarly, the
intrinsic dyadic integral kernels N±(t), Y±(t), and Z(t), and the dyadic propaga-
tor kernels P±(z, t) can be replaced by scalar, complex kernels denoted by N±

c (t),
Y ±

c (t), Zc(t), and P±
c (z, t), respectively. Combining the complex field-vector and

the wave-splitting concepts gives the problem an appropriate structure. Roughly
speaking, the electromagnetic field is decomposed into four constituents: right-hand
circularly polarized and left-hand circularly polarized up- and down-going fields.

Complex, time-dependent electromagnetic fields can be defined by introducing
the projection dyadic

p =
1

2
(IT − jJT ),

where j is the imaginary unit. Let F T (z, t) be an arbitrary (real) transverse field
vector of the form (2.5). Operating on F T with p gives the complex field

F c(z, t) = p · F T (z, t) =
1

2
(ux − juy)Fc(z, t),

where the amplitude is Fc(z, t) = Fx(z, t)+jFy(z, t). The components of the physical
field can be as

Fx(z, t) = ReFc(z, t), Fy(z, t) = ImFc(z, t).

Observe that the physical field can be written in the form F T = F c +F ∗
c , where the

complex field vectors can be interpreted in terms well known from the time-harmonic
analysis: F c represents the RCP (LCP) component of F T and F ∗

c the LCP (RCP)
component of F T provided F T is up-going (down-going).

Suppose now that F(t) is a (real) dyadic function of the form (3.4). Applying
the projection operator on F gives

p · F = p (δ + Fco + jFcross) = p (δ + Fc) ,

where the scalar Fc(t) = Fco(t)+jFcross(t) is complex. The co- and cross-components
of the physical dyadic are obtained as

Fco(t) = ReFc(t), Fcross(t) = ImFc(t).
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The above results can be applied to the differential and integral equations in
Section 3. Multiplying both sides of equation (3.7) by p gives the scalar, first-order,
dispersive wave equations

∂zE
±
c = ∓c−1∂t

(
E±

c +N±
c ∗ E±

c

)
∓ ηJe

c /2 ∓ (Zc ∗ ηJe
c )/2

for the complex split vector fields. Similarly, the refractive equations (3.9) become

2N±
c +N±

c ∗N±
c ∓ jN±

c ∗ (χem
c − χme

c ) ∓ j (χem
c − χme

c ) + χem
c ∗ χme

c

= χee
c + χmm

c + χee
c ∗ χmm

c ,
(4.1)

whereas the integral equations for the relative admittances (3.8) reduce to

N±
c (t) = χmm

c (t) + Y ∓
c (t) + (χmm

c ∗ Y ∓
c )(t) ± jχem

c (t).

In terms of the complex admittances Y ±
c (t) and the complex split field vectors

E±
c (z, t), the complex electric and magnetic fields are

Ec = E+
c + E−

c ,

ηHc = j(1 + Y +
c ∗)E+

c − j(1 + Y −
c ∗)E−

c .

The wave propagator (3.20) can be represented by a complex wave propagator
of the form P±

c (z) = P±
co(z) + jP±

cross(z) given by

P±
c (z) = exp

(
−z
c
∂tN

±
c ∗

)
= Q±

c (z)
(
1 + P±

c (z; ·) ∗
)
, (4.2)

where the complex wave-front factors are

Q±
c (z) = exp

(
−N±

c (+0)z/c
)
. (4.3)

The complex versions of the integro-differential equations (3.15) and the integral
equations (3.17) are, respectively,

∂zP
±
c (z; t) = −K±

c (t) −
(
K±

c (·) ∗ P±
c (z; ·)

)
(t), P±

c (0; t) = 0, (4.4)

tP±
c (z; t) = −F±

c (t) −
(
F±

c (·) ∗ P±
c (z; ·)

)
(t), F±

c (t) = ztK±
c (t), (4.5)

where K±
c (t) = c−1 {∂tN

±
c (t)}.

