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Abstract

The purpose of this paper is to introduce the Fisher information integral oper-
ator and related spectral decomposition for inverse scattering problems. The
Fisher information integral kernel is derived using a variational formulation
and Fréchet derivatives leading naturally to a �rst order perturbation analysis
of the partial di�erential equation at hand, and an application of correspond-
ing Green's function techniques. The integral operator and its spectrum can
be e�ciently approximated by using suitable quadrature methods for numeri-
cal integration. The eigenfunctions of this integral operator, corresponding to
the identi�able parameters via the signi�cant eigenvalues and the correspond-
ing Cramér-Rao bounds, constitute a suitable global basis for sensitivity and
resolution analysis as well as for optimization. In depth analysis and numeri-
cal examples for one- and two-dimensional inverse electromagnetic scattering
problems are given that illustrate the spectral decomposition and the related
resolution analysis.

1 Introduction

Inverse scattering problems o�er many challenges in related sciences due to the
ill-posedness of the reconstruction, see e.g., [2, 9, 11, 26]. Important technical appli-
cation areas are e.g., with microwave tomography [6, 7], non-invasive medical imag-
ing [13], and electrical impedance tomography [3]. In these applications, it is almost
always necessary to employ some kind of regularization to stabilize the inversion
algorithms and there is only a limited resolution attainable, see e.g., [2, 8, 11, 18, 21].

The Fisher information and the Cramér-Rao bound are very useful tools for
resolution and sensitivity analysis in various signal estimation and imaging problems
based on wave physics, see e.g., [4, 5, 8, 16, 18�20, 25, 27]. With inverse scattering
problems, the Fisher information is able to connect a parameter based description
of the material with a physical model, together with some probabilistic assumption
about the measurement errors. The Gaussian assumption, which is a simple and
yet realistic model for the measurement errors, yields a statistical bound for the
estimation errors, and hence a quantitative measure on the inversion quality, see
e.g., [8, 16, 18]. In [8, 18�20], the Cramér-Rao bound is employed as an analytical
tool to quantify the ill-posedness of the reconstruction and to explicitely describe
the inherent trade-o� between the accuracy and the resolution, and in [17] the
Fisher information is used in a preconditioning strategy to improve the convergence
properties of a gradient based inversion algorithm.

The purpose of this paper is to introduce the Fisher Information integral Opera-
tor (FIO) and related spectral decomposition for inverse scattering problems. So far,
the Fisher information analysis presented in [8, 17, 18] has been �nite dimensional by
presumption. Hence, the analysis has been su�ering from the necessity and related
uncertainty of making ad hoc a priori assumptions about the underlying discretiza-
tion of the material such as the size, orientation and positions of the assumed image
pixels, etc. An in�nite dimensional formulation with FIO analysis will completely
circumvent this drawback. There is furthermore a distinct computational advantage
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of using the in�nite dimensional formulation in the related spectral analysis since
the eigenvalues and eigenfunctions of the integral operator can be approximated
by employing e�cient quadrature methods for numerical integration [14] instead
of using an excessively small a priori discretization grid in the �nite dimensional
formulation.

Spectral analysis of linear integral operators are well known tools in mathematical
analysis [14], inverse scattering [2, 11, 21] as well as in random process characteri-
zation [24, 28]. The Fisher information integral operator for an in�nite dimensional
parameter function has been employed previously in the estimation of wave forms
(or random processes) in e.g., [28]. In the present context with inverse problems,
the Fisher information integral kernel is derived using a variational formulation and
Fréchet derivatives leading naturally to a �rst order perturbation analysis of the
partial di�erential equation at hand, and an application of corresponding Green's
function techniques.

The in depth analysis and numerical examples are concerned with one- and two-
dimensional inverse electromagnetic scattering problems based on the Helmholtz
equation and related free space Green's functions. For the one-dimensional problem
the integral kernel have some similarities with the Dirichlet kernel and related prolate
spheriodal wave (eigen) functions [24, 28]. For the two-dimensional problem with
circular symmetry, an azimuthal Fourier series expansion e�ciently separates the
two-dimensional eigenproblem into several one-dimensional problems, one for each
Fourier component.

The organization of the paper is as follows. The Fisher information integral
operator for inverse scattering problems is introduced in section 2. In depth analysis
of one- and two-dimensional inverse electromagnetic scattering problems are treated
in sections 3 and 4, respectively. Section 5 contains the numerical examples and
section 6 the summary.

2 The Fisher information integral operator

2.1 Variational formulation of the Fisher information

The Fisher Information integral Operator (FIO) is a natural extension of the cor-
responding Fisher Information Matrix (FIM), and can hence be derived in close
resemblance to the development given in e.g., [10]. Let θ = θ(r) denote the un-
known real valued parameter function to be estimated, de�ned on a compact spatial
domain Ω. Let θ ∈ D[Ω] where D[Ω] denotes the space of piecewise continuous
functions on Ω.

Let ξ ∈ Cn denote a �nite vector of complex valued sample measurements,
modeled as a random vector with conditional probability density function p(ξ|θ). To
obtain the in�nite dimensional Fisher information kernel, a �rst order perturbation
analysis is considered. Let δT denote the Fréchet derivative of an operator T with
respect to an incremental parameter function δθ ∈ D[Ω], see e.g., [11]. In particular,
assume that the function F (h) = ln p(ξ|θ+hδθ) is di�erentiable in the real variable h,
i.e., F (h) = F (0)+F ′(0)h+O{h2} where (·)′ denotes di�erentiation with respect to
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h. The Fréchet derivative (cf., the �rst variation) of ln p(ξ|θ) can then be calculated
as δln p(ξ|θ) = F ′(0). Hence, it is straightforward to see that e.g., δln p(ξ|θ) =
δp(ξ|θ)/p(ξ|θ). Moreover, since the Fréchet derivative is a linear operator, it has a
representation of the form

δln p(ξ|θ) = 〈δθ(r) ln p(ξ|θ), δθ(r)〉 =

∫
Ω

δθ(r) ln p(ξ|θ)δθ(r) dv, (2.1)

where 〈·, ·〉 denotes a scalar product over Ω and δθ(r) ln p(ξ|θ) the corresponding
gradient [11], cf., also the Riesz representation theorems for linear functionals [23].

