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Preface

TheDepartment ofAutomaticControl at LundUniversity annually gives a project course inAutomatic
Control. The course is given at the advanced level and comprises 7.5 ECTS credits. In this course, the
students work in small teams, to achieve a common goal. The projects typically involve a real-world
estimation or control problem with relevance to industrial or other applications.

In this course, the students get an opportunity to explore implementational aspects of concepts
they have learned in previous control systems courses. With a faculty member or doctoral student as
advisor, the groups get to independently formulate an objective and a time plan. Subsequent activities
typically involve modeling, controller design, implementation, documentation and verification. The
students present their work through two feedback seminars, a demonstration session and a written
report. The reports of the 2018 edition of the course are collected in this booklet. distr Each year, a
jury consisting of the teaching staff rewards members of two groups with an award and small prize. In
2018, awards were handed out for “Best control engineering and demonstration” to Nicklas Norberg
Persson, Dennis Dalenius, Per Josefsson and Daniel Johansson for their work on the project “Ball
Catching Robot” and for “Best report and documentation” to Albert Anderberg, Josiah Wong and
Rebeca Homssi for their work on the project “Autonomous Driving F1/10 Car”.

Doctoral students Marcus Greiff, Marcus Thelander-Andrén and Nils Vreman have served the
course as project advisors.Wewould also like to thank our research engineers Leif Andersson, Pontus
Andersson, Anders Blomdell and Anders Nilsson who have supported the groups throughout their
projects. Finally, we would like to thank Mika Nishimura for her help with student registration and
related matters.

To find out more about the course, please visit https://www.control.lth.se/education/
engineering-program/frtn40-project-in-automatic-control/.

Lund, January 2018
Kristian Soltesz, on behalf of the teaching staff
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Lego Segway
Robin Eriksson1 Axel Knutsson2 Niklas Karlsson3 Emma Nilsson4

1elt14rer@student.lu.se 2elt14akn@student.lu.se 3elt14nka@student.lu.se
4his10eni@student.lu.se

Abstract:
This is a project about a Lego segway modeled as a pendulum. It is built entirely in Lego and the
brick and motors are from the brand EV3 while the sensors are from NXT. The sensors used were
one gyroscope and one accelerometer which was used together with a complementary filter to get
a good estimation of the angle and angular speed of the robot. To control the robot an LQR state
feedback design was used.

1. Introduction
The inverted pendulum is a popular control problem due to
its unstable and nonlinear dynamics and is often used to test
different control strategies and to demonstrate howa inherently
unstable system can be stabilized using closed loop feedback
control. The purpose of this project is to design and build a
two-wheeled inverted pendulum robot, as seen in Figure 1,
using the Lego Mindstorms kit and making it balance itself.

Figure 1. Final version of the robot

2. Modeling
In order to simplify the calculations a simplified model of the
system is used, the process is modeled as a freely rotating
pendulum with two wheels as its base. The variables used
for modeling can be seen in Figure 2 and Figure 3 and are
summarized in Table 1. In Table 2 the measured constants of
the robot can be found.

In order to derive the equations of motion for the system
Lagrange equations are used as following [1].

Figure 2. Model of the wheels. Image courtesy of [1]

Figure 3. Model of the pendulum. Image courtesy of [1]

Kinetic energy of the wheel

Tw =
1
2

mw Ûx2 +
1
2

Iw Ûφ2. (1)

Kinetic energy of the rod

Tr =
1
2

mr ( Ûx − L Ûθcos(θ))2 + 1
2

mr (L Ûθsin(θ))2 + 1
2

Ir Ûθ2. (2)

Potential energy

V = mrgLcos(θ). (3)
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Table 1. Definitions of variables used in the model

mw Mass of wheels kg
mr Mass of rod kg
Iw Inertia of wheel kgm2

Ir Inertia of rod kgm2

τ Torque from motors Nm
R Radius of wheel m
L Length to the center of mass m
Lr Length of rod m
g Gravity m/s2

θ Angle of the segway rad
Ûθ Angular speed of the segway rad/s
φ Angle of the wheels rad
Ûφ Angular speed of the wheels rad/s

Table 2. Measured constants

mw 2 · 0.032 kg
mr 1.213 kg
Iw 0.082944 kgm2

Ir 0.066320775 kgm2

R 0.036 m
L 0.182 m
Lr 0.405 m

Using Euler-Lagrange Equation

d
dt
(∂L
∂ Ûqi ) −

∂L
∂q
= 0, (4)

where the Lagrangian is written as

L = Tw + Tr − V . (5)

With the general coordinates

q = (x φ θ)T .
Then deriving from Lagrange the equation of motion can

be written on the form [1]

OT M(q)O Û3 +OT F(q, Ûq) = OTGτ, (6)

where O and G are

O =

−R 0
1 0
0 1


and G =


0
1
−1


,

with

M(q) =

(mw + mr ) 0 −(mr Lcos(θ))

0 Iw 0
−(mr Lcos(θ)) 0 (Ir + mr L2)


,

q =

x
φ
θ


, Ûq =


Ûx
Ûφ
Ûθ


, Û3 =

[ Üφ
Üθ
]
,

F(q, Ûq) =


mr L Üθsin(θ)
0

−mrgLsin(θ)


.

Putting everything together yields the following equations
of motion for the system [1].

[(mw + mr )R2 + Iw mr RLcosθ
(mr RLcosθ) (Ir + mr L2)

] [ Üφ
Üθ
]
+

[−mr RLθ2sinθ
−mrgLsinθ

]

=

[
τ
−τ

]
. (7)

These equations are nonlinear and are therefore linearized
around the pendulums upright position (θ = 0 and φ = 0).

With the state space vector

z = (φ Ûφ θ Ûθ)T , (8)

and together with (7), the equations of motion can be
rewritten as a state space model using Jacobian

Jf (x) = A =



∂ Ûφ
∂φ

∂ Ûφ
∂ Ûφ

∂ Ûφ
∂θ

∂ Ûφ
∂ Ûθ

∂ Üφ
∂φ

∂ Üφ
∂ Ûφ

∂ Üφ
∂θ

∂ Üφ
∂ Ûθ

∂ Ûθ
∂φ

∂ Ûθ
∂ Ûφ

∂ Ûθ
∂θ

∂ Ûθ
∂ Ûθ

∂ Üθ
∂φ

∂ Üθ
∂ Ûφ

∂ Üθ
∂θ

∂ Üθ
∂ Ûθ


and

Jf (u) = B =



∂ Ûφ
∂u
∂ Üφ
∂u
∂ Ûθ
∂u
∂ Üθ
∂u


,

to get the system of the form

Ûx = Ax + Bu, (9)

where

A =



0 1 0 0
0 0 −316 0
0 0 0 1
0 0 57 0


,

B =



0
5827

0
−467


,

and u = τ, which is the torque acting on the wheel. The
nonlinear state equations are linearized around the upright
position and are therefore only valid for small deviations from
this position.

2.1 Motor
Since the model uses torque τ, as the input of the system but
the motors takes voltage as input a translation was needed
from torque to voltage. After some research a mathematical
model of the motor could be found [11]

{
Ûω = Kτ I−Bω−Ar−τd

J
ÛI = U−Ra I−Kbω

La

. (10)

Eriksson, Knutsson, Karlsson, Nilsson
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With the assumption that the current changes so fast the
derivative would be zero, the following expression could be
computed

U =
Raτ

Kτ
+ Bω ⇐⇒ τ =

UKτ
Ra
− BKτ

Ra
ω, (11)

with the variables declared in table 3.

Table 3. Definitions of variables used in (10) and (11)

I Current A
U Voltage V
τd Shaft’s load torque Nm
Ra armature resistance Ω

Kτ Torque constant Nm/A
Kb Back electromotive force coefficient V/(rad/s)
J Rotor’s moment of inertia kgm2

B Viscosity resistance coefficient Nm/(rad/s)
Ar Dry friction force Nm

τ was then replaced in the old model (7) with (11) and
the linearization was recalculated. This gave the new A and B
matrices

A =



0 1 0 0
0 −0.0304 −141.1684 0
0 0 0 1
0 0.0026 30.8700 0


,

B =



0
41.8679

0
−3.5432


,

with the eigenvalues

Eigenvalues = [0 − 0.0187 − 5.5620 5.5502]. (12)

As seen in (12) the eigenvalues of the system includes two
mirrored poles one being unstable at 5.5502, this is typical for
a inverted pendulum model. Since the closed loop system in-
cludes an unstable pole some type of control system is needed
to stabilize it.

3. Electro-Mechanics
The robot is constructed using the EV3 brick for computations
combined with the NXT gyroscope and accelerometer sensors
for taking measurements of the angle and angular velocity and
is then driven by two EV3 large motors, the rest of the frame
is constructed using simple Lego parts. A taller and heavier
pendulum is easier to control since it falls slower and there is
more time to correct for errors, therefore the center of mass
was put as high as possible without making the construction
unstable.

At the start of the project there were issues with backlash
in the motors. So when the robot tried to balance around its
upright position and there was a small error in angle to correct,
the motors would turn but not the wheels due to the backlash
and this made it hard to balance. To solve this two motors

were used on each side instead of one, and then each wheel
was only rotated in one direction since the backlash problem
only occurs when changing direction of the wheels.