In the proceeding sections, the response to a concentrated source distributed
over the plane z = 0 is considered. The integral representations (3.18) reduce to

E±
c (z, t) =

∫
E±

c (z; t− t′)Ec(0, t
′) dt′,

where the complex fundamental solutions

E±
c (±z; t+ z/c) = H(z)

[
P±

c (z)δ
]
(t) = H(z)Q±

c (z)
(
δ(t) + P±

c (z; t)
)

have been introduced via the identity p · E±(z; t) = pE±
c (z; t) and Ec(0, t) is the

complex electric field at z = 0. Specifically, the electric response Ex(z; t) to the
x-polarized electric field uxδ(t) at z = 0 is in focus:

Ex(±z; t+ z/c) = ux

[
P±

co(z)δ
]
(t) + uy

[
P±

cross(z)δ
]
(t), z > 0. (4.6)

Obviously, it suffices to study the complex impulse response[
P±

co(z)δ
]
(t) + j

[
P±

cross(z)δ
]
(t) ≡

[
P±

c (z)δ
]
(t) = Q±

c (z)
(
δ(t) + P±

c (z; t)
)
. (4.7)
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5 Forerunners in bi-gyrotropic media

In this section, the time-domain theory of forerunners in isotropic dielectrics pre-
sented in Ref. 11 is generalized to bi-gyrotropic materials.

Sommerfeld’s forerunner is the short-time or leading-edge approximation to the
impulse response given by equations (4.6)–(4.7). Straightforward generalization of
the derivation in Ref. 11 gives the following expressions for the complex forerunners
for up- and down-going waves, respectively:[

P±
S,c(z)δ

]
(t) = Q±

c (z)
(
δ(t) + P±

S,c(z; t)
)
, (5.1)

where Q±
c (z) are the wave-front factors (4.3) and

P±
S,c(z; t) = −zK±

c (+0)
(
J0

(
2
√
zK±

c (+0)t
)

+ J2

(
2
√
zK±

c (+0)t
))
H(t). (5.2)

Here Jν(x) is the Bessel function of order ν. Observe that the arguments of the
exponential and Bessel functions are complex in general and that the forerunners
depend on the initial values N±

c (+0) and K±
c (+0) only. Naturally, Sommerfeld’s

forerunner can be obtained for other excitations by temporal convolution of the
incident field and the right-hand side of (5.1).

The slowly varying components of the impulse response (4.6)–(4.7) constitute
Brillouin’s forerunner [11]. These components can be obtained by integrating the
convolution terms in the first-order wave equations (4.4) repeatedly by parts, which
results in a series of integrated terms. Truncating this series after one step gives a
nondispersive, hyperbolic equation characterized by a wave-front speed less than c.
Truncating the series after more then one step results in parabolic equations which
are noncausal [12]. Once Brillouin’s forerunner for the impulse response is known,
straightforward temporal convolution gives the second forerunner for an arbitrary
excitation.

An outline of the time-domain method of obtaining Brillouin’s forerunner in
the bi-gyrotropic medium is now given. As in Ref. 11, the exponential representa-
tion (4.2) of the complex wave propagator is expanded with respect to slowly varying
fields. The first step is to expand the convolution operators χc∗ and N±

c ∗ as

χc∗=
s∑

i=1

χi
di−1

dti−1
+Rχ,s∗

ds

dts
, N±

c ∗=
s∑

i=1

n±i
di−1

dti−1
+R±

n,s∗
ds

dts
, (5.3)

where χc(t) = χkl
c (t), k, l = e,m. These expansions correspond to the integrations

by parts discussed in the previous paragraph. The complex coefficients χi, i =
1, 2, · · · , s are proportional to the moments of χc(t),

χi =
(−1)i−1

(i− 1)!

∫ ∞

0

ti−1χc(t) dt,

and the remainder, Rχ,s(t), is given by

Rχ,s(t) =
(−1)s

(s− 1)!

(∫ ∞

t

(τ − t)s−1χc(τ) dτ

)
H(t).
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The quantities n±i and R±
n,s(t) are defined analogously. To proceed, suppose that χi

and n±i are finite and that Rχ,s, R
±
n,s tend to zero as s goes to infinity. Given the

susceptibility coefficients χi, one can calculate the refractive coefficients n±i using
the recurrence formulae

2n±m+1+
m∑

i=0

n±m−i+1n
±
i+1±j

m∑
i=0

n±m−i+1(χ
me
i+1−χem

i+1)±j(χme
m+1−χem

m+1)+
m∑

i=0

χem
m−i+1χ

me
i+1

= χee
m+1 + χmm

m+1 +
m∑

i=0

χee
m−i+1χ

mm
i+1 .

(5.4)

These relations follow immediately from the integral equations (4.1) and the operator
expansions (5.3).

Since down-going waves can be treated analogously, it suffices to continue the
discussion for up-going fields only. The superscripts ± can, therefore, be dropped.
The general time-dependence is suppressed as well.