Consider now an unbiased estimator θ̂(r, ξ) with

E
{
θ̂(r, ξ)

}
=

∫
θ̂(r, ξ)p(ξ|θ) dξ = θ(r), (2.2)

where E{·} denotes the expectation operator with respect to the conditional prob-
ability density function p(ξ|θ). Taking the Fréchet derivative of both sides of (2.2)
with respect to δθ yields

δE
{
θ̂(r, ξ)

}
=

∫
θ̂(r, ξ)δln p(ξ|θ)p(ξ|θ) dξ = E

{
θ̂(r, ξ)δln p(ξ|θ)

}
= δθ(r), (2.3)

where it has been assumed that the variational operator δ commutes with the inte-
gral. Furthermore, by employing the regularity condition E{δln p(ξ|θ)} =
E{δp(ξ|θ)/p(ξ|θ)} =

∫
δp(ξ|θ) dξ = δ1 = 0 (employing that the variational operator

δ commutes with the integral), it is concluded that

E
{(
θ̂(r, ξ)− θ(r)

)
δln p(ξ|θ)

}
= δθ(r). (2.4)

Now, let a(r) ∈ D[Ω] and b(r) ∈ D[Ω] be arbitrary (test) functions. Let δθ(r) =
b(r) and take the scalar product 〈a(r), ·〉 of both sides of (2.4) yielding

E
{
〈a(r), θ̂(r, ξ)− θ(r)〉〈δθ(r) ln p(ξ|θ), b(r)〉

}
= 〈a(r), b(r)〉, (2.5)

where the scalar product 〈a(r), ·〉 is assumed to commute with the expectation
operation. The Cauchy-Schwarz inequality for stochastic variables [10] yields

〈a(r), b(r)〉2 ≤ E
{
〈a(r), θ̂(r, ξ)− θ(r)〉2

}
E
{
〈δθ(r) ln p(ξ|θ), b(r)〉2

}
. (2.6)

By de�ning the following integral kernels

C(r′, r′′) = E
{(
θ̂(r′, ξ)− θ(r′)

)(
θ̂(r′′, ξ)− θ(r′′)

)}
(2.7)

I(r′, r′′) = E
{
δθ(r′) ln p(ξ|θ)δθ(r′′) ln p(ξ|θ)

}
(2.8)

and the corresponding covariance and Fisher information integral operators C and
I

Ca(r) =

∫
Ω

C(r, r′)a(r′) dv′, (2.9)

Ib(r) =

∫
Ω

I(r, r′)b(r′) dv′, (2.10)
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the Cauchy-Schwarz inequality (2.6) �nally yields

〈a(r), b(r)〉2 ≤ 〈a(r), Ca(r)〉〈b(r), Ib(r)〉, (2.11)

where it has been assumed that the expectation operator commutes with the inte-
grals.

2.2 Cramér-Rao bound for the principal parameters

It is assumed that the operator I is compact and self-adjoint, with an associated
discrete spectrum cf., [14]. Consider the following eigenvalue problem

Iϑl(r) =

∫
Ω

I(r, r′)ϑl(r
′) dv′ = µlϑl(r) (2.12)

where r ∈ Ω and where µl > 0 is a positive eigenvalue, ϑl(r) ∈ D[Ω] the correspond-
ing normalized eigenfunction and l a countable index. Similar to the Karhunen-
Loève expansion of a stochastic process [28], the principal parameters ηl and the
corresponding unbiased estimator η̂l(ξ) are de�ned here by

ηl = 〈θ(r), ϑl(r)〉 =

∫
Ω

θ(r)ϑl(r) dv (2.13)

η̂l(ξ) = 〈θ̂(r, ξ), ϑl(r)〉 =

∫
Ω

θ̂(r, ξ)ϑl(r) dv. (2.14)

By choosing a(r) = ϑl(r) and b(r) = 1
µl
ϑl(r) in (2.11) and by noting that 〈ϑl(r), Cϑl(r)〉 =

E{(η̂l(ξ)− ηl)2}, the Cramér-Rao bound for the principal parameters are given by

E{(η̂l(ξ)− ηl)2} ≥ 1

µl
. (2.15)

2.3 The Gaussian measurement model

Let (·)T and (·)H denote the transpose and the conjugate transpose, respectively.
Consider the following Gaussian measurement model

ξ = ψ(θ) +N (2.16)

where ξ ∈ Cn is the complex measurement vector, ψ(θ) ∈ Cn a complex vector
valued functional of the real function θ(r) andN ∈ Cn a complex Gaussian random
vector with zero mean and covariance matrix E{NNH} = R, see e.g., [10]. Hence,
the probability density function p(ξ|θ) for the measurement vector is given by

p(ξ|θ) =
1

πndetR
e−(ξ−ψ(θ))HR−1(ξ−ψ(θ)). (2.17)

By employing the correlation properties of the complex Gaussian vector [10], i.e.,
E{(ξ − ψ(θ))(ξ − ψ(θ))H} = R and E{(ξ − ψ(θ))(ξ − ψ(θ))T} = 0, it is straight-
forward to show that (2.8) becomes

I(r′, r′′) = 2 Re
{
δθ(r′)ψ

H(θ)R−1δθ(r′′)ψ(θ)
}
. (2.18)
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2.4 Continuous measurements over time and frequency

Consider the following statistical measurement model regarding a single spatial mea-
surement point,

ξ(t) = ψ(t, θ) +N(t), t ∈ [−T/2, T/2] (2.19)

where ξ(t) is the real time-domain stochastic measurement process, ψ(t, θ) the phys-
ical observation model, N(t) the noise and T the length of the observation interval.
The noise is assumed to be sampled from a real Gaussian stochastic process with
zero mean, correlation function rN(τ) = E{N(t+τ)N(t)} and power spectral density
RN(f) =

∫∞
−∞ rN(τ)ei2πfτ dτ .