3.1 Specification for EV3
These are the specifications for the different parts used for
building the robot.

• EV3 Brick [2]

– Operating System - ev3dev (Debian Linux-based)
– Language used - Python
– Processor - 300 MHz ARM9 Controller
– Flash Memory - 16 MB
– RAM - 64 MB
– USB 2.0 Communication to Host PC - Up to 480

Mbit/sec
– Micro SD Card - Supports SDHC, Version 2.0,

Max 32 GB
– Power - 6 rechargeable AA batteries

• EV3 Motors [3]

– Motor max speed at 170 rpm
– Running torque of 20 Ncm
– Stall torque of 40 Ncm

• NXT Acceleration Sensor [4]

– Three axes of measurement labeled x, y, and z
– The acceleration measurement for each axis is re-

freshed 100 times per second

• NXT Gyro Sensor [5]

– Measures angular velocity in one direction

4. Control
4.1 LQR
To control the segway an LQR (Linear Quadratic Regulator)
controller was used. This method was chosen since it guar-
antees a stable closed loop system and it also guarantees ro-
bustness with a phase margin of 60°. The theory used for the
implementation of the LQR comes from [6]. The parameters
in the LQR was calculated in Matlab using the cost function

J =
∫ ∞

0
(xᵀ(t)Q(t)x(t) + uᵀ(t)R(t)u(t))dt, (13)

with

Q =



1 0 0 0
0 1 0 0
0 0 6 · 1010 0
0 0 0 1


,

which is a diagonalmatrixwith aweighted penalty for each
state. Q(3,3) represents the weight for θ, the angle between
the normal of the horizontal and the robot, see Figure 3, and
have the highest penalty since it is the most important state.

Lego Segway
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The penalty for the input signal is

R = 106.

This together with the linearized system was used to solve
the Riccati equation

0 = Q + AT S + SA − SBR−1BT S. (14)

After solving for S the LQR gain is calculated as

L = R−1BT S, (15)

and the optimal cost as

J? = x(0)T Sx(0). (16)

The optimal controller is then

u = −Lx. (17)

So that the state feedback system with the LQR gain looks
like

Ûx = (A − BL)x, (18)

which gives the optimal pole placement for the system.

4.2 Complementary filter
When measuring the angle θ and angular speed Ûθ in Figure
3, both an accelerometer and a gyroscope were used. The
accelerometer measures the difference in gravity in three di-
mensions, and after removing an offset and scaling the signal
the angle of the robot was retrieved. The gyroscope measures
the angular velocity which can be numerically integrated to
get the same angle.

The accelerometer and the gyroscope is consequently used
to calculate the same angle. The reason for using both of these
two sensors is due to how each sensor operates. While a gy-
roscope is efficient at measuring fast changes it does however
have the drawback that when integrating the angular velocity
there are small errors causing the angle to drift with time. The
accelerometer on the other hand is very good at measuring the
angle after a long time but is instead poor at measuring the
angle in one point in time as the measurements can be very
noisy. In order to minimize both of these problems a combi-
nation of the two sensors are used in a complementary filter
[7].

Figure 4. The impact of gravity in x and y dimension. Image
courtesy of [7]

Figure 5. Implementation without filtering. Image courtesy of [7]

In Figure 4 a graphical representation of how the ac-
celerometer measures gravity demonstrates that for measur-
ing angles in the robots upright position the x-component will
give the most significant readout. As the robot only operates
within a small variance of angles, the measurements of the
x-component was estimated as the angle θ, instead of sin θ.

As is shown in Figure 5, the most obvious choice of θ is
the readout from the accelerometer but as stated above, that is
not the optimal angle measurement.

A far more superior way to obtain accurate and none drift-
ing value of the angle θ is to use a complementary filter as
shown in Figure 6.

Figure 6. Implementation with filter. Image courtesy of [7]

The generalized equation of this complementary filter is

angle = (a) · (angle + gyro · dt) + (1 − a) · (xacc), (19)

where a is calculated as

β =
a · dt
1 − a

⇐⇒ a =
β

β + dt
, (20)

and β is a time constant depending on how fast the
measurements drift and dt = 1

fs
, where fs is the sampling

frequency.

5. Implementation
5.1 Model
To be able to make calculations and create a controller for a
physical process a model is needed. The model is a simplified
version of reality where assumption has been made to make
the model simple enough to work with. For instance, friction
on the motors and air resistance has been neglected.

Eriksson, Knutsson, Karlsson, Nilsson
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The model was linearized and then discretized using Mat-
lab. First the model in Equation (7) was entered together
with measured constants, the nonlinear system was calculated
with Matlabs syms and with matrix calculation to receive
Ûx = f (x), where x is the state vector in (8). The Matlab func-
tion Jacobian was then used to obtain the A- and B-matrix in
(9). To discretize the state space system the Matlab function
c2d was used.

5.2 LQR
To calculate the LQR gain matrix, Matlabs LQR function was
used with the previously calculated system matrices A, B, Q,
R. The vector L consists of four weighted constant numbers
used to calculate the control signal as stated in (17). The L
vector was calculated to

L = [0 − 10 − 1405.4 − 249.7].
When implementing the above presented control structure

a problem with delivering the correct output to the motor was
found, as presented in Section (2.1).

With the new A- and B-matrices the final values of the
LQR was calculated to

L = [−0.0010 − 0.0476 − 254.3399 − 12.5356].
5.3 Complementary filter
When implementing the complementary filter, as described
above, some calibrations of the sensors were needed. These
calibrations were made to make sure the sensors would return
values in the correct range and that the angle that was expected
was given. For this the following equations were used

acc = accvalue · accscale − accof f set, (21)

gyro = (gyrovalue − gyroof f set ) · gyroscale, (22)

were accvalue is the value read from the accelerometer
and gyrovalue is the value read from the gyroscope.

The scale is to convert the sensor values into radians and
radians/s. The scale value should be found by reading the
product description of the sensors, but since no product de-
scriptions could be found, another article solving the same
problem was used for inspiration [8, 9].

The offset in the accelerometer consist of two parts. First
to change the range from 0 < θ < 2π to −π < θ < π and
secondly due to the robots center of gravity not being exactly
at θ = 0. The second offset is calculated by placing the robot in
its upright equilibrium position where the robot is balancing.
This should be where the angle is 0, if the sensors read a
different value than zero, this is the offset.

The gyroscope’s offset was easy to find and given by the
value receivedwhen the robotwas notmoving. Thefinal values
used were

accof f set = 0.0480 rad,

accscale = 0.1760,
gyroof f set = 2971 mV,

gyroscale = 0.2084.

To find the weighting of the different parts of the comple-
mentary filter the desired time constant β, was determined by
trial and error and since the gyroscope was giving the most ac-
curate representation of the angle, most weight was put on the
integrated gyroscope signal. The sampling frequency of the
sensor was given in the data sheet. The final implementation
of the filter is

angle = (0.93) · (angle+ gyro · dt)+ (1−0.93) · (xacc). (23)

5.4 Program structure
The implementation of the program running on the EV3 brick
on the robot was done in Python. To set up a good program
structure a flowchart was made to get a better understanding
of what programs were needed, see Figure 7.

Figure 7. Flowchart for program structure

In the beginning of the program variables and constants
are declared. After this the sensor- and motor-objects are cre-
ated. This is implemented using the ev3dev library [10]. Here
classes for both reading and writing to the different compo-
nents of the Lego Mindstorms set can be found.

When everything is declared the loop starts. The loop is
run from the main file and is set to keep running as long as the
robot angle isn’t larger than a set amount.

At the top of the loop the sensor values are read and
processed the complementary filter is used to calculate the
estimation of the angle. The obtained states are then used
with the calculated LQR gain and the proper control signal is
calculated.

while loop:
t1 = time.time()

#reading gyro value
gyro = gyroSensor.value()

#reading accelerometer value

Lego Segway

11



accelraw = 4 * accelSensor.value(n=2)
+ accelSensor.value(n=5)

#defining values between 211-360 degrees
#as -149-0 degrees
if accelraw > 600:

accelraw = accelraw - 1023

#scaling accelerometers values to degrees
accel = accelraw * acc_scale

#scaling gyro and removing offset
angularSpeed = (gyro - gyro_offset) * gyro_scale

#complementary filter with weights
angle = (0.95) * (angle - angularSpeed * dt)
+ (0.05) * (accel - 4.2)
angle = angle

#reading speed and position of wheels
motorEncoderStop = rightWheelC.position
wheelSpeed = rightWheelC.speed

#calculate the angle of wheels
wheelangle = motorEncoderStart
- motorEncoderStop

#LQR feedback
u=(0.0010*wheelangle -0.0476 *wheelSpeed
-254.3399*angle + 12.5356*angularSpeed)

To guarantee that the control signal is within the bounds
of the motors the control signal needs to be saturated. The
maximum input signal the motors can handle is 100 but the
motors start to act in a nonlinearwaymeaning that each percent
of duty cycle does not give the same rpm output as early as
80. The saturation makes sure the value never exceeds 100
if the limit is chosen to 100. If the nonlinear part becomes
unmanageable the saturation can be set to 80 instead.

The saturated signal is then given to the motors and the
loop time is measured to guarantee that each loop iteration
takes the same amount of time and after that the loop starts
over.

motorinput = 10*u

#counteract saturation
if motorinput > 90:

motorinput = 90

if motorinput < -90:
motorinput = -90

#decide which motor to run to counter backlash
if motor:

if motorinput > 0:

if direction == 1:
leftWheelB.run_direct(duty_cycle_sp

= motorinput)
rightWheelC.run_direct(duty_cycle_sp

= motorinput)
leftWheelA.stop(stop_action="coast")
rightWheelD.stop(stop_action="coast")

else:
leftWheelB.run_direct(duty_cycle_sp

= motorinput)
rightWheelC.run_direct(duty_cycle_sp

= motorinput)
leftWheelA.stop(stop_action="coast")
rightWheelD.stop(stop_action="coast")
direction = 1

if motorinput < 0:

if direction == -1:
leftWheelA.run_direct(duty_cycle_sp

= motorinput)
rightWheelD.run_direct(duty_cycle_sp

= motorinput)
leftWheelB.stop(stop_action="coast")
rightWheelC.stop(stop_action="coast")

else:
leftWheelA.run_direct(duty_cycle_sp

= motorinput)
rightWheelD.run_direct(duty_cycle_sp

= motorinput)
leftWheelB.stop(stop_action="coast")
rightWheelC.stop(stop_action="coast")
direction = -1

#stops the motors if the segway falls
if angle > 60:

leftWheelA.stop(stop_action="coast")
leftWheelB.stop(stop_action="coast")
rightWheelC.stop(stop_action="coast")
rightWheelD.stop(stop_action="coast")
loop=False

t2 = time.time()
tdiff = t2 - t1

#sleep for the rest of the sample time
if tdiff < dt:

time.sleep(dt - tdiff)

6. Results
In Figure 8 the estimated angle from complementary filter,
gyroscope and accelerometer is shown on the actual robot
when the motors are turned off and the angle changed by
hand. As seen in the figure the complementary filter works as
intended since it gives almost the same angle as the integrated
gyroscope value except for the drift which can be seen after
some time.