Using the expansions of the refractive operators (5.3), the expression (4.2) for
the complex wave propagator for up-going waves, Pc(z), can be written formally as

Pc(z) = exp

{
−z
c

d

dt

s∑
i=1

ni
d(i−1)

dt(i−1)

}
Ps+1(z), (5.5)

where

Ps+1(z) = exp

{
−z
c

d

dt
Rn,s ∗

ds

dts

}
.

An approximation to Pc(z) can be obtained by keeping an appropriate even number
m of terms in the expansion (5.5):

Pc(z) ≈ exp

{
−z
c

d

dt

m∑
i=1

ni
d(i−1)

dt(i−1)

}
=: Tm(z; ·) ∗ (5.6)

This approximation is a convolution operator with a smooth (analytic) kernel Tm(z;t)
given by the inverse Fourier-transform. Specifically,

Tm(z; t) =
1

2π

∫ ∞

−∞
exp

{
jwt− z

c

(
n1jw + n2(jw)2 + · · · + nm(jw)m

)}
dw

=
1

2π

∫ ∞

−∞
exp

{
jwt− z

c

(
n

(1)
1 jw + n

(1)
2 (jw)2 + · · · + n(1)

m−2(jw)m−2
)}
dw

∗ exp

{
z

c
nm

(
nm−1

mnm

)m}
1

2π

∫ ∞

−∞
exp

{
jwt− z

c
nm

(
jw +

nm−1

mnm

)m}
dw,

where the introduced coefficients are

n
(1)
i = ni − nm

(
m

i

) (
nm−1

mnm

)m−i

·
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Assuming that (−1)m/2Renm > 0, the last integral in this expression can be recog-
nized as a hyper-Airy function of even order m and complex argument, Am(x); see
Appendix A; consequently,

Tm(z; t) =
1

2π

∫ ∞

−∞
exp

{
jwt− z

c

(
(n

(1)
1 jw + n

(1)
2 (jw)2 + · · · + n(1)

m−2(jw)m−2
)}
dw

∗ exp

{
z

c
nm

(
nm−1

mnm

)m

− tnm−1

mnm

}
1

tm
Am

(
t

tm

)
,

where the analyticity of the integrand has been exploited and the complex scaling
time is given by

tm =
(
(−1)m/2 zmnm

c

)1/m

·

If (−1)(m−2)/2Renm−2 > 0, the integral to the left of the convolution star can be
treated analogously. Assuming that

(−1)
i
2 Ren

(m−i
2

)

i > 0, i = 2, 4, · · · ,m (5.7)

and progressing in the way described above, one obtains an expression for the kernel
Tm(z; t) in terms of a convolution of m

2
functions. Each of these is a product of

a hyper-Airy function of even order and an exponential function and is therefore
smooth. Explicitly,

Pc ≈ P2 ∗ P4 ∗ · · · ∗ Pm ∗, (5.8)

where


Pi(z; t) = exp


zcn(m−i

2
)

i


 n

(m−i
2

)

i−1

in
(m−i

2
)

i


i

− t


 n

(m−i
2

)

i−1

in
(m−i

2
)

i





 1

ti
Ai

(
t

ti

)
,

ti =

(
(−1)i/2 zin

(m−i
2

)

i

c

)1/i
(5.9)

for i = 2, 4, · · · ,m. Here, the refractive coefficients are


n
(0)
i =ni,

n
(m−i

2
)

i =ni−
m
2∑

l= i
2
+1

n2l

(
2l

i

) (
n2l−1

2ln2l

)2l−i

,

n
(m−i

2
)

i−1 =ni−1−
m
2∑

l= i
2
+1

n2l

(
2l

i− 1

) (
n2l−1

2ln2l

)2l−i+1

·
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Now we are able to formulate the condition on m in (5.6): m has to be chosen so
that the assumption (5.7) is fulfilled. This is the case in the examples described in
Sections 6 and 7.

A closed-form approximation to the second forerunner can be obtained in the
special case m = 2:



Pc(z) ≈ P2(z, ·)∗,

P2(z; t) =
1

t2
A2

(
t− t1
t2

)
=

1√
2π t2

exp

{
−(t− t1)2

2t22

}
,

t1 =
n1z

c
, t2 =

√
−2zn2

c
,

(5.10)

where the refractive coefficients n1 and n2 can be calculated from the recurrence
formula (5.4). This crude approximation has the right order of amplitude, some of
the dynamics of the actual propagator kernel (see Figures 1, 2, 4, and 5), and is
easy to generate.