The complex Hilbert pair, or analytic signal1 corresponding to (2.19) is given by

ξ̃(t) = ψ̃(t, θ) + Ñ(t), t ∈ [−T/2, T/2] (2.20)

where Ñ(t) is zero mean complex Gaussian noise with power spectral density R̃N(f) =
4RN(f)u(f) where u(f) is the Heaviside unit step function, cf., [10, 15, 22]. A dis-
crete measurement model is now obtained from a Fourier series representation of
(2.20)

ξ̃p = ψ̃p(θ) + Ñp, −∞ < p <∞ (2.21)

where the Fourier coe�cients are ξ̃p = 1
T

∫ T/2
−T/2 ξ̃(t)e

i2π p
T
t dt. The noise terms Ñp

are zero mean complex Gaussian2 with covariance function R̃pq = E{ÑpÑ
∗
q }, see

e.g., [28]. Provided that the correlation function r̃N(τ) has either �nite support or
�nite energy, it is straightforward to show that R̃pq → 1

T
R̃N( p

T
)δpq as T →∞ where

δpq denotes the Kronecker delta, see e.g., [12]. From (2.18) and (2.21) it is now
concluded that

I(r′, r′′) = 2 Re
∞∑

p=−∞

1

R̃N( p
T

)
δθ(r′)T ψ̃

∗
p(θ)δθ(r′′)T ψ̃p(θ)

1

T

→ 2 Re

∫ ∞
−∞

1

R̃N(f)
δθ(r′)ψ̃

∗(f, θ)δθ(r′′)ψ̃(f, θ) df

= 2 Re

∫ ∞
0

1

RN(f)
δθ(r′)ψ

∗(f, θ)δθ(r′′)ψ(f, θ) df (2.22)

as T →∞, and where the relations R̃N(f) = 4RN(f)u(f) and ψ̃(f, θ) = 2ψ(f, θ)u(f)
have been used. Since ψ(t, θ) is real and ψ(−f, θ) = ψ∗(f, θ), the Fisher information
integral kernel is �nally given by

I(r′, r′′) =

∫ ∞
−∞

1

RN(f)
δθ(r′)ψ

∗(f, θ)δθ(r′′)ψ(f, θ) df. (2.23)
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ψ+(x)

ψ−(x) ψt(x)

x = 0 x = a x

θ(x)

1 1

Figure 1: One-dimensional inverse scattering problem with a parameter function
θ(x) over a �nite interval x ∈ [0, a].

3 One-dimensional inverse scattering

Consider the one-dimensional inverse scattering problem of imaging a parameter
function θ(x) over a �nite interval x ∈ Ω = [0, a] where a > 0 and θ(x) = 1 for x /∈
[0, a], see Fig. 1. The inverse scattering problem may be acoustic or electromagnetic,
etc. For an electromagnetic problem the parameter function may be e.g., θ(x) =
ε(x)/ε where ε(x) denotes the relative permittivity inside a dielectric slab and ε its
value outside. It is assumed that the wave �eld ψ(x) satis�es the Helmholtz equation
in the frequency domain

∂2
xψ(x) + k2θ(x)ψ(x) = 0 (3.1)

where k = ω/c is the wave number, ω = 2πf the angular frequency with time
convention e−iωt and c the speed of wave propagation in the surrounding medium
where θ(x) = 1. The boundary conditions consist of an incident wave �eld ψ+(x) =
S(f)eikx, a re�ected wave �eld ψ−(x) = S(f)Γ(f)e−ikx for x ≤ 0 and a transmitted
wave �eld ψt(x) = S(f)T (f)eikx for x ≥ a where Γ(f) and T (f) denote the re�ection
and the transmission coe�cients, respectively, and S(f) the Fourier transform of the
excitation signal. The inverse problem consists of retrieving the parameter function
θ(x) based on a measurement of the scattered �eld ψ−(x) at the boundary x = 0
over some �xed frequency range.

For a low contrast inverse scattering problem it is of interest to analyze the
situation for a homogenous background where θ(x) = 1 for all x. The solution
to (3.1) with boundary conditions is then simply ψ(x) = ψ+(x) = S(f)eikx. The
corresponding Green's function satis�es ∂2

xG(x, x′) + k2G(x, x′) = −δ(x− x′) and is
given by G(x, x′) = i

2k
eik|x−x′|.

3.1 The sensitivity �eld and Fisher information

To obtain the sensitivity �eld δθ(x)ψ = δθ(r)ψ used in (2.23), a �rst order perturbation
analysis is considered in (3.1) where θ(x) → θ(x) + hδθ(x) and ψ(x) → ψ(x) +
hδψ(x) + O(h2) where δθ(x) ∈ D[Ω] and ‖O(h2)‖ ≤ Ch2 as h → 0. The resulting

1The analytic time-domain signal is ξ̃(t) = ξ(t)+iξ̌(t) where ξ̌(t) denotes the Hilbert transform,
see e.g., [22].

2Note that the Fourier series representation of a real Gaussian process is not necessarily complex
Gaussian, cf., [10, 15, 28].
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non-homogenous wave equation for the Fréchet derivative δψ(x) is

∂2
xδψ(x) + k2θ(x)δψ(x) = −k2ψ(x)δθ(x) (3.2)

where ψ(x) is given by the solution to (3.1). Note that the boundary conditions in
(3.2) are given by δψ+(x) = 0. The solution to (3.2) is given by

δψ(x) =

∫
Ω

G(x, x′)k2ψ(x′)δθ(x′) dx′ (3.3)

and the corresponding gradient is obtained as

δθ(x′)ψ(x) = G(x, x′)k2ψ(x′). (3.4)

Consider a homogenous background with θ(x) = 1 for all x, and suppose that the
observed quantity ψ(f, θ) in (2.23) is the re�ection data in the present formulation,
i.e., the wave �eld ψ(x) observed at the boundary x = 0. Hence,