Eriksson, Knutsson, Karlsson, Nilsson
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The current implementation of the robot is not able to
achieve the goal of self-balancing but it is very close. When
the robots angle is close to zero, it is too sensitive to small
changes in angle and the motors drives too aggressively. On
the other hand when the robot is falling over and the angle is
large the motors isn’t aggressive enough to correct the error.

Even though during the course of the project different steps
was taken to be able to achieve these goal since the robot still
displays an oscillating behavior. The different steps taken to
achieve the goal of self-balancing can be found in Section 7.

Figure 8. Estimated angle from the Complementary filter, Gyro-
scope and accelerometer at different times

7. Discussion
To balance the robot at the upright position a fast system is
needed. This means that the iteration time of the loop needs
to be as low as possible. From doing similar projects an initial
guess for the desired iteration time was made for 20 ms. How-
ever since it takes too long to make all the necessary readings
of sensor- and motor values and the calculations before an
output is sent. The fastest sample time achievable after all the
calculations aremadewas closer to 30ms which should still be
enough to achieve self-balancing. One theory onwhy the robot
is unstable to balance is that it actually takes longer than 30 ms
due to the inner workings of the EV3 Brick that doesn’t show
up when timing the code. There was also a strange problem
with the code running at different speeds when using different
computers even though all of the code is run on the actual EV3
Brick and not the computer.

One way to make the time constant of the system bigger
is by making the robot taller thus reducing the necessity for
a fast controller. This was implemented during the project
since it was hard to achieve balancing. Thus changing the
robot design from the version shown in figure 1 to the version
shown in figure 9. The robot was built about 10 cm higher
which moved the center of mass with 3 cm. This didn’t have
the desired control improvement on making the robot more
stable and less oscillating around the upright position.

Trying to reduce the loop time tomake the system go faster
was made by installing an new version of the current operating
system which was still in beta[10]. This new version reduced

Figure 9. Rebuilt version of the robot with higher center of mass

the loop time of the system by 6 ms. Making the new loop
time to be around 23 ms. Reducing the loop time showed an
small improvement on being able to self balance. However the
robot is still unstable and thus unable to achieve self balancing.

Implementing the second pair of motors were made to
reduce the robots jerky and oscillating behavior when trying
to balance. This behavior was guessed to be coming from
the backlash of the motors. Since the backlash was around
1-5° it was thought that when an small output was sent to the
motors, to correct a small change in inclination, the backlash
would prevent the wheels from actually moving even though
the motors moves. It was then implemented that one motor on
each wheel would only drive in a certain direction, while the
other motor would apply a small opposite force towards the
other direction. Making the motors apply a constant tension
on the wheels thus reducing the backlash.
This provided less effect on the oscillating behavior than
expected and had little to none effect on solving the problem.

Additional tries to reduce the oscillating behavior were
made by tuning theQ and Rmatrices, by increasing/decreasing
the penalty put on the θ angle, thus changing the behavior of
the controller. So far no change in parameters has made the
oscillating behavior disappear and making the robot be able to
self-balance. The model of the process was also recalculated
using different methods and programs but yielded the same
result.

As shown in Figure 8 the signal from the accelerometer
is a bit noisy and that is the reason behind trusting the value
given from the gyroscope more than the accelerometer.
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Abstract: The objective of this project is to avoid obstacles with a LEGO Mindstorms EV3
vehicle. The vehicle is equipped with a regular webcam that is connected to a PC. By image
processing, both the position and the relative angle between the obstacle and the vehicle can
be determined. The used controller is a simple condition-based P-regulator and the commands
to the vehicle are based on the results from the image feed. The communication between the
vehicle and the PC is achieved using the UDP communication protocol and all code is written
in Python. A model of the used control system has been modelled in Simulink. The resulting
avoidance sequence follows the following steps: the vehicle is to approach the obstacle as long
as the obstacle is far away, when it has reached a close distance it should strive to keep a relative
angle to the obstacle until reaching an even closer distance to the obstacle. Finally, a hard-coded
sequence is initialized to complete the avoiding maneuver and getting back on the initial vehicle
heading without any information about the obstacle. The final result is limited by the large delays
in communication between the PC and the LEGO vehicle, and also by a large play in the steering
of the vehicle.

1. Introduction
This project is done for the course Project in Automatic Con-
trol FRTN40. The team consists of two M-students and two
E-students. The project is about obstacle avoidance using a
LEGO Mindstorms EV3 vehicle at low speed. The available
hardware is a LEGO vehicle and a simple webcam. The ve-
hicle was built beforehand and a small platform for holding
the webcam in place on top of the vehicle was built and in-
stalled. By image processing, which is done with the OpenCV
library, both the position and the relative angle between the
obstacle and the vehicle can be determined. A controller is
designed that bases its control signal on the results from the
image feed. The control signals from the regulator are sent to
the LEGO vehicle. The communication between the vehicle
and the computer is achieved by using the UDP communi-
cation protocol. All code is written in Python. Simulink in
MATLAB is used to create a model of the used control sys-
tem prior to the actual application of the system. A scenario
example can be seen in Figure 1.

Figure 1. Scenario example of the LEGO vehicle with obstacle.

The initial aim of the project is to navigate the LEGO ve-
hicle around obstacles that appear in certain positions relative
the vehicle. Multiple obstacles are a possibility for further de-
velopment. The project team members’ prior relevant educa-
tional backgrounds are within automatic control, mechanics
and real time programming. This knowledge has been applied
upon designing the controller of the vehicle as well as during
programming the communication between the client and the
server.

The subject explored in this project is relevant for fu-
ture research of automotive vehicles and can be seen as a
roadmap for improving current technologies. Improvements
can be made by using additional sensors together with or in-
stead of a camera on the vehicle.

2. Modelling
Before the project is executed, a model of the LEGO vehicle
is created in order to simplify the designing of a satisfactory
control algorithm but also to simply show that a solution can
be achieved using the given tools and the available informa-
tion about the obstacle. The result from the modelling is to be
a trajectory describing how the LEGO vehicle moves around
the obstacle, as seen from above, in the xy-plane. Although all
measuring and regulating in the final solution is to be relative
the obstacle to be avoided, global xy-coordinates are needed
to simulate and plot the vehicle path, but not necessarily the
regulation of the real process.

2.1 Modelling of the LEGO vehicle
The movement of the LEGO vehicle is to be modelled in the
xy-plane and therefore is conveniently represented as a dot in
the plane. The dot is conventionally placed at the center of
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the vehicle. In order to determine how this dot moves in the
xy-plane as the front wheels rotate a kinematic model of the
vehicle is made. An already existing model of a vehicle made
by R. Rajamani [3] is used in this project. The used signals
are listed in Table 1 below.

Table 1. All parameters used in final model

Signal Unit Description
δf [rad] Steering angle front wheels
δf0 [rad] Front steering angle offset
Lf [m] Front axle to vehicle center distance
Lr [m] Rear axle to vehicle center distance
X [m] Vehicle center x-coordinate
Y [m] Vehicle center y-coordinate
Ψ [rad] Vehicle orientation with x-axis
V [m/s] Vehicle center velocity

The model is based on a simplification of a four-wheeled
vehicle. Figure 2 below shows a bicycle model of the vehicle.
In this model, the front wheels are represented by one single
wheel at point A and in the same manner the rear wheels are
represented by one central wheel at point B. The steering an-
gles for the front and rear wheels are represented by δf and
δr, respectively. Furthermore, Lf and Lr are the distances be-
tween the front wheels and the center of the vehicle and the
rear wheels and the center of the vehicle, respectively. The
angle β in Figure 2 refers to the slip angle of the vehicle.

Figure 2. Kinematics of vehicle motion. Source: Rajamani [3].

The values of interest are the following: current x-
coordinate of the vehicle (X), current y-coordinate of the
vehicle (Y), and the orientation of the vehicle relative to the
longitudinal axis (Ψ).

For the model of the LEGO vehicle the value of δr is set to
zero as there is no rear wheel steering on the vehicle. A major
assumption used in the development of the kinematic model
is that the velocity vectors at points A and B in Figure 2 are in
the direction of the front and rear wheels, respectively. This is
equivalent to assuming that the slip angles at both wheels are
zero. Furthermore, due to the LEGO vehicle travelling at low
speeds the slip angle of the vehicle is also set to zero.

Due to a noticed offset in the steering angle of the LEGO
vehicle, an additional term, δf0, defining the angular offset of
the steering is inserted into the model.

The resulting equation system defining the movement of
the vehicle is seen in (1).

Ẋ = V · cosΨ

Ẏ = V · sinΨ

Ψ̇ =
V

Lf + Lr
· tan (δf + δf0)

(1)

The parameters that are controlled by the regulator, and
thus the only way of controlling the vehicle, are the velocity
of the vehicle, V , and the steering angle of the front wheels,
δf.