For an isotropic chiral medium, the noncausal approximation P2(z; t− z/c) can

be compared to the complex propagator kernel 1
tg
A2(

t−z
√

µε

tg
), tg =

√
2jgz associated

with Condon’s model, D = εE − g∂tH , B = µH + g∂tE, where ε > 0, µ > 0,
and g are real numbers modeling permittivity, permeability, and chirality, respec-
tively [5, 7]. Thus, Condon’s model can be interpreted as a first-order nondispersive
approximation to the dynamics of charges in a bi-isotropic medium.

It should also be mentioned that a better approximation than (5.10) to the
operator Pc(z) can be obtained in a closed form, even though slightly different
technique is used to derive it. Using (5.6) with m = 3 gives

Pc(z) ≈ PB(z; ·)∗ = exp
(
−z
c
∂t(n1 + n2∂t + n3∂

2
t )

)
= exp

(
−z
c

(
n3

(
∂t +

n2

3n3

)3

+

(
n1 −

n2
2

3n3

)
∂t −

n3
2

27n2
3

))
·

The kernel PB(z; t) satisfies, cf. (4.4),

−c∂zPB(z; t) = (n1∂t + n2∂
2
t + n3∂

3
t )PB(z; t), PB(0+; t) = δ(t).

Generalization of the result in Karlsson and Rikte [11] gives

PB(z; t) = exp

(
n3

2

27n2
3

z

c
− n2

3n3

(t− t1(z))
Ai(sign(Re(n3))(t− t1(z))/t3(z))

t3(z)

)
,

where

t1(z) =

(
n1 −

n2
2

3n3

)
z

c ,
t3(z) =

(
3n3sign(Re(n3))z

c

)1/3

·

This approximation is a generalization of the classical result obtained by Brillouin
for single-resonance Lorentz materials [3, 4]. The formula above can be verified by
direct differentiation.



16

6 Examples

In this section, two theoretical examples are given. Numerical results are presented
in Section 7.

6.1 A bi-isotropic single-resonance medium

6.1.1 Physical background

In this subsection, a time-domain derivation of Drude’s molecular model for recip-
rocal, nonmagnetic, isotropic chiral materials is presented.

Post’s constitutive relations are often used to model optical activity:{
cηD(r, t) = E(r, t) +

(
χee

P ∗ E
)
(r, t) + c

(
χem

P ∗ B
)
(r, t),

ηH(r, t) =
(
χme

P ∗ E
)
(r, t) + cB(r, t) + c

(
χmm

P ∗ B
)
(r, t),

(6.1)

These constitutive relations are equivalent to (2.1) and the connection between these
is given by a system of Volterra integral equations of the second kind [14].

For reciprocal, nonmagnetic, isotropic chiral materials, χee
P (t) = G(t), χem

P (t) =
χme

P (t) = κ(t), and χmm
P (t) = 0. Denoting the electron density by N , the electric

polarization can be written in the form

Nqr(t) = ε0(G ∗ E)(t) + ε0(κ ∗ cB)(t), (6.2)

where r(t) is the displacement of an electron relative to its position of equilibrium,
q = −e is the charge of the electron, and ε0 = 1/(cη) the permittivity of vacuum.
For an electron in helical motion, the equation for r(t) becomes

m∂2
t r(t) = −mν∂tr(t) −mω2

0r(t) + qE(t) − qcα∇× E,

where m is the mass of the electron at rest, ν ≥ 0 the collision frequency, ω0 ≥ 0
the natural (harmonic) frequency, and α a positive or negative constant depending
on the micro-structure of the chiral medium.

Substituting the polarization, (6.2), and Faraday’s law, ∇ × E = −∂tB, into
this equation gives(

∂2
t + ν∂t + ω2

0

) (
(G ∗ E)(t) + (κ ∗ cB)(t)

)
= ω2

p

(
E(t) + α∂tcB(t)

)
.

Setting B = 0 shows that the electric susceptibility kernel is given by Lorentz’
dispersion model; setting E = 0, shows that the chirality kernel is proportional to
the time-derivative of the electric susceptibility kernel; consequently,

G(t) = H(t)
ω2

p

ν0
sin (ν0t) exp

(
−νt

2

)
, κ(t) = α∂tG(t), (6.3)

where ωp =
√
Nq2/(ε0m) and ν0 =

√
ω2

0 − ν2/4. This model was obtained first by
Drude [6] but is often referred to as Condon’s model [5]. For passive materials, |α|
is subjected to an upper bound which depends on ω0, ωp, and ν [16].
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6.1.2 Forerunners

In terms of the constitutive relations (2.1), the results in the previous subsection
can be written as 


χem

co (t) = −χme
co (t) = κ(t) = α∂tG(t),

χee
co(t) = χ(t) = G(t) − (κ ∗ κ) (t),

χem
cross(t) = χme

cross = χee
cross = χmm

co = χmm
cross = 0,

(6.4)

where G(t) is given by equation (6.3). The refractive equation (3.9) now reduces to

(Nco ∗Nco) (t) + 2Nco(t) = χ(t), Ncross(t) = κ(t).