δθ(x′)ψ(f, θ) = δθ(x′)ψ(x)|x=0 = k2G(0, x′)ψ(x′) =
ik

2
S(f)eik2x′ . (3.5)

Suppose further that we wish to evaluate (2.23) over a bandwidth ω ∈ ω0[1 −
B/2, 1 + B/2] where ω0 is the center frequency and B the normalized bandwidth
with 0 < B ≤ 2. Suppose also that the excitation signal S(f) as well as the power
spectral density RN(f) are constant over the relevant bandwidth, i.e., S(f) = S and
RN(f) = N0. The Fisher information integral kernel in (2.23) then becomes

I(x′, x′′) = SNRk2
0

1

B
Re

∫ 1+B/2

1−B/2
ν2eiν2k0(x′′−x′) dν (3.6)

where k0 = ω0/c, ν = ω/ω0 and where the dimensionless signal to noise ratio SNR
is de�ned by

SNR =
1

2N0

Re

∫ f0(1+B/2)

f0(1−B/2)

|S(f)|2 df =
f0B

2N0

|S|2. (3.7)

For simplicity, we choose SNR = 1 in the following. It is also convenient to consider
the dimensionless Fisher information, de�ned with respect to the normalized spatial
variable k0x

I(k0x
′, k0x

′′) =
1

B
Re

∫ 1+B/2

1−B/2
ν2eiν2(k0x′′−k0x′) dν. (3.8)

By employing the Fourier transform relationship (iν)2 ↔ ∂2

∂z2
(where z = 2(k0x

′′ −
k0x

′)), the Fisher information in (3.8) is �nally given by

I(k0x
′, k0x

′′) = −1

4

∂2

∂x2

{
cos 2x

sinBx

Bx

}∣∣∣∣
x=k0(x′′−x′)

. (3.9)

Note that the kernel de�ned in (3.9) is continuous, and the corresponding operator
I is hence compact and self-adjoint, cf., [14].
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3.2 The eigenvalue problem

Consider now the eigenvalue problem (2.12) with normalized Fisher information as
in (3.8) and (3.9), i.e., ∫ k0a

0

g(x− x′)ϑl(x′) dx′ = µlϑl(x) (3.10)

where the normalization x↔ k0x has been used, and where

g(x) = −1

4

∂2

∂x2

{
cos 2x

sinBx

Bx

}
=

cos 2x cosBx

2x2
+

cosBx sin 2x

x
− cos 2x sinBx

2Bx3

+
cos 2x sinBx

Bx
+
B cos 2x sinBx

4x
− sin 2x sinBx

Bx2
. (3.11)

Hence, I(k0x
′, k0x

′′) = g(k0(x′ − x′′)), and the dimensionless eigenvalues and eigen-
functions corresponding to (3.10) are µnorml = µl/k0 and ϑnorml (k0x) = 1√

k0
ϑl(x),

respectively, where µl and ϑl(x) are de�ned in (2.12). It is also noted that g(x) =
g(−x) and g(0) = 1 +B2/12.

It is observed that the kernel function (3.11) is a continuous analogue of the
Fisher information for the corresponding discrete multilayer slab [8]. It is also ob-
served that (3.11) is a modulated analogue of the well-known Dirichlet kernel with
related prolate spheriodal eigenfunctions [24, 28].

To solve the eigenvalue problem (3.10) numerically, any suitable quadrature
method for one-dimensional numerical integration [14] can be used. Thus, an ap-
proximate �nite dimensional matrix formulation can be employed

Iϑl = µlϑl, (3.12)

where I is N ×N , ϑl is N × 1 and N the number of quadrature points.

3.3 Asymptotic analysis

The Fourier transform of g(x) in (3.11) is

G(ν) =

∫ ∞
−∞

g(x)eiνx dx =

{
π

8B
ν2 |ν ± 2| ≤ B

0 otherwise.
(3.13)

As k0a→∞, the eigenvalues and eigenfunctions of (3.10) are asymptotically,

µl ∼ G(l
2π

k0a
), −∞ < l <∞ (3.14)

ϑl(x) ∼ 1√
k0a

e
il 2π
k0a

x
, 0 ≤ x ≤ k0a (3.15)

see e.g., [28]. Note that G(ν) is real and symmetric, so that µl = µ−l and ϑl(x) =
ϑ∗−l(x).
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Asymptotically, the number of nonzero eigenvalues are

N =
4B
2π
k0a

=
2B

π
k0a (3.16)

and the normalized resolution ∆{k0x} is

∆{k0x} =
k0a

N
=

π

2B
. (3.17)

The spatial resolution ∆x is therefore given by

∆x =
π

2k0B
=

λ0

4B
≥ λ0

8
(3.18)

where λ0 = 2π/k0 is the wavelength corresponding to the center frequency and
0 < B ≤ 2.

Alternatively, using the minimum wavelength λmin = λ0/(1 + B/2), the spatial
resolution in (3.18) becomes

∆x =
λmin

4B
(1 +

B

2
) ≥ λmin

4
. (3.19)

4 Two-dimensional inverse scattering

Consider the two-dimensional electromagnetic inverse scattering problem of imag-
ing an isotropic circular cylinder of radius a in a homogenous and isotropic back-
ground space, see Fig. 2. Let (ρ, φ, z) denote the cylindrical coordinates, (ρ̂, φ̂, ẑ)
the corresponding unit vectors and ρ = ρρ̂ the two-dimensional radius vector with
coordinates (ρ, φ). Let θ = θ(ρ) denote the unknown real valued function to be
estimated, de�ned on the compact two-dimensional spatial domain Ω = {ρ|ρ ≤ a}
where a > 0, see Fig. 2.

Both the electric �eld �eld E and the excitation (line) source J are assumed to
be linearly polarized with E = ψ(ρ, t)ẑ and J = J(ρ, t)ẑ, and both �elds depend
on the two-dimensional spatial domain ρ ∈ R2. The measurement is performed on
a cylinder of radius b with near-�eld excitation at (b, ϕ) and measurement at (b, φ).
The inverse problem consists of estimating the parameter function θ(ρ) = ε(ρ)/ε
within the cylindrical object for ρ ≤ a, based on measurements (or observations) of
the electric �eld ψ(φ, ϕ, t) = ψ(ρ, t) at ρ = b, i.e., for (φ, ϕ, t) ∈ [0, 2π] × [0, 2π] ×
[−T/2, T/2] where T is the length of the observation interval. Here, ε(ρ) is the
relative permittivity within the cylinder, and ε its value outside. Hence, θ(ρ) = 1
for ρ > a.