2.2 Discrete model approximation
System modeling usually requires discretization since the im-
plementation of real systems are mostly done digitally. The
discretization can affect the outcome and theoretically even
the model should be discretized. Another case to consider is
the linearization of the model since linearization often is used
to make calculations easier. The resulting model in section
2.1 is a continuous-time nonlinear model of the vehicle. This
model can be discretized and linearized. To determine what
type of vehicle model that should be used in this case, four
vehicle models are studied. The models are the following:

• continuous-time nonlinear model

• discrete-time nonlinear model

• continuous-time linearized model

• discrete-time linearized model.

The system response for a varying input signal for both
the speed and the steering angle on the front wheel for the
four different models is shown in Figure 3.

The results in Figure 3 show that the responses of the dis-
cretized models are almost equal to the one of the continuous
model. The same applies to the linearized models. Any of the
four models above can then be used in the final result. Due
to the simplicity of the continuous-time model, the original
equations in (1) are used.
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Figure 3. Vehicle dynamics response for different vehicle models.
Source: Marcus Greiff [1].

3. MATLAB implementation
To design the controller and to study the behavior of the sys-
tem a model is developed in MATLAB Simulink. The overall
structure of the system can be seen in Appendix A. The model
consists of three major function blocks: the controller, the ve-
hicle model and the block representing the camera.

The controller is a simple P-controller where if-statements
are used to determine the correct reference values for each
state. The P-controller is used on the error in the relative an-
gle to the obstacle. The error is calculated as the difference be-
tween the reference angle and the measured angle. The angle
here refers to the relative angle between the moving vehicle
and the obstacle. The absolute value of the angle is zero when
the obstacle is directly in front of the vehicle and it increases
once the obstacle is further away from the center view of the
vehicle. The output signals of the controller are the velocity
and steering angle of the front wheels of the vehicle.

When the vehicle is very far away from the obstacle the
vehicle should steer towards it and the reference angle be-
tween the obstacle and the vehicle axis should therefore be
set to 0 degrees. It seems a bit counterintuitive to steer the
vehicle towards the obstacle but the reason for doing this in
the Simulink simulation is to force the problem in order to
be able to avoid the obstacle using the provided solution. The
case where the vehicle is already oriented in such a manner
that it will avoid the obstacle if it was to go forward without
any steering are not of interest in this particular simulation.

When the vehicle has come within a reasonable range to
the obstacle, a new reference angle value is set to initiate
avoiding the obstacle. When the case is neither of the above,
the reference angle to obstacle is then set to 180 degrees re-

sulting in the vehicle searching for the obstacle.
The second block called vehicle model is where the pre-

viously derived equations in section 2.1 are implemented.
The third block, called camera, emulates the camera

mounted on the vehicle. This block has two input parameters
which are the state vector and the obstacle location. Using the
x- and y- coordinates (of the vehicle) contained in the state
vector as well as the coordinates of the obstacle, both the dis-
tance and the angle to the obstacle can be calculated. These
values are output signals from the camera block and are fed to
the controller. The resulting path during obstacle avoidance is
seen in Figure 4.

Figure 4. Vehicle path around a given obstacle.

4. Image processing
The two input parameters to the regulator are: distance and
relative angle between the vehicle and the obstacle. In order
to obtain these two values continuously during the process a
webcam is used. This device is mounted on top of the LEGO
vehicle and aims in the direction the vehicle is oriented. The
information output from this device is an RGB (red, green and
blue additive color mixing) image feed with an approximate
speed of 30 frames per second (FPS), i.e. 30 Hz. The RGB
color space is illustrated in Figure 5.

In order to calculate the distance and relative angle to the
obstacle the obstacle itself needs to be identified on the im-
ages that are taken. Due to the lack of proximity sensors or
similar devices used in the project, the obstacle is colored in
a distinct hue to make it stand out in the raw RGB image.
The chosen colors in this project are, as seen in Figure 1, red,
green and yellow. Other colors can be used with the only re-
quirement being that they are distinctive enough from the sur-
rounding environment. The software used for image process-
ing in this project is a library of functions called OpenCV.
This library contains all the needed functions described be-
low.

The sequence of filters used on the original image in or-
der to distinguish the obstacle within the picture begins with a
Gaussian blur. This is done to reduce image noise that would
otherwise affect subsequent processing steps of the image, an
example of the resulting image can be seen in Figure 6. The
second step is converting the image from the RGB to the HSV

Obstacle Avoidance using a LEGO Mindstorms EV3DEV vehicle
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color space. HSV stands for hue, saturation and value and is
an alternative representation of the RGB model. In order to
filter out all but the obstacle’s distinct colors within the im-
age, a range of colors defining the acceptable values of the
individual pixels needs to be defined. The value of hue de-
fines the color while the values of saturation and value in HSV
defines how intense the color is and how bright it is, respec-
tively, see Figure 5. This type of grouping of colors allows
for simple defining of the obstacle’s color. Furthermore, by
using the HSV color space, different lightning conditions are
accepted by slightly extending the acceptable range for values
of saturation and value. Defining the acceptable color range in
the RGB color space would require multiple ranges and more
complicated coding.

Figure 5. RGB (left) and HSV (right) color space. Source: Roza et
al. [4].

By defining the range with two vectors that represent the
lowest and the highest acceptable values of HSV, the program
goes pixel by pixel for each image and determines whether
the pixel color is within the defined range. After this is done,
the image is converted into a binary image with white pixels
where the colors were within range and black pixels for the
rest. Anything but the obstacle is therefore sorted out. An ex-
ample of the resulting image is shown in Figure 6. The used
ranges for the values hue, saturation and value for the differ-
ent colored obstacles are shown in Table 2 below.

Table 2. Acceptable range for HSV-values

Range Threshold (value range: [0,255])
Red, low [0,110,110]
Red, high [8,255,255]
Yellow, low [20,120,120]
Yellow, high [30,255,255]
Green, low [30,30,30]
Green, high [75,255,255]

After the previous step the image is smoothed once again
with Gaussian blur. Due to the geometry of the obstacles, the
image should ideally now only consist of a white rectangle
placed somewhere within the image. The next vital step in
the image processing sequence is to find the outer edges of
this rectangle. To do this, an algorithm developed by Canny
J. called Canny is performed on the image. The resulting im-
age, see Figure 6, is a binary image containing only the edges
of the obstacle. This binary image is then subjected to the
two morphology operators Dilation and Erosion to define the
edges more clearly.

The next step within the image processing is to mathe-
matically define all the contours in the binary image obtained

Figure 6. Images from the webcam: Gaussian blur in RGB, color
filtering with HSV, Canny edging.

after the previous step. This is done with a function called
cv2.findContours within the OpenCV library. Subsequently,
the function cv2.contourArea is used on the result from the
previous step. The function tries to find all enclosed contours
and approximates all of these as rectangles. The function re-
turns an array of information about all enclosures it finds
where the following information is included: width, height,
orientation and the box’s central x- and y- position in the im-
age. If the camera and all filters worked perfectly, there would
only be one returned enclosure, that of the obstacle. Neverthe-
less, due to some remaining noise in the image, there will be
multiple enclosures that the method finds and returns. In order
to find the rectangle that represents the obstacle, the enclosure
with the biggest area value is selected. This way, all the other
enclosures created by either noise or different smaller obsta-
cles of the same color are ignored. By now there is enough
information available about the obstacle: the obstacle’s width,
height, and x- and y-position of the obstacle on the image.

4.1 Calculating distance and relative angle
The aforementioned information about the obstacle are all
given in pixels. There is a need of further calculations in or-
der to obtain the two needed measurements (distance in me-
ters and relative angle in degrees). All of the parameters and
variables included in these calculations are listed in Table 3
below.

Table 3. All terms used in distance and angle calculation

Term Unit Description
L f [cm] Parameter used for distance measuring

Lref [cm] Reference distance to obstacle
hpx,ref [px] Obstacle height in reference image

hpx [px] Obstacle height in subsequent images
dobj [cm] Calculated distance to obstacle
Wim [px] Image width
Bc [px] Obstacle’s box x-position

DFC [px] Obstacle distance from center of image
FOVcam [deg] Webcam’s field of view
degobj [deg] Relative angle to obstacle

Bladh, Grahovic, Rosicki, Tamilinas
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As can be seen in Table 3, the height of the obstacle is
used in the calculations. This is because the height of the ob-
stacle is larger than its width, therefore making the calcula-
tions less prone to minor pixel errors.

In order to calculate the distance to the obstacle there
needs to be a reference value that is stored on the computer.
This reference dictates how high the obstacle is within the
image when it is placed a known distance, Lref, away from
the webcam. It is this value that the height of the obstacle
in all images will be compared to in order to figure out how
far away the obstacle is relative to the webcam. The L f value
needs to be calculated only once for a certain camera/obstacle
setup. The value is calculated as in (2).

L f = hpx,ref · Lref (2)

After this value has been calculated, the distance to the
obstacle in the images taken thereafter can be calculated as
(3).

dobj =
L f

hpx
(3)

In order to calculate the relative angle between the obsta-
cle and the webcam (and therefore the vehicle), the x-position
of the obstacle’s center on the image is used. Due to the ob-
stacle’s x-position being relative to the leftmost part of the
image, the distance between the center of the image and the
obstacle center x-position is calculated as in (4).

DFC = Bc − Wim

2
. (4)

As can be seen, this value is positive if the obstacle is
on the right-hand side of the image. To convert this value
from pixels to angles, the webcam’s field of view needs to
be known. The conversion is done as in (5).

degobj =
DFC
Wim

· FOVcam (5)

4.2 Distance - obstacle height correlation
The calculated distance in the previous section was calculated
by taking the fraction of the current obstacle height, measured
in pixels, and the reference obstacle height which is also mea-
sured in pixels. This fraction multiplied by the reference dis-
tance is the resulting current distance to the obstacle. The as-
sumption made here is that there is a linear correlation be-
tween the measured obstacle height and the distance to the
obstacle, i.e. if the measured obstacle height in the image is
half the reference height, the distance to the obstacle is twice
the reference distance. This does not necessarily need to be
the case. The true correlation between these two parameters
can be obtained by polling several data points and plotting
them. By doing this study with the webcam mounted on the
vehicle, the result in Figure 7 is obtained.