Sommerfeld’s forerunner for this chiral medium is given by equations (5.1)–(5.2),
where Nc(+0) = jαω2

p and Kc(+0) = (ω2
p(1 − α2ω2

p)/2 − jανω2
p)/c.

To obtain Brillouin’s forerunner, expand the operators G∗ and κ∗ according
to (5.3), m ≥ 1:



gm =
(−1)m−1

(m− 1)!

∫ ∞

0

tm−1G(t) dt = (−1)m+1
ω2

p

ωm
0 ν0

sin

(
m arcsin

(
ν0
ω0

))
,

κ1 = 0, κm+1 = αgm,

χm = gm −
m−2∑
i=1

κi+1κm−i.

The recurrence formula (5.4) gives

n1 =

√
1 + χ1 − 1,

Renm+1 =
χm+1 −

∑m−1
i=1 Renm−i+1Reni+1

2(1 + n1)
, Imnm+1 = κm+1.

Explicitly, the first coefficients are:

χ1 =

ω2
p

ω2
0

, χ2 = −
νω2

p

ω4
0

,

n1 =
√

1 + ω2
p/ω

2
0 − 1, n2 = − 1√

1 + ω2
p/ω

2
0

νω2
p

2ω4
0

+ j
αw2

p

w2
0

,

Notice that R � n1 > 0, Ren2 < 0. The coefficients nk, k > 2 are obtained from
the recurrence relation above. The methods described in section 5 can now be used
to calculate approximations to the second forerunner in the chiral medium. In the
numerical example below, the condition (5.7) is fulfilled at least for m = 6.

6.2 A gyrotropic single-resonance medium

6.2.1 Physical background

Consider an electrically neutral, isotropic material subjected to a strong, constant
external magnetic field, say B0 = B0uz. Approximately, the polarization is of the
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form ε0(χ
ee∗E)(t) and the magnetization zero, that is, the constitutive relations are

given by cηD = E+χee∗E and cB = ηH . A simple expression for the constitutive
dyadic, χee(t), for this gyrotropic medium is now derived.

Assume the positive charges are heavy and let the electron density be N . The
electric polarization can then be written in the form ε0(χ

ee ∗E)(t) = Nqr(t), where
the time-dependent displacement vector, r(t), of an electron is determined by New-
ton’s law of motion:

m∂2
t r(t) = −mν∂tr(t) −mω2

0r(t) + qE(t) + q∂tr(t) × B0. (6.5)

The first term in the right-hand side is a phenomenological damping force, the sec-
ond term is a restoring Hooke’s force, and the last two terms constitute a relevant
approximation to the Lorentz force. The fourth term gives rise to the well-known
Faraday effect, exhibited by the gyrotropic medium. The plasma frequency and the
gyrotropic frequency are defined by ωp =

√
Nq2/(ε0m) and ωg = qB0/m, respec-

tively. Newton’s law of motion, (6.5), gives an ordinary differential equation for the
polarization:(

∂2
t + ν∂t + ω2

0

)
(χee ∗ E)(t) + ωguz × ∂t(χ

ee ∗ E)(t) = ω2
pE(t).

Using that this equation holds for any electric field gives

χee(t) = ITχ
ee
co(t) + JTχ

ee
cross(t) + uzuzχ

ee
z (t), (6.6)

where 


χee
co(t) = Reχee

c (t), χee
cross(t) = Imχee

c (t),

χee
c (t) = H(t)

ω2
p

ν0c

sin (ν0ct) exp

(
−νct

2

)
,

χee
z (t) = H(t)

ω2
p

ν0
sin (ν0t) exp

(
−νt

2

)
,

(6.7)

and the introduced frequencies are

νc = ν + jωg, ν0c =
√
ω2

0 − ν2
c /4, and ν0 =

√
ω2

0 − ν2/4.

The plasma is an example of a gyrotropic medium for which ω0 = 0.

6.2.2 Forerunners

For the gyrotropic medium discussed in the previous subsection, the refractive equa-
tion (4.1) reduces to

2Nc(t) + (Nc ∗Nc)(t) = χee
c (t).