In the frequency domain, the Maxwell's equations yield the following wave equa-
tion for the scalar �eld ψ, i.e., the Helmholtz equation in cylindrical coordinates

∇2ψ(ρ) + k2θ(ρ)ψ(ρ) =

{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2θ(ρ)

}
ψ(ρ) = −ikηJ(ρ), (4.1)
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Measurement
(b, φ)

Excitation
(b, ϕ)

θ(ρ)

a

x

y

Figure 2: Two-dimensional inverse scattering problem with a parameter function
θ(ρ) over a cylinder ρ ≤ a. Measurement cylinder of radius b > a with excitation
at (b, ϕ) and measurement at (b, φ). The background space is homogenous and
isotropic with θ(ρ) = 1 for ρ > a.

where k = ω/c is the wave number, ω = 2πf the angular frequency with the time
convention e−iωt, c the speed of wave propagation in the surrounding medium where
θ(ρ) = 1 and η the corresponding wave impedance. The corresponding Green's
function G(ρ,ρ′) = G(ρ, φ, ρ′, φ′) for a line source at ρ′ = (ρ′, φ′) satis�es {∇2ψ +
k2θ}G(ρ,ρ′) = −δ(ρ− ρ′).

For a homogenous background with θ(ρ) = 1, the background Green's function
is given by

G(ρ, φ, ρ′, φ′) =
i

4

∞∑
m=−∞

Jm(kρ<)H(1)
m (kρ>)eim(φ−φ′) (4.2)

where Jm(·) and H
(1)
m (·) are the Bessel function and the Hankel function of the

�rst kind, respectively, both of order m, see e.g., [1]. Here, ρ< = min{ρ, ρ′} and
ρ> = max{ρ, ρ′}. Assuming that the source is a line source at ρ′ with J(ρ) =
S(f)δ(ρ− ρ′), the solution to (4.1) is given by

ψ(ρ, f) =

∫ ∞
−∞

ψ(ρ, t)ei2πft dt = ikηS(f)G(ρ,ρ′) (4.3)

where S(f) is the Fourier transform of the excitation signal. Hence, in the frequency
domain, the observed �eld is given by ψ(φ, ϕ, f) = ψ(ρ, f)|ρ=b = ikηS(f)G(b, φ, b, ϕ).
Further, let the two-dimensional Fourier coe�cients of the 2π×2π periodic function
ψ(φ, ϕ, f) be de�ned by

ψmn(f) =
1

(2π)2

∫ 2π

0

∫ 2π

0

ψ(φ, ϕ, f)e−imφ−inϕ dφ dϕ. (4.4)

For the homogenous background, it follows then from (4.2) that

ψmn(f) = −kη
4
S(f)Jm(kb)H

(1)
m (kb)δ−m,n.
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4.1 Continuous measurements over time and space

Consider the following statistical measurement model for the space and time domain

ξ(φ, ϕ, t) = ψ(φ, ϕ, t) +N(φ, ϕ, t) (4.5)

for (φ, ϕ, t) ∈ [0, 2π]× [0, 2π]× [−T/2, T/2], which is a two-dimensional extension of
the (single spatial point) model in (2.19), and where the argument θ in ψ(φ, ϕ, t) has
been suppressed for simplicity. The measurement signal ψ(φ, ϕ, t) is assumed to be
real and the noise N(φ, ϕ, t) is assumed to be sampled from a spatially uncorrelated
real Gaussian stochastic process with zero mean and correlation function

E {N(φ+∆φ,ϕ+∆ϕ, t+∆t)N(φ, ϕ, t)} = (2π)2δ(∆φ)δ(∆ϕ)rN(∆t), (4.6)

where δ(·) denotes an impulse function with period 2π. Here, rN(τ) denotes the tem-
poral correlation function with power spectral density RN(f) =

∫∞
−∞ rN(τ)ei2πfτ dτ.

The complex (time-domain) Hilbert pair corresponding to (4.5) is given by

ξ̃(φ, ϕ, t) = ψ̃(φ, ϕ, t) + Ñ(φ, ϕ, t), t ∈ [−T/2, T/2] (4.7)

where Ñ(φ, ϕ, t) is a zero mean complex Gaussian stochastic process with the cor-
responding temporal power spectral density R̃N(f) = 4RN(f)u(f), as in section 2.4.
A discrete measurement model is obtained by considering the three-dimensional
Fourier series representation of (4.7)

ξ̃mnp = ψ̃mnp + Ñmnp (4.8)

where the Fourier series coe�cients are given by

ξ̃mnp =
1

(2π)2T

∫ 2π

0

∫ 2π

0

∫ T/2

−T/2
ξ̃(φ, ϕ, t)e−imφe−inϕei2π p

T
t dt dφ dϕ. (4.9)

Following the arguments as in section 2.4, it is straightforward to show that the noise
terms Ñmnp are zero mean complex Gaussian distributed with covariance function

E
{
ÑmnpÑ

∗
m′n′p′

}
= δmm′δnn′

1

T
R̃N(

p

T
)δpp′ (4.10)

as T → ∞. Hence, from (2.18) with δθ(r′) = δθ(ρ′), and the model (4.8), it follows
that

I(ρ′,ρ′′) = 2 Re
∞∑

m=−∞

∞∑
n=−∞

∞∑
p=−∞

1

R̃N( p
T

)
δθ(ρ′)T ψ̃

∗
mnpδθ(ρ′′)T ψ̃mnp

1

T

→ 2 Re

∫ ∞
−∞

1

R̃N(f)

∞∑
m=−∞

∞∑
n=−∞

δθ(ρ′)ψ̃
∗
mn(f)δθ(ρ′′)ψ̃mn(f) df

= 2 Re

∫ ∞
0

1

RN(f)

∞∑
m=−∞

∞∑
n=−∞

δθ(ρ′)ψ
∗
mn(f)δθ(ρ′′)ψmn(f) df (4.11)