As seen in Figure 7, the distance cannot be approximated
linearly as previously done without getting large errors in
the distance measured. This can, for example, be solved by
creating a lookup table and using linear interpolation on the

Figure 7. Distance and obstacle height correlation.

data points in Figure 7. The trick done here to solve this dis-
crepancy is to instead adjust the parameters in the regulator
to match the imperfections obtained when approximating the
distance linearly. When the regulator is to react to a real dis-
tance of, for example, 50 centimeters, but the measured dis-
tance at this real distance is 35 centimeters, the condition to
react is instead changed to 35 centimeters. This fix is possible
since the regulator does not use the measured distance con-
tinuously, but instead measures it continuously and it triggers
activities once the value becomes small enough.

4.3 Filtering calculated values
Sometimes other obstacles of the same color in the image will
dominate over the obstacle and the distance calculation will
be done on this obstacle instead. This results in the value of
the distance (and the relative angle) to the obstacle to change
to a significantly different value compared to the calculated
distance from the last frame. These large jumps in the mea-
sured values would cause major fluctuations in the regulator
output signal. To counteract this, a specific type of filter is
implemented on the calculated values of the distance and the
relative angle.

When an image is taken, and the distance and angle is cal-
culated, the value of the distance is stored in memory. When
the next image frame is taken, and the distance is calculated,
the new value is compared to the last value of the distance.
If the difference in these distances are unrealistic (recall that
the system is assumed to be running at 30 Hz, and with a
relatively slow vehicle the distance between the obstacle and
the moving vehicle cannot change that much between two
frames) the new distance and angle calculations are ignored,
and a new image is taken.

During start-up, it is important that the first calculation of
the distance and relative angle is made on the obstacle and not
on a disturbance. Therefore, a range of acceptable distances
is defined. The vehicle needs to be placed this far away from
the obstacle to ensure that it will lock-on to the obstacle. If
the distance is shorter or longer than within the defined range,
a new frame is taken and the old distance calculation is never
stored. Once within the acceptable range, the calculated dis-
tance is stored and both it and the calculated relative angle
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can be used as an input to the regulator.
A different approach to filter incorrect image frames and

to achieve smoother measurement input to the regulator is
to use a Kalman filter. This is not implemented during the
project but is a possible improvement in the future. A Kalman
filter is an algorithm that uses a series of measurements and
estimates the next value of parameters with consideration to
statistical noise and other inaccuracies [2]. The basic imple-
mentation of this in the project is that the four defining pa-
rameters of the box (height, width, x-position and y-position
in the image) are modelled as having their second deriva-
tives set to zero. The model is then ZOH-approximated (Zero-
Order Hold). ZOH is a mathematical model that reconstructs
sampled digital signals to analog signals. By approximating a
constant change of these parameters as the vehicle moves, an
estimation and an error interval of the next values of the pa-
rameters can be calculated. The incorrect measurements can
then be filtered by ignoring the results that gives parameters
outside of this error interval.

5. UDP Communication
There are two different ways of communicating between the
PC client and the vehicle host, these two are the TCP and UDP
protocols. The TCP protocol is a slower but a safer method of
sending data packages in the sense that the sender after each
sent data pack reassures with the receiver that the package has
been correctly received. With the UDP protocol communica-
tion, data packages are continuously sent to the receiver. If
the receiver fails to correctly receive a data package it ignores
that package and instead continues onto the next. This results
in minimum delay in the communication between the vehi-
cle and the PC. Since in this project the data that will be sent
from the PC to the vehicle will contain simple instructions of
the same format, and the frequency of these instructions de-
fine the regulator speed, the quickest possible communication
is desirable. This means that the communication between the
vehicle and the PC is achieved using UDP protocol.

During the start-up phase in the program, the communica-
tion is set up. The client refers to the PC and the server refers
to the vehicle. First, the IP-address of the vehicle and an ar-
bitrary server port number is defined. The server port number
must be the same as the client port number in order to make
the communication work. The common rule of thumb for the
port number is to pick ports between 1024 and 10000. If the
port is occupied, try another.

Commands are sent to the vehicle using a function with
attributes such as the steering angle, velocity and the UDP
socket. The commands consist not only of information of how
the vehicle should drive but also a signal declaring whether
the vehicle should be running at all or standing idle.

6. Control
As can be seen in section 3., the initial regulator is a sim-
ple distance-dependent P-regulator. This simple regulator is
enough to control the vehicle satisfactory up until the point
where the obstacle is too near to the vehicle to be detected by
the camera. The reason for using this simple controller is that
simple functional solutions to a problem are good to imple-
ment initially before more complex solutions are explored.

Due to the process being quite slow, an integration part in
the regulator would cause an integration during a long period
before the error would change sign. If an I-part was used in
the current regulator there would be an initial overshoot of the
value. The reason for not applying this in the current regulator
is that the P-regulator works sufficiently.

The reason for not having any D-part in the used regulator
is that there are no significant overshoots in the controlled sys-
tem that need to be hindered. The simple P-regulator causes
the vehicle to turn in a decent manner. Furthermore, a slight
overshoot is acceptable.

When using only a P-regulator there will be a stationary
error. This, however, is acceptable due to the regulated value
being the relative angle between the vehicle and the obstacle.
The small stationary error only means that the obstacle will
be passed with a slightly different angle between the obstacle
and the vehicle.

7. Result
In the final implementation the initial controller had to be
modified. In the model, the distance and relative angle to the
obstacle is assumed to be determinable at all conditions, this
does not apply to the real solution with a camera. The field
of view of the used camera limits how close to the obstacle
the vehicle can be before the obstacle covers the entire image.
The field of view also determines the maximum relative angle
to the obstacle before the obstacle disappears from the cam-
era’s sight completely. The final controller therefore needs to,
at some point during the avoidance sequence, switch over to
a mode where no inputs are used. In the final implementation
this is the hard-coded sequence.

The hard-coded sequence is triggered upon reaching a
predetermined distance to the obstacle. This distance was ex-
perimentally found to be 48 centimeters and represents the
distance to the obstacle at which the obstacle almost entirely
covers the height of the image feed and therefore the calcula-
tions become unpredictable. Once the hard-coded sequence is
triggered a timer is started. For a certain amount of time the
vehicle is commanded to steer away as much as possible at
a certain direction (this direction being away from the obsta-
cle), then for a certain amount of time to steer in the opposite
direction in order to correct itself to get back on the vehicle’s
initial heading.

The complete avoidance sequence follows the following
steps:

1. approach the obstacle as long as the obstacle is far
away,

2. strive to keep a relative angle to the obstacle until reach-
ing a predefined distance to the obstacle,

3. initiate hard-coded sequence of completing the avoid-
ance maneuver and getting back on the initial vehicle
heading,

4. go straight.

In the final implementation the vehicle can steer around
the obstacle on both sides. The direction of the avoidance ma-
neuver is determined upon approaching the obstacle. Once the
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vehicle initiates step 2 in the sequence above, the relative an-
gle to the obstacle is sampled and depending on the angle’s
sign (the relative angle value has different signs whether the
obstacle is to the left or to the right of the vehicle) the vehi-
cle either performs step 2 and step 3 by avoiding the obstacle
on the right-hand-side or in a mirrored sequence on the left-
hand-side of the obstacle.

8. Discussion
The vehicle does not always need to perform the sequence
listed in section 7. As mentioned in section 3., the need for
any avoidance sequence is specified by the initial orientation
of the obstacle relative to the vehicle. If the vehicle is far away
and the relative angle to the obstacle is big enough, the ve-
hicle could just drive straight forward in its initial heading
and still avoid the obstacle. This was implemented during the
project but was not included in the final implementation. The
implementation consisted of the program constantly check-
ing whether the distance from the obstacle and the relative
angle to it was large enough. If the conditions were met at
any point, the control would be overridden by a command to
only travel forward and ignore the obstacle. The implementa-
tion was quick, short and initially seemed to work. The issue
with this, however, is the steering characteristic of the LEGO
vehicle. If the LEGO vehicle is commanded to steer straight
forward, the actual resulting steering would be dependent on
the previous set steering angle. If the previous steering angle
was left, the offset once commanding it to steer straight would
be a bit to the left. If the previous steering angle was right, the
offset would lean to the right instead. The issue here is how
the physical vehicle is built. This issue could be resolved by a
more robust construction with less or no play in the steering.

Further issues with the LEGO vehicle were the large de-
lays in the communication between it and the computer con-
trolling it. The control signals were calculated from the image
feed quickly, but there was a delay varying between 0 and 3
seconds from when the signal was sent to the vehicle until the
motors responded. The issue was never resolved but the fault
occurs most likely between the EV3 and the Wi-Fi USB mod-
ule or in the EV3 itself. There are already noticeable delays
when remotely connecting to the EV3 from the computer.

A different approach to the regulation methodology was
realized during the late stages of the project. Instead of mea-
suring and keeping a certain relative angle to the obstacle de-
pending on the distance, the distance to the obstacle once the
vehicle is just about to avoid (parallel to) the obstacle can be
the regulated value instead. When the vehicle is far away, the
vehicle is instead to strive to be a certain distance away from
the obstacle once passing it. By using the relative angle to the
obstacle and the distance to the obstacle, the current distance
during the avoiding maneuver can be calculated and regulated
so that the vehicle instead passes the obstacle with the chosen
distance.