Sommerfeld’s forerunner is given by equations (5.1)–(5.2), where Nc(+0) = 0
and Kc(+0) = ω2

p/(2c).
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Brillouin’s forerunner is now discussed. The moments of χee
c (t) are

χee
m =

(−1)m−1

(m− 1)!

∫ ∞

0

tm−1χee
c (t) dt = (−1)m+1

ω2
p

ωm
0 ν0c

sin

(
m arcsin

(
ν0c

ω0

))
.

Explicitly, the first and second moments are χee
1 = ω2

p/ω
2
0 and χee

2 = −νcω2
p/ω

4
0.

The corresponding refractive coefficients, nm, are determined from the recurrence
relation (5.4): 


n1 =

√
1 + χee

1 − 1,

nm+1 =
χee

m+1 −
∑m−1

i=1 nm−i+1ni+1

2(1 + n1)
, m ≥ 1.

Specifically, the first and second refractive coefficients are n1 =
√

1 + ω2
p/ω

2
0 −1 > 0

and n2 = −νcω2
p/(2ω

4
0

√
1 + ω2

p/ω
2
0) < 0. The methods described in Section 5 can

now be used provided the condition (5.7) is fulfilled for some reasonable m. This is
the case in the numerical example discussed below (m = 10).

7 Numerical calculations

The complex propagator kernel, Pc(z; t), defined in Section 4, can be calculated
numerically using different time-domain methods. One way is to solve the complex
integro-differential equation (4.4) in a finite interval [0, z] × [0, t] using the method
of characteristics. This is quite time consuming, since a convolution has to be
performed at every step in the spatial variable z. For a fixed propagation depth, z,
a more efficient way is to solve the Volterra integral equation of the second kind (4.5).
The real-valued version of this integral equation was solved in Ref. 11. The complex-
valued version is solved in a similar way. A third time-domain method of calculating
Pc(z; t) is to use the complex equivalent of the series expansion (3.16). It should be
pointed out that the rule

Pc(z1 + z2; t) = Pc(z1; t) + Pc(z2; t) + (Pc(z1; ·) ∗ Pc(z2; ·)) (t), (7.1)

can be utilized in the calculation of Pc(z; t) in all three cases. This rule is due to the
group properties (3.21). In fact, numerical tests indicate that it is necessary to use
the rule (7.1) in order to obtain correct results for (comparatively) large propagation
depths also for bi-gyrotropic materials.

Asymptotic expressions for the complex propagator kernel Qc(z)Pc(z; t) are ob-
tained in Section 5 via repeated convolution (5.8). The functions P2k can be ex-
pressed in terms of the hyper-Airy functions A2k(x), which are analyzed in Ap-
pendix A. For a small complex argument z, the hyper-Airy functions, A2k(z), can
be obtained numerically by solving the ODEs (A.2) subjected to the initial con-
ditions (A.3). Alternatively, the Volterra integral equations (A.4) or the Fourier
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integrals (A.1) can be employed. Experience indicates that the asymptotic expres-
sions (A.5) have to be used when the modulus of the argument, |z|, is larger than
approximately 5.

The accuracy of the asymptotic expansions for the two material models presented
in Section 6 is demonstrated in Figures 1, 2, 4, and 5. The forerunner approxi-
mations are compared to numerical results for the propagator kernel Qc(z)Pc(z; t),
which are obtained by first solving the Volterra integral equation (4.5) at z/2, where-
upon the propagator rule (7.1) is applied once. Due to the oscillatory behavior of the
first precursor, a large number of data points is needed. In both cases, 32768 = 215

data points are used.
Figures 1 and 2 illustrate the co- and cross-propagator kernels, respectively, for

an isotropic chiral medium characterized by the parameters ωp = ω0 = 100 × c/z,
ν = 20 × c/z, and α = −0.001 × z/c, where z is the propagation depth. The polar
plot of the co-propagator kernel versus the cross-propagator kernel with the time as
parameter is presented in Figure 3. The second forerunner is clearly distinguishable
as an irregularity in the spiral curve. For z = 10−6 m, the values of parameters
ωp, ω0, and α coincide with the ones used by Zablocky and Engheta [30]. In this
reference, the medium was magnetic but lossless though (ν = 0).

Figures 4 and 5 show the co- and cross-propagator kernels, respectively, for a
gyrotropic medium characterized by the following parameters: ωp = ω0 = ωg =
100 × c/z, and ν = 20 × c/z. The polar plot of the co-propagator kernel versus the
cross-propagator kernel with the time as parameter is presented in Figure 6. The
second forerunner is displayed in the more detailed Figure 6b.