12

as T → ∞, where the relations R̃N(f) = 4RN(f)u(f) and ψ̃mn(f) = 2ψmn(f)u(f)
have been used. Since ψ(φ, ϕ, t) is real and ψ−m,−n(−f) = ψ∗mn(f), the Fisher
information integral kernel is �nally given by

I(ρ′,ρ′′) =

∫ ∞
−∞

1

RN(f)

∞∑
m=−∞

∞∑
n=−∞

δθ(ρ′)ψ
∗
mn(f)δθ(ρ′′)ψmn(f) df. (4.12)

4.2 The sensitivity �eld

To obtain the sensitivity �eld used in (4.12), a �rst order perturbation analysis is
considered in (4.1) where θ(ρ)→ θ(ρ) +hδθ(ρ) and ψ(ρ)→ ψ(ρ) +hδψ(ρ) +O(h2)
where δθ(ρ) ∈ D[Ω] and ‖O(h2)‖ ≤ Ch2 as h → 0. The resulting non-homogenous
wave equation for the Fréchet derivative δψ(ρ) is

∇2δψ(ρ) + k2θ(ρ)δψ(ρ) = −k2ψ(ρ)δθ(ρ) (4.13)

where ψ(ρ) is given by the solution to (4.1). The solution to (4.13) is given by

δψ(ρ) =

∫
Ω

G(ρ,ρ′)k2ψ(ρ′)δθ(ρ′) dS ′ (4.14)

and the corresponding gradient is obtained as

δθ(ρ′)ψ(ρ) = k2G(ρ,ρ′)ψ(ρ′). (4.15)

Since the excitation is a line source at (b, ϕ) and ψ(ρ′) = ikηS(f)G(ρ′, φ′, b, ϕ)
as given by (4.3), the gradient of the observed �eld ψ(φ, ϕ, f) is

δθ(ρ′)ψ(φ, ϕ, f) = k3iηS(f)G(b, φ, ρ′, φ′)G(b, ϕ, ρ′, φ′) (4.16)

where the symmetry of the Green's function has been employed.
For a homogenous background with θ(ρ) = 1, the two-dimensional Fourier series

representation of (4.16) follows by applying (4.2). Hence,

δθ(ρ′)ψmn(f) = −k
3iηS(f)

16
Jm(kρ′)Jn(kρ′)H(1)

m (kb)H(1)
n (kb)e−i(m+n)φ′ . (4.17)

The Fisher information in (4.12) can now be expressed as

I(ρ′,ρ′′) =

∫ ∞
−∞

1

RN(f)

k6η2|S(f)|2

162

∞∑
m=−∞

∞∑
n=−∞

Jm(kρ′)Jn(kρ′)Jm(kρ′′)Jn(kρ′′)

|H(1)
m (kb)|2|H(1)

n (kb)|2ei(m+n)(φ′−φ′′) df. (4.18)

Next, suppose that the noise power spectral density and the excitation is constant
over the relevant bandwidth, i.e., RN(f) = N0 and ωS(f) = ω0S(f0), respectively,
for ω ∈ ω0[1−B/2, 1 +B/2] where ω0 is the center frequency and B the normalized
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bandwidth. Further, let ν = ω/ω0 = f/f0 = k/k0 denote the normalized frequency
variable, and de�ne the dimensionless signal to noise ratio SNR by

SNR =
2

N0162

∫ f0(1+B/2)

f0(1−B/2)

k2η2|S(f)|2 df =
2k2

0η
2|S(f0)|2f0B

N0162
. (4.19)

The Fisher information in (4.18) can then be expressed as

I(ρ′,ρ′′) =
SNR

B
k4

0

∫ 1+B/2

1−B/2
ν4

∞∑
m=−∞

∞∑
n=−∞

Jm(νk0ρ
′)Jn(νk0ρ

′)Jm(νk0ρ
′′)Jn(νk0ρ

′′)

|H(1)
m (νk0b)|2|H(1)

n (νk0b)|2ei(m+n)(φ′−φ′′) dν. (4.20)

For simplicity, we choose SNR = 1 in the following. Finally, the Fisher information
with respect to the dimensionless spatial variable ρ↔ k0ρ is given by

I(ρ′,ρ′′) =
1

B

∫ 1+B/2

1−B/2
ν4

∞∑
m=−∞

∞∑
n=−∞

Jm(νρ′)Jn(νρ′)Jm(νρ′′)Jn(νρ′′)

|H(1)
m (νk0b)|2|H(1)

n (νk0b)|2ei(m+n)(φ′−φ′′) dν (4.21)

and the corresponding dimensionless eigenvalues and eigenfunctions are µnorml =
µl/k

2
0 and ϑnorml (k0ρ) = 1

k0
ϑl(ρ), respectively, where µl and ϑl(ρ) are de�ned in

(2.12). Note that the kernel de�ned in (4.21) is continuous since ρ′, ρ′′ ≤ a < b,
cf., also (4.16), and the operator I is hence compact and self-adjoint, cf., [14]. It is
also observed that the kernel function (4.21) is a continuous analogue of the Fisher
information for the corresponding discretized circular domain presented in [18].

4.3 The eigenvalue problem

Due to the circular symmetry and a reorganization of the double summation, the
Fisher information in (4.21) can be expressed as

I(ρ′, ρ′′, φ) =
∞∑

q=−∞

Iq(ρ′, ρ′′)eiqφ (4.22)

where φ = φ′ − φ′′, and where the Fourier series coe�cients in (4.22) are given by

Iq(ρ′, ρ′′) =
1

B

∞∑
m=−∞

∫ 1+B/2

1−B/2
ν4Jm(νρ′)Jq−m(νρ′)Jm(νρ′′)Jq−m(νρ′′)

|H(1)
m (νk0b)|2|H(1)

q−m(νk0b)|2 dν. (4.23)

Note that the Fourier series coe�cients Iq(ρ′, ρ′′) are real and symmetric, i.e.,
I−q(ρ′, ρ′′) = Iq(ρ′, ρ′′).