The webcam used plays an essential role in how good the
avoidance sequence is. The frame rate is the sampling rate
and determines the control stability. The resolution of the im-
age feed also increases accuracy in the distance calculation
due to more pixels representing the obstacle. The resolution
can however not be too high due to the increase in required

computing power to perform the image processing sequence.
The field of view of the camera is of utmost importance for the
performance of the avoidance sequence. The wider the field of
the view, the more can be seen in both height and width. The
observable width plays a significant role during the late stages
of the avoidance maneuver because this parameter alone de-
termines how far into the sequence the obstacle can still be
detected. The wider the field of view, the more the controller
can see. This leads to the idea of using a 360-degree camera.
By being able to see in all directions at all times, the problem
is significantly easier due to the availability of information
about the obstacle at all times. The controller in the MAT-
LAB could theoretically be implemented as is with a 360-
degree camera. Instead of a 360-degree camera, a 360-degree
LIDAR sensor could be used. This eliminates any need for
image processing and any errors that occur during the image
processing sequence. The LIDAR sensor can also determine
the distance to any obstacle without any beforehand knowl-
edge of the obstacle dimension and it can also detect not only
multiple obstacles but the entire physical environment.
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A MATLAB Simulink Model

Figure 8. Simulink model of the vehicle and the obstacle.
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B Written code summary

The software written in the project are two Python scripts,
one that is to be run on the client (PC) and one on the host
(vehicle). These two scripts can be seen as two threads and
the communication between these is implemented by using
sockets. A short description of the code is written here, for
further details please open the Python scripts as they are thor-
oughly documented.

client.py: this code is to be run in the Terminal on the client
PC. It opens a separate window showing the video feed of the
chosen camera. The window also displays the distance to and
the outline of the obstacle if an obstacle was found. The ob-
stacle needs to be: red, green or yellow. A communication via
sockets is opened to the EV3 vehicle, the server code should
be running before the client is started. The user can write com-
mands in the Terminal once the client code is running and ap-
propriate commands are then sent to the EV3 vehicle. There
are different modes of control, automatic control or manual
override. For the automatic control mode, the input from the
camera is used in a regulator and the outputted control signals
are then sent to the EV3. For the manual control mode a sig-
nal is sent to the EV3 every time the user inputs a command.
Some of the main functions are listed below.

• setup_socket(): Sets up the socket communication
with the EV3 vehicle

• regul(distance, angle): The used regulator. If the
obstacle has not been passed and if the vehicle is far
away: steer towards target. If the obstacle has not been
passed but the vehicle is close: keep constant relative
angle to obstacle. If the obstacle has not been passed
and vehicle is even closer that the camera is about to
lose the target on its view: trigger a hard-coded avoid-
ance sequence.

• user_input(): Listens to user input in the Terminal. If
acceptable command is read, set the internal variable to
that order.

• send_command(steering_angle,
UDPCLIENTSOCKET): Sends the command type stored in
an internal variable, and the steering angle to the corre-
sponding socket.

• find_contours(image): Converts raw RGB-image
into three vectors containing found contours in the im-
age, one for every searched color (red, green, yellow).

• find_biggest_marker(contour_red,
contour_green, contour_yellow): Finds best ob-
stacle match from the three different candidates.

server.py: this code is to be run on the EV3. The vehicle is
assumed to have one motor for steering and one for thrust.
The server listens to commands from the client socket and
consequently sets values on the two mounted motors. Some
of the main functions are listed below.

• setThrust(speed): Sets speed on thrust motor.

• setSteering(angle): Set fixed angle on steering mo-
tor.

• readSetSteering(message): Attempt to find angle
from message and set it on the steering motor if it was
found.
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C External libraries and software version

The operating system on the LEGO EV3 is ev3dev-jessie.
The code is executed in Python version 2.7.6 and the version
of the external library of functions OpenCV is 2.4.8.

ev3dev-jessie available at: https://www.ev3dev.org/downloads/
as of 20-12-2018.
Python 2.7.6 available at: https://www.python.org/downloads/
as of 20-12-2018.
OpenCV 2.4.8 available at: https://opencv.org/releases.html
as of 20-12-2018.
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Abstract: The purpose of this project is to construct an autonomous car that is able to overtake
another car that is driving with a constant velocity on a straight path. One prerequisite is that
a map of the track is has to be generated. One subgoal, which has been achieved, is to drive
the car at a constant distance from the wall at a constant speed. Real-time LiDAR scans of the
surrounding environment measure the current angle and distance to the wall which can then be
used as an input signal to a P-controller controlling the steering servo. This works well for straight
walls but are not robust enough for turning corners due to the relatively high speed of the car. For
this purpose both a map and path planning algorithm must be implemented to determine how to
successfully navigate corners. Using Hector slam a map has been constructed in which the car
can localize itself, see Figure 1. However, larger maps become progressively distorted and while
progress has been made to implement a particle filter to compensate for such odometry error a
complete solution is yet to be achieved. A chronic setback during the project is incompatibilities
with the different software packages used, and is a central reason that the main goal has not been
reached.

1. Introduction
The automation of cars has become both an ubiquitous and
heavily pursued topic today: seemingly every car company in
theworld currently is developing prototypes of self-driving car
that can handle a wide array of situation on the road. To date,
much development has been accomplished and there currently
exists cars on the market that are partially self-driving.

In this project, the F1/10 car will be used to gain a deeper
understanding of modern automation techniques. The aim of
this project is to better understand the modeling, control, and
design process necessary to transform a traditional automobile
into a self-driving vehicle. The goal of this project is to create
a controller and a path planning model that can navigate the
F1/10 car through a known path while avoiding obstacles that
can appear on the way. To be able to fulfill this goal multiple
sub-tasks have been set up. The first task is to create a con-
troller which will control the car’s general trajectory to prevent
collisions with the wall. The next task is to use the LiDAR sen-
sor to get information of the environment. The modeling and
design will also be based on feedback from the IMU.

1.1 Background and Prior work
In 1977 the first automated car that could track streets were
launched in Japan. Since then, many companies and orga-
nizations has developed prototypes with different levels of
automatic driving. The level of automation can be described
on a 0-5 scale, where level 5 is a completely self-driving car
with no need of human steering. But the development has
gone slowly until year 2012 when parts of the United States
began allowing testing of autonomous cars on public roads.
Today there is over 100 self-driving cars on the public streets
in the US [6]. In 2017 in Gothenburg, Sweden, Volvo Cars
launched a project where 100 households were selected to use
Volvo’s new (level 4) self-driving cars in their daily life [3].
However, there is yet to exist a level 5 autonomous car within

Figure 1. Map of a corridor in the basement in the M building
using hector_slam package together with LiDAR.

a commercial setting.
Creating a self-driving car is a technical challenge. There

are many sensors and control systems needed to be able to
get accurate data from the surroundings. Typical sensors that
are used is LiDAR, stereo vision, GPS and IMU. Based on
the information from the sensors, the car must determine an
accurate localization of itself and its surroundings and then
create a localized trajectory to follow. An effective path plan-
ning algorithm tries to find the optimal balance between safety,
speed, and efficiency from one point to another. There have
been many studies on how to design the path planning model.
In the master thesis "Motion Planning using Positively Invari-
ant Sets on a Small-Scale Autonomous Vehicle," the authors
used invariant sets to create a path planning model which
could safely navigate a small car to overtake another car [1].
Further, in the article " A Survey ofMotion Planning and Con-
trol Techniques for Self-driving Urban Vehicles," a thorough
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comparison has beenmade between 11 different path planning
methods. The article shows that the different methods are well
developed but should be used with a feedback controller that
stabilizes the obtained path [4].

2. Modeling
Control of the carwasmodeled as aMISO system,with the two
inputs being control signals sent to the speed controller and
steering servo motor, and the single output being a weighted
combination of the car’s distance from the (right-hand side)
wall and (scaled) angle relative to the wall.

While the final control system was relatively straightfor-
ward and requiredminimal structuredmodeling, it is important
to note that this system’s success was based upon a few critical
assumptions, namely:

• The car is an inherently stable system

• Inputted voltage (PWM) is proportional to resulting
speed

• Non-linearities related to steering may be neglected

The first assumption is necessary for the latter two as-
sumptions to even be considered, for a stable system is much
easier to heuristically tune compared to an unstable system.
The second and third assumptions justify the usage of a simple
PID controller, for the scope of this system does not require
near-instantaneous response times that would necessitate a
more complex, robust modeling of the car’s steering (angular)
dynamics.

3. Electro-Mechanics
The car is based on version 1 of the F1/10 car from the F1/10
project. Some of the more important parts can be seen in the
list below and a short description can be seen in the following
sections.

• Electric speed control

• Steering servo

• Teensy control board

• NVIDIA Jetson TK1 developer kit

• Hokuyo UST-10LX LiDAR

• SparkFun 9DoF Razor IMU M0

3.1 Electric speed control and steering servo
The car is based on the Traxxas 1/10th Car platform which is
a normal remote controlled car. However, since this project’s
and the F1/10 project’s goal is to control it from a computer
some modifications has to be made. The standard configura-
tion contains three different parts, the radio transceiver, the
steering servo and the electric speed controller (ESC). In the
default configuration the steering servo and the ESC is directly
connected to the radio transceiver which generates the control
signals. The control signals are pulse widthmodulated (PWM)
signals where different duty cycle represents different steering
angles and different velocities. A control board inserted be-
tween the radio transceiver and the actuators will generate the
required PWM signals.

3.2 Teensy control board
The control board is based on the Teensy micro controller.
Figure 2 contains the very simple schematic for the control
board. The different three pin connectors all contain the same
signal types: VCC, GND and a PWM signal. JP1 and JP2 are
connected to the ESC and steering servo, respectively. JP3
and JP4 are connected to the original control signals from
the transceiver. The switch S1 can be used to determine which
control signal is used: either the one from the radio transceiver
or the one generated by the Teensy board.