In the second example, the method for obtaining the second forerunner described
in Section 5 was modified in order to escape numerical problems arising at the
calculation of the kernel P4 as it stands in (5.9). To cope with this, the coefficient
n3 is separated into its real and imaginary parts. Taking jImn3 as n3, the method
presented in Section 5 can be applied. To compensate for the real part of n3, a
convolution with the kernel 


P3(z; t) =

1

t3
Ai

(
− t
t3

)
,

t3 =

(
3(−Ren3)z

c

) 1
3

has to be performed, cf. Ref. 11.
The examples indicate that the difference between the numerical results for the

complex propagator kernel Qc(z)Pc(z; t) and the asymptotic approximations de-
creases when the number of factors in the multiple convolution (5.8) increases. In
particular, the tail of Brillouin’s forerunner is improved significantly.

8 Conclusions

This paper concerns TEM pulse propagation along the gyrotropic axis in temporally
dispersive bi-gyrotropic media. This class of linear, causal materials comprises 12
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Figure 1: The co-propagator kernel, (QP )co(z, t) = Re{Qc(z)Pc(z; t)}, at a fixed
propagation depth, z, in an isotropic chiral medium (ωp = 100×c/z, ω0 = 100×c/z,
ν = 20 × c/z, α = −0.001 × z/c). 32768 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c. The leading-edge behavior is
characterized by high amplitudes (≈ 4000× c/z). Several second precursor approx-
imations obtained by the time-domain method are shown also.

time-varying constitutive parameters, but only eight of these enter the problem
discussed in this article. In particular, the impulse response and the first and second
forerunners associated with this TEM pulse are investigated. Responses to other
excitations can be obtained by temporal convolution.

The results are obtained employing time-domain techniques. Dispersive wave
splitting is adopted to decompose the propagating waves into their up- and down-
going constituents. Complex time-varying electromagnetic fields are used as well.
Introducing this concept reduces relevant vector- and dyadic-valued equations for the
up- and down-going field components to complex scalar equations that are easier to
analyze and use for numerical purposes. Both dispersive wave splitting and complex
fields have been used before in the analysis of the propagation of pulses in bi-isotropic
media, but not simultaneously. The application to general bi-gyrotropic materials
seems to be new as well. It should be observed that any physical field can be written
as the sum of two complex conjugate, time-varying field vectors, which correspond
to the RCP and LCP field components in the time-harmonic analysis.

The analysis shows that some features are common for all bi-gyrotropic media.
First, these materials all support TEM waves along the gyrotropic axis. Second,
they rotate propagating field vectors, although the physical mechanisms behind the
rotations may be different (cf. Faraday effect and optical activity). Third, precursors
generally arise in these materials. Otherwise, the behavior of propagating signals
differs much from one bi-gyrotropic material to another. Figures 3 and 6 confirm
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Figure 2: The cross-propagator kernel, (QP )cross(z, t) = Im{Qc(z)Pc(z; t)}, and
second precursor approximations to this kernel at a fixed propagation depth, z, in an
isotropic chiral medium. For parameters see caption of Figure 1. The leading-edge
behavior of the numerical result is characterized by amplitudes of order 2500×c/z.

this. The behavior in the general case is conjectured to be complicated.
The main purpose of the present work is the investigation of forerunners in bi-

gyrotropic media in the vein of Ref. 11. Thus, endeavor to focus on the general
aspects without going into details has guided the authors. The applied methods are
general enough, although they are not claimed to work for all dispersion models.
Examples indicate that single or multiple resonance type models seem appropriate
to analyze using these techniques. The employed methods are simple from a math-
ematical point of view: no complicated asymptotic analysis of Fourier integrals is
involved. A general advantage of time-domain techniques is that it is easier to find a
physical meaning for time-varying than for frequency-dependent quantities. In par-
ticular, causality is maintained explicitly in each step until we come to discussion of
the second precursor, where it is necessary to abandon it.

Using complex time-dependent field vectors, much of the theory of precursors
in isotropic materials can be adopted [11]. The first precursor is the early time
behavior of the propagating field and the second precursor the result of parabolic
approximations to this field. The first forerunner can be expressed in terms of Bessel
functions of complex arguments in analogy with the isotropic case. The theory
of the second forerunner, however, must be modified. The final result involves
convolutions of hyper-Airy functions of even orders and complex arguments. The
obtained expression comprises half as many terms as the one presented in [11].
This makes it more attractive from the numerical point of view since convolution
is a time- and memory-consuming operation. Brillouin’s forerunners in two specific
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Figure 3: Polar plot of (QP )cross(z, t) versus (QP )co(z, t) with time as the para-
meter at a fixed propagation depth, z, in an isotropic chiral medium. The field is
propagating towards the reader. Early times correspond to large amplitudes.

complex materials are investigated in some detail. Numerical calculations show good
agreement between propagator kernels and forerunner approximations. In fact, even
the lowest-order approximation to the second forerunner — a Gaussian of complex
argument — contains much of the low-frequency behavior of the field.