The eigenvalue problem in (2.12) can now be stated as∫
ρ≤k0a

∫ 2π

0

I(ρ, ρ′, φ− φ′)ϑl(ρ′, φ′) dφ′ρ′ dρ′ = µlϑl(ρ, φ) (4.24)
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or, equivalently, as the following Fourier series representation

2π

∫
ρ≤k0a

Iq(ρ, ρ′)ϑlq(ρ′)ρ′ dρ′ = µlϑlq(ρ) (4.25)

where −∞ < q <∞, and

ϑl(ρ, φ) =
∞∑

q=−∞

ϑlq(ρ)eiqφ. (4.26)

Let q be arbitrary and �xed, and let ϑlq(ρ) be an eigenfunction of (4.25) with
eigenvalue µl. Then ϑl(ρ, φ) = ϑlq(ρ)eiqφ is an eigenfunction of (4.24) with eigenvalue
µl. Hence, since the integral operator I de�ned by (4.24) is compact and self-adjoint,
the Fourier series representation in (4.26) is �nite [14] (where the summation limits
depend on l).

For q = 0, eigenvalues µl and eigenfunctions ϑl(ρ, φ) = ϑ̃l0(ρ) are generated where

ϑ̃l0(ρ) are the corresponding real eigenfunction solutions of (4.25). Since the Fisher
information is real with I−q(ρ′, ρ′′) = Iq(ρ′, ρ′′), any pair (q,−q) with q ≥ 1 will gen-
erate (at least) two linearly independent eigenfunctions ϑlq(ρ)eiqφ and ϑl,−q(ρ)e−iqφ

sharing the corresponding eigenvalue µl. Real eigenfunctions (corresponding to the
real parameter function θ(ρ, φ)) satisfying the conjugate symmetry ϑl,−q(ρ) = ϑ∗lq(ρ)
are obtained as{

ϑa
l (ρ, φ) = ϑ̃lq(ρ)eiqφ + ϑ̃lq(ρ)e−iqφ = 2ϑ̃lq(ρ) cos qφ

ϑb
l (ρ, φ) = −iϑ̃lq(ρ)eiqφ + iϑ̃lq(ρ)e−iqφ = 2ϑ̃lq(ρ) sin qφ

(4.27)

where ϑ̃lq(ρ) are the real eigenfunction solutions of (4.25) for q ≥ 1. The set of
all eigenvalues and eigenfunctions of (4.24) may be obtained as the union of all the
eigenvalues and eigenfunctions generated by (4.25) for −∞ < q <∞, counted with
multiplicity.

To solve the eigenvalue problem (4.24) numerically, let the Fourier series in (4.26)
be truncated with |q| ≤ Q. Any suitable quadrature method for one-dimensional
numerical integration [14] can now be used to approximate (4.25) using a �nite
dimensional matrix formulation given by

2πIqϑ̃lq = µlϑ̃lq, q = 0, . . . , Q (4.28)

where Iq is N ×N , ϑ̃lq is N × 1 and N the number of quadrature points.

5 Numerical examples

5.1 One-dimensional inverse scattering

Consider the one-dimensional inverse scattering problem described in section 3. The
dimensionless Fisher information is de�ned in (3.9). The spectral properties of the
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corresponding integral operator de�ned by (3.10) is investigated below. The simple,
and frequently used composite Simpson's rule [14] is employed to approximate the
one-dimensional integral operator, yielding the �nite dimensional eigenvalue problem
stated in (3.12). In the numerical examples below, the number of quadrature points
is set to N = 401.

The one-dimensional kernel function g(x) de�ned in (3.11) is shown in Fig. 3 for
B = {2, 0.2, 0.1}. Examples of the corresponding eigenfunctions when k0a = 20 and
B = 2 is shown in Fig. 4.
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Figure 3: The kernel function g(x) for B = {2, 0.2, 0.1}.
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Figure 4: Examples of eigenfunctions ϑl(k0x) corresponding to the kernel function
g(x) for k0a = 20, B = 2 and l = {1, 2, 9, 10, 19, 20}.

The eigenvalues of the integral operator in (3.10) is shown in Fig. 5 for B = 2
and k0a = {1, 2, 5, 10, 20, 50, 100}. The upper part of Fig. 5 shows the eigenvalues
in decreasing order (counting multiplicity). The resolution limit is determined by
the number of useful eigenfunctions, and is hence given approximately by the sharp
�knee�, or �threshold�, at which the eigenvalues starts to drop o� in rapid exponential
decay.

De�ne the resolution limit based on l useful eigenfunctions by

Rλmin
=

a

λmin

1

l
=
k0a

2π
(1 +

B

2
)
1

l
(5.1)

in dimensionless fractions of the minimum wavelength λmin. Note that k0 = ω0/c de-
notes the wave number corresponding to the center frequency ω0, and the minimum
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Figure 5: Upper part: Eigenvalues µl as a function of index (counting multiplicity)
corresponding to the kernel function g(x). Lower part: Eigenvalues µl as a function
of resolution limit Rλmin

in fractions of the minimum wavelength λmin. Here, B = 2
and k0a = {1, 2, 5, 10, 20, 50, 100}.

wavelength is λmin = λ0/(1 + B/2). The lower part of Fig. 5 shows the eigenvalues
µl as a function of the resolution limit Rλmin

de�ned in (5.1). As can be seen in
Fig. 5, the resolution limit approaches ∆x/λmin = 1/4 as k0a → ∞ and B = 2, as
predicted by the asymptotic analysis in (3.19).

In Fig. 6 is shown the eigenvalues of the integral operator in (3.10) for k0a = 10
and B = {0.1, 0.2, 0.5, 1, 2}. Note that the �staircase� shape of these curves are
quite natural since the eigenvalues become double as k0a is getting large, cf., the
asymptotic analysis in section 3.3.

In Fig. 4 is shown a selection of useful eigenfunctions within the resolution limit
for k0a = 20 and B = 2. It is concluded from Fig. 5 that a resolution limit of
Rλmin

= 0.25 corresponds approximately to l = 25 linearly independent eigenfunc-
tions. To demonstrate the actual resolution capability versus the predictedRλmin

, an
eigenfunction expansion of two closely spaced impulse functions δ(x−x1)+δ(x−x2)
is carried out. In Fig. 7 is shown an expansion using the �rst 25 eigenfunctions. The
distance between the impulses are d = |x1 − x2| = λmin{0.5, 0.4, 0.3}.