Not included in the schematic in Figure 2 is the USB con-
nection between the Teensy and the Jetson board. To generate
the PWM signals the 16-bit timers on the Teensy are used and
the PWM signals are generated by the Teensy’s hardware. The
required control signals are received from the Jetson through
the emulated serial port over the USB connection.

Figure 2. Electrical schematic for the control board based on the
Teensy micro controller. Image courtesy of the F1/10 project, [2].

3.3 NVIDIA Jetson TK1 developer kit, LiDAR and IMU
The so-called "brain" of the car is the NVIDIA Jetson TK1
developer kit, hereafter simply referred to as Jetson. The Jet-
son runs Ubuntu 14.04 and ROS (Robot Operating System)
Indigo. The IMU and the Teensy controller board are con-
nected through USB to the Jetson. The LiDAR is connected to
the Jetson through an ethernet connection. Since the onboard
ethernet connection is already in use by the wireless access-
point Ubiquiti PicoStationM2HP, a separate USB to ethernet
adapter is used to connect the LiDAR. Since two ethernet in-
terfaces are used they must be bridged so that the LiDAR is
accessible from the rest of the network. This bridge runs and
is configured in the Jetson.

4. Control
At the high level, the Hector SLAM algorithm leveraging the
on-board LiDAR was utilized to localize the car while map-
ping its environment. On an implementation level, a simple
single-channel PID controller was determined to be sufficient
for stabilizing and maintaining the car’s intended trajectory
parallel to the wall. On the software side, the ROS platform
was used to simultaneously run the path planning algorithms
and trajectory controllers.

4.1 Software structure/design/implementation
Software in ROS is divided into different packages. These
packages could be local packages written by the user or ex-
ternal packages written by the ROS community that has been
downloaded either as a part of the standard ROS installation
or separately by the user. A package can contain any number
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Figure 3. The graph contains a visualisation of the software structure and how the different parts are communicating with each other. The
graph has been generated using the rqt_graph utility.

of nodes which contain the code that is running. A package
can also contain launch files that describes how and when
certain nodes should be run. A launch file is not limited to
exclusively running nodes from the same package but can
run any node that is available in the ROS environment. Com-
munication between nodes are done using topics. A node can
subscribe to a topic to receive messages published to this topic
by another node. A message can contain different data depen-
dent on which message definition is used. A simple message
can consist of a single boolean, such as an on/off switch, but
also more complicated data such as arrays containing distance
measurements from a LiDAR.

ROS also has native network support which enables dif-
ferent nodes to be run on different hosts. To be able to use
multiple hosts one specific host must be designated as the
master. After setting the remote machines’ reference ID to
the master host, all nodes can then be run in the same way
as though they were running on the same machine. However,
there are some limitations when running on multiple hosts,
such as hardware-communicating nodes must be running on
the same host as the machine operating the hardware.

The code for this project can be divided into three different
parts, which consist of multiple packages. The first part is
the code running on the Jetson contains of all the nodes that
interactwith hardware and themajority of the controller nodes.
The second part is the nodes running on the remote computer,
such as a laptop. A graphical user interface (Figure 4), and
visualization tools are included in this part.

The third part could be seen as an extension of the second
as it only contains the emergency stop (e-Stop) code for the
remote system. However, there is an advantage to keep this
functionality as isolated as possible from the rest of the remote
control since common safety protocol dictates that the e-Stop
continues functioning regardless of the operating condition of
the main remote/control software system. The best solution
would be creating a hardware-based e-Stop solution that is
completely independent of the remote host but such a solution
requires additional hardware that is outside the scope of this
project.

Using the rqt_graph[5] utility the image in Figure 3
can be generated when the software is running. Generally

Figure 4. A screenshot of the graphical user interface used to con-
trol the car. The top half contains the functionality to set different
parameters on the controller and the bottom half contains buttons to
select the different modes.

data/information flows from left to right in the figure. At the
far right side of the graph the /teensy_serial node can
be found. This node is responsible for the communication
with the Teensy control board and subscribes to the /eStop
and /drive_pwm topics. The /kill node is emergency stop
node running on the remote computer and publishes to the
/eStop topic. The second publisher on the /eStop topic is
the /jetson_bond node which runs on the Jetson. Together
with the complimentary /remote_bond node, running on the
remote computer, these nodes keep track of the connectivity
between the different computers using a heartbeat signal. If
the connection is lost the /jetson_bond node will engage the
emergency stop by publishing the value true on the /eStop
topic.

Going up the other branch we pass through the
/translator node and find the /mode_switch node. The
/translator nodes objective is to translate the control values
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from the mode switch, which are in the range -100 to 100, to
the values used by the Teensy board. The /mode_switch nodes
objective is to, as the name suggest, switch between different
operatingmodes. The different operatingmodes could beman-
ual control, such as the /f1tenth_controller_keyboard
node, or automatic control, such as the
/f1tenth_controller_straight_path_control node.
One mode that is not visible in the graph is the offmode which
simply is used to turn off all actuators. The mode switch is
controlled by the remote graphical user interface using the
/f1tenth_car/mode topic. From the graphical user interface
it is also possible to change the parameters for the straight
path controller. The straight path controller is divided into two
nodes, /f1tenth_controller_straight_path_control
and /f1tenth_controller_straight_path_dist_finder,
which together finds the distance to the wall using LiDAR
data from the /scan topic and controls the car so that the
distance to the wall is kept constant. The second subscriber
to the /scan topic is the /hector_mapping node. This node
together with the other hector nodes is used to build the map
and current trajectory.

4.2 Sensors and measurement unit
One of the sensors used on the cars is the LiDAR sensor,
which sends out pulsed laser light to measure distances. In
the beginning of the project the LiDAR was used to measure
the distance to a wall and allow the controller to maintain the
car at a trajectory parallel and a set distance to the wall. Once
achieved, the LiDAR sensor is to be used not only to measure
distance to a certain wall but also to map the distances to walls
and objects around the car. Using the data from the LiDAR, a
map of the environment can be created. More about how this
is done in section 4.3.

The measurement unit used is the inertial measurement
unit (IMU). The IMU measures and reports the speed and
acceleration of the car. While currently not implemented, the
IMU will become central to sensor fusion when when the car
is freely driving around in the basement or when the car is
overtaking another car the IMU will become more important.

4.3 Hector - SLAM
Mapping out the environment while driving requires substan-
tial computation time; however, since the the scope of the
car’s environment is limited to a specific building’s base-
ment a static map of that area may be created and used
when driving. To be able to build up a graphical view of
the environment measurements obtained from the LiDAR
the hector_slam package in ROS is used. In this package
exists three nodes, the hector_mapping, hector_geotiff
and the hector_trajectory_server. The hector_mapping
node uses simultaneous localization and mapping (SLAM)
to learn the map. The hector_geotiff node saves the map
and trajectories and the hector_trajectory_server saves
the multiple coordinate frames over time, which in ROS are
called tf.

The package initializes with a single scan of the environ-
ment and initial position. Then a threshold change in position
must occur before the current scan is matched and a new posi-
tion of the car is estimated using these measurement. Contin-
uing this process a map of the environment will be obtained.

4.4 Particle filter
Now that a map has been obtained, the car needs to localize
itself inside the map. This is done using a particle filter. The
particle filter starts with an odometry pose and then adds
some Gaussian distributed noise to get a set of possible poses.
A LiDAR scan orientation is made and for each of the poses
the correlation between the scan and the map from hector is
computed. The pose with the highest correlation is chosen to
be the position of the car. For each scan a position update is
done.

4.5 Path Planning
A three-step process will be implemented to overtake another
car. At a high level, it can be seen as follows:

1. Follow the other car at a set distance at the same speed

2. Determine the "safe distance from wall" threshold re-
quired to safely pass the car

3. If safe, execute a pre-designed trajectory

4. Check for changes in another car’s (straight) trajectory,
and abort if detected

The first step simplifies the path planning process by cre-
ating a standard "initial condition" upon which a specific tra-
jectory planner may be designed. This will be achieved either
by (a) a mounted webcam checking for a marker on the back of
the other car, or (b) LiDAR detecting abnormalities within the
pre-constructed static map of the environment. In either case,
control signals will be sent to calibrate the car’s orientation
and distance relative to the other car.

The next step calculates the distance required to safely
surpass the other car and avoid a collision with the forward-
facing wall during execution. Given a pre-designed passing
trajectory, it becomes a simple, relatively linear function pro-
portional to the velocity of the other car.

Assuming the threshold distance value is met, the main
car will execute a pre-designed trajectory to pass the other
car. This is a justified decision, given the known dynamics
and dimensions of the other car. This can be accomplished by
providing localized and dynamic "waypoints" within the map
for the car to follow and must pass with a certain velocity.

Lastly, because the path planner assumes the other car
remains at a fixed velocity and orientation (i.e.: straight driv-
ing), the main car must check for either changes in the other
car’s angular position relative to its own as well as increases
in the other car’s velocity, either of which will result in an
abortion of the intended passing trajectory and "resetting" of
the Algorithm to Step 1.

4.6 Control
For each time step, a two-channel PID controller will be im-
plemented to achieve the various trajectories required in the
above algorithm. One channel will control the steering, while
the other will control the velocity.

The error term in the steering controller is a combination
between the distance to the wall and the steering angle. The
error term is

e = −(y + L sin(θ))
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Figure 5. The graph contains a visualisation of the error term in
the steering controller. As can be seen the origo is set at the desired
distance to the wall. When y = 0 and θ = 0 the car is driving on the
right distance and parallel to the wall.

where y is the distance to origin (that is, the desired distance
to the wall), θ is the angle of the car relative to the x-axis, and
L is the distance the car will have travelled given the current
speed. Tuning is yet to be done on both controllers. Because
the voltage level input to a DC motor is proportional to its
steady state speed, the PID velocity controller is expected to
work with iterative tuning.Waypoints will be utilized to define
the car’s time-sensitive position and velocity states and serve
as inputs to the controllers.