A possible way to generalize the presented results is to analyze pulses that propa-
gate in other directions than along the gyrotropic axis. More generally, access to the
Green dyadics of the bi-gyrotropic medium makes it possible to obtain forerunners
due to 3D source distributions using similar techniques.
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Figure 4: The co-propagator kernel, (QP )co(z, t) = Re{Qc(z)Pc(z; t)}, at a fixed
propagation depth, z, in a gyrotropic medium (ωp = 100 × c/z, ω0 = 100 × c/z,
ωg = 100 × c/z, ν = 20 × c/z). 32768 data points were used at the equidistant
discretization of the time interval 0 < t < 1.5 × z/c. The leading-edge behavior is
characterized by high amplitudes (≈ 5000× c/z). Second precursor approximations
obtained by the time-domain method are shown also.

Appendix A The hyper-Airy functions A2k(z)

This appendix concerns hyper-Airy functions of even order and complex argument.
Hyper-Airy functions of real arguments were introduced in Ref. 11.

Definition A.1. Let k be an arbitrary positive integer. The function A2k(z) of com-
plex argument z is the inverse Fourier transform of the function exp (−ξ2k/(2k))
extended to an entire function on the whole complex plane. (Fourier-Laplace trans-
form; see Ref. 9). Explicitly,

A2k(z) =
1

2π

∞∫
−∞

exp
(
−ξ2k/(2k) + izξ

)
dξ, z ∈ C. (A.1)

The hyper-Airy functions A2k(z) are even in z. Setting k = 1 gives the Gaussian
function A2(z) = exp {−z2/2}/

√
2π.

Differentiating under the integral sign yields the ordinary differential equations

A
(2k−1)
2k (z) = (−1)kzA2k(z), z ∈ C, k > 0. (A.2)

From Ref. [11, Appendix B], one obtains the initial values

A
(2m)
2k (0)=

(−1)m

π
(2k)

2m+1
2k

−1Γ

(
2m+ 1

2k

)
, A

(2m−1)
2k (0)=0, (A.3)
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Figure 5: The cross-propagator kernel, (QP )cross(z, t) = Im{Qc(z)Pc(z; t)}, and
second precursor approximations to this kernel at a fixed propagation depth, z, in
a gyrotropic medium. For parameters see caption of Figure 4. The leading-edge
behavior is characterized by amplitudes of order 100 × c/z.

where Γ(x) is the gamma function. Restrictions of the functions A2k(z) to the ray
[0,+∞u), where 0 �= u ∈ C is arbitrary but fixed, can be obtained by solving the
hyper-Airy equations (A.2) subjected to the initial values (A.3). In the vicinity of
the origin, standard ODE-solvers can be used.

Alternatively, convolution equations for the hyper-Airy functions, which are ob-
tained by repeated integration of equations (A.2), can be solved:

A2k(z) =
(−1)k

(2k − 2)!

∫
C

(z − ξ)2k−2ξA2k(ξ) dξ +
2k−2∑
m=0

xm

m!
A

(m)
2k (0), (A.4)

where C is the segment, [0, z], z ∈ C. These Volterra equations of the second kind
are uniquely solvable in the space of continuous functions on each finite segment.

The leading behavior of the hyper-Airy functions, A2k(z), k > 1, as |z| → ∞ is

A2k(z)∼
(jz)−

2k−2
2(2k−1)√

2π(2k − 1)

(
exp

(
2k − 1

2k
(jz)

2k
2k−1

)

+(−1)−
2k−2

2(2k−1) exp

(
2k − 1

2k
(−jz) 2k

2k−1

))
,

(A.5)

cf. the analysis in Ref. 11 (see also [2, Chapter 6]). This result is not applicable
to the Gaussian function, A2(z). It is possible to improve the expansion (A.5) by
retaining more terms in the asymptotic series of A2k(z) as |z| → ∞, cf. Ref. 11.
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Figure 6: Polar plot of (QP )cross(z, t) versus (QP )co(z, t) with time as the para-
meter at a fixed propagation depth, z, in a gyrotropic medium; (a) general view;
(b) detailed view that reveals the second forerunner. The wave travels towards the
reader.
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