5.2 Two-dimensional inverse scattering

Consider the two-dimensional inverse scattering problem described in section 4. The
dimensionless Fisher information is de�ned in (4.21) and decomposed in a Fourier
series in (4.22) and (4.23). The spectral properties of the corresponding integral op-
erator de�ned by (4.24) is investigated below. A numerical scheme is used here where
(4.23) is truncated with |q| ≤ Q and |m| ≤ 2Q. The simple, and frequently used
composite Simpson's rule [14] is employed to approximate the one-dimensional inte-
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Figure 6: Upper part: Eigenvalues µl as a function of index (counting multiplicity)
corresponding to the kernel function g(x). Lower lower part: Eigenvalues µl as
a function of resolution limit Rλmin

in fractions of the minimum wavelength λmin.
Here, k0a = 10 and B = {0.1, 0.2, 0.5, 1, 2}.
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Figure 7: Eigenfunction expansion of two closely spaced impulse functions δ(x −
x1) + δ(x − x2) using the eigenfunctions ϑl(k0x) for l = 1, . . . , 25, corresponding
approximately to the resolution limit Rλmin

= 0.25 for k0a = 20 and B = 2. The
distance between the impulses are d = |x1 − x2| = λmin{0.5, 0.4, 0.3}.

gral operators in (4.25), yielding the �nite dimensional eigenvalue problems stated
in (4.28). In the numerical examples below, the Fourier series truncation is set to
Q = 40 and the number of radial quadrature points is N = 31. Hence, there is a
total of 2511 eigenvalues (counting multiplicity). In the numerical examples below,
the measurement cylinder radius is b = 1.1a.

Consider the narrowband case B → 0, which is easily accounted for by putting
ν = 1, dν = B and neglecting the integral over ν in (4.23). Let λ0 denote the
wavelength and k0 = 2π/λ0 the wave number. The eigenvalues of the integral
operator in (4.24) is shown in Fig. 8 for k0a = 2π{1, 2, 4, 8}. The upper part of
Fig. 8 shows the eigenvalues in decreasing order (counting multiplicity). As with the
previous one-dimensional example, the resolution limit is given here approximately
by the sharp �knee�, or �threshold�, at which the eigenvalues starts to drop o� in
rapid exponential decay.
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Figure 8: Upper part: Eigenvalues µl as a function of index (counting multiplicity)
corresponding to the Fisher information kernel for a two-dimensional circular do-
main. Lower part: Eigenvalues µl as a function of resolution limit Rλ0 in fractions
of the wavelength λ0. Here, B = 0 (narrowband case) and k0a = 2π{1, 2, 4, 8}.
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Figure 9: A selection of useful eigenfunctions ϑl(ρ, φ) with l = {5, 40, 50} within
the resolution limit (l = 180) for k0a = 2π2, corresponding to the Fisher information
operator for a two-dimensional circular domain. The cartesian x and y axes shown
are normalized to the wavelength and the radius of the circular domain is a = 2λ0.

The resolution limit may be further quanti�ed as follows. A dimensionless mea-
sure of the cylinder cross-section area is Aλ0 = π( a

λ0
)2 = π(k0a

2π
)2 and the correspond-

ing resolution limit based on l useful eigenfunctions is de�ned by

Rλ0 =

√
Aλ0

l
=

√
(k0a)2/4π

l
(5.2)

in dimensionless fractions of the wavelength λ0. The lower part of Fig. 8 shows the
eigenvalues µl as a function of the resolution limit Rλ0 de�ned in (5.2).

In Fig. 9 is shown a selection of useful eigenfunctions with various spatial vari-
ability, chosen within the resolution limit for k0a = 2π2. It is concluded from Fig. 8
that a resolution limit of Rλ0 = 0.27 corresponds approximately to l = 180 linearly
independent eigenfunctions.
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Figure 10: Eigenfunction expansion of two closely spaced impulse functions δ(ρ−
ρ1) + δ(ρ − ρ2) using the eigenfunctions ϑl(ρ, φ) for l = 1, . . . , 180, corresponding
approximately to the resolution limit for k0a = 2π2. The distance between the
impulses are |ρ1 − ρ2| = λ0{0.5, 0.4, 0.3}. The cartesian x and y axes shown are
normalized to the wavelength and the radius of the circular domain is a = 2λ0.

To demonstrate the actual resolution capability versus the predicted Rλ0 , an
eigenfunction expansion of two closely spaced impulse functions δ(ρ−ρ1)+δ(ρ−ρ2)
is carried out. In Fig. 10 is shown an expansion using the �rst 180 eigenfunctions.
The distance between the impulses is d = |ρ1 − ρ2| = λ0{0.5, 0.4, 0.3}. This eigen-
function expansion may be used to quantify the minimum resolvable distance be-
tween two small and closely spaced objects. The numerical examples verify the
rather coarse de�nitions (5.1) and (5.2) with reasonable precision.

6 Summary

The Fisher information integral operator has been de�ned by using a variational
formulation and Fréchet derivatives with a speci�c application to inverse scattering
problems. The spectral decomposition of this compact and self-adjoint operator
contains all the essential information about the invertability and the resolution limit
for a weak scattering inverse problem, without having to resort to any particular
assumptions about the size, orientation and positions of discrete image pixels, etc.
It has been illustrated how the integral kernels can be calculated explicitely for some
generic one- and two-dimensional inverse scattering problems, and that the related
eigenvalue problems can be solved e�ciently by using suitable quadrature methods
for numerical integration. Moreover, the potential for future research is that the
essential eigenfunctions which are obtained from the spectral analysis, will constitute
a suitable global basis for optimization and can hence be used with the gradient
based inversion algorithms. The future potential is the possibility of unifying the
sensitivity and resolution analysis, the regularization, the preconditioning and the
inversion algorithm by using one single concept.
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