5. Results
In figure Figure 1 a map of the basement in the M-building
can be seen. The map was obtained using the hector_slam
package described above together with the LiDAR sensor. The
car was driving with the PID controller along the long straight
corridor trying to keep a distance of 1 meter to the wall on
its right side. The parameters in (1) where used in the PID
controller. During the turns and the shorter corridors the car
was controlled manually. The green lines in the map is the
driving path made when obtaining this map. In the figure, just
slightly to the north-west of the center, the current position of
the car can be seen. The car is represented as the blue and red
lines. The red line is the x-axis and the blue line the y-axis
whereas the origin is the LiDAR.

Kp = 7
Ki = 0
Kd = 0

(1)

6. Discussion
As can be seen from the results the map obtained is quite
accurate with the real world – the walls connect and appear
reasonably in the right places. But as also can be seen there

are some incorrect measurements. These errors are quite easy
to detect since many of them point outside of the map. There
are also some blurry points adjacent to the car which is due
to a cabinet with glass doors. The glass doors allow some
of the LiDAR particles to go through and others to reflect,
based upon the angle of refraction. These reflected particles
result in a blur of points in the map, and will ultimately affect
the driving of the car. Proceeding further, such errors must
be accounted for either by covering such glass objects or by
defining a more robust sensor fusion system.

A P controller is used to control the steering of the car.
Using this controller, the car is able to quickly find its own
position, steer to the desired distance to the wall, and keep
that distance. Therefore, it is unnecessary and potentially ex-
traneous to implement a more advanced controller. However,
it must be noted that the F1/10 website recommends a PD
controller when the car is self driving in a race. Some Kd val-
ues was tested but did not result in any tangible improvements
when driving in the corridor. The controller implementation
in the car is still a PD controller and for each launch the user
is able to chose the Kp and Kd values. The ability to change
Kd was kept in the implementation to provide robustness for
future controller development but in this project the value is
kept to zero (Kd = 0).

6.1 Struggles
Working with this project a large amount of problems have
been encountered. The largest difficulty was compatibility be-
tween the computers and the car since they were running
different versions of Ubuntu. This resulted in large struggles
to make all the ROS packages work as intended.

When driving with the car in the basement the thick con-
crete walls affected the signal strength. To avoid this problem
the driving area were restricted to a small part of the corri-
dor to not lose control of the car. Later, when the car can take
corners and drivemore autonomous this area can be expanded.

Another problem encountered was that the scans of the
environment became worse when driving with higher veloc-
ities. Even using the smallest possible velocity gave a quite
bad mapping. The bad mapping is due to the low frequency of
the LiDAR scans. The problem was avoided by driving on the
same path several times until a good map of the environment
was obtained and then use this map when driving.

6.2 Further work
The powerful sensor combination of the already-implemented
LiDARand not-yet-utilized IMUcoupledwith theROS frame-
work and packages makes it easily possible to further develop
the car substantially. Immediate and tangible improvements
may be seen with implementing a successful particle filter or
sensor fusion with the IMU to mitigate odometry error. On the
software side, defining high-level goals and cost functionsmay
prove to provide better robustness for a broader range of envi-
ronments and applications. While unattainable given the time
resources available during this course, overtaking another car
is quite achievable and can be accomplished in multiple ways;
for example, by leveraging either the LiDAR scans or adding
a camera to then image process the car’s immediate surround-
ings. On the control side, creating a more robust controller
may become necessary as the scope of the car’s application
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increases. Multi-channel PID controllers or state-space/LQR
controllers may provide a scalable and robust source of stable
control should additional actuators be added to the car.
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Abstract: The main goal of the project was to implement a position controller for a UAV, in
this case a Crazyflie quadcopter. The controller was implemented in python using the Python
API provided by BitCraze. The drone itself uses gyroscope and an accelerometer and combined
with the LOCO positioning system this makes the needed measurements available by the use of a
Kalman filter. The LOCO position system used six anchors in this project. The drone has its own
controllers which controls the roll, pitch, yawrate and thrust of the drone, thus the outer controll
loop for the position was to be implemented. Further goals included moving between several
fixed setpoints and follwing a trajectory rather than step changes in the setpoints. The process
was simulated while the basic software was implemented followed by tuning of the controller.
The controller was tuned rather than calculated as this was assumed to be easier to get a good
controller. Simulations were performed to get a estimate of appropriate values. The controller(s)
was chosen to be of type PID or PD.

1. Introduction
The main goal was to be able to control the position of a un-
manned aerial vehicle (UAV). The UAV was a Crazyflie quad
copter and the controller(s) were implemented in Python. The
measurements used to control the UAV came both from the
IMU onboard and the local position system in the room, also
provided by Bitcraze[1]. A PD controller were designed and
implemented for every direction (X,Y & Z). If there was time
left another controller could be designed and implemented,
e.g an LQ-controller and possibly do a comparison between
the different controllers.

1.1 Goals
The baseline objective was to reliably control and move the
drone remotely from a PC client through keyboard commands
or pre-planned routes. If time allows, the project could be
extended to perform a fictional scenario such as finding a
forest fire and dropping water, or moving in a specific pattern
to avoid obstacles. Another possible scenariowould be picking
up a small physical package and dropping it in a mailbox.

2. Equipments and material
Both the Crazyflie and the additional equipment was from
Bitcraze AB. The mentioned prices can be found on their
website. [1]

2.1 Quadrocopter
• Crazyflie 2.0 ($ 225.00)

2.2 Additional equipment
• Crazyradio PA 2.4 GHz USB dongle ($37.50)

• Loco Positioning deck ($100.00)

• 6 x Loco positioning node ($187.50/each)

3. System Design
The control system consists of two separate platforms working
in tandem. On the drone, a number of very fast (250/500Hz)
cascading PID controllers are used to orient the drone ac-
cording to certain setpoints for roll, pitch, yaw and combined
thrust. These setpoints are in turn controlled by a regulator
on the PC client. The drone also has an internal Kalman filter
estimating its position and attitude. This estimator is based on
a sensor fusion of a gyroscope and an accelerometer on the
drone. Six loco positioning nodes are also set up and calibrated
to function as anchors for the drone to relate its position to.

3.1 Drone Firmware
Bitcraze supplies a continuously updated version of the
crazyflie firmware on their github, and this firmware provides
an excellent base to work from. Adequate controllers for the
attitude and thrust of the drone were already implemented,
and thus no changes of the firmware have been made. Another
added benefit is that a system for sending system state infor-
mation and receiving control signals was already implemented
through the motion commander and logging frameworks. This
made interactingwith the drone very straightforward andmuch
of the headache associated with communication protocols and
wireless connection were avoided. Logging was done by sim-
ply specifying which parameters should be monitored and at
which rate. The drone then sends the requested information at
regular intervals according to the rate.

3.2 Python Client
The client utilizes a number of modules to allow for easy
access to control signals and measurements for tuning and
testing. It provides a GUI for scanning for, connecting to and
otherwise interacting with the drone.

GUI To simplify tuning and physical handling of the drone,
a simple GUI was implemented. The GUI consists of three
main windows each corresponding to a different aspect of the
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Figure 1. Python Client Overview

python client. A primary window shows buttons for scanning
and connecting/disconnecting to the drone. This window also
presents the user with the option to plot certain parameters
and state information in real time. What parameters to show
is specified dynamically by adding the relevant data to the
log manager. The graph was configured to show the last 10
seconds of flight, and is accessible even when the drone is no
longer connected. To save computation power, activation of
the graph can be delayed until after the flight has concluded
provided the operator is only interested in the last 10 seconds.

The parameter window was used to dynamically modify
control parameters in flight. Tuning parameters used by the
controller such as Kp, Ki and Kd for roll/pitch and thrust can
all be modified and applied at the same time, making tuning
much more efficient.

Another window is used for defining control references in
flight. This is achieved by allowing the user to input an explicit
position in the global X-Y-Z coordinate system. Changes are
applied simultaneously, which makes it very easy to study
not only step responses in a single direction, but also steps in
multiple dimensions. If no position is specified for one of the
dimensions, the currently active reference will remain active.

CrazyFlie Manager The Crazyflie managager is the au-
tomated communication between the drone and the python
client. The manager is based on a callback system which will
throw callbacks whenever a certain event occurs. These call-
backs have to be implemented in the python client, which is
done in the Crazyflie class. Notable examples of callbacks
are _connected, _disconnected and _connection_lost which
handle obvious important and frequent events.

The crazyflie manager also allows for the creating of
a logger, which will request parameters from the crazyflie
at a fixed interval. Once new data is acquired the callback
_stab_log_data is called. As this is done with a fixed interval
this will also be used as themain control thread in the program.

The Crazyflie class acts as the hub class for the python
client acting as the interface between the manager, the GUI
and the position control class. An overview of the classes can
be seen in figure 1.

Controller The position control will be handled by a sin-
gle class. The position controller will use three separate PID
controllers using the library simple-pid [3]. These controllers
take the current value of the system as input and ouputts the
calculated control signal. Any parameters must be set initially
but can be changed in real time. The Position Controller will
be responsible for the conversion of quaternions into Euler

Figure 2. CrazyFlie Drone

Figure 3. Loco Positioning Node

angles. To guarantee mutual exclusion when addressing con-
trol parameters such as setpoints (reference values) and the
PID parameters (K, Ki and Kd) python Lock objects from the
threading library were used [2].

4. Modeling
So far, nomodelling has been done. Premade Simulinkmodels
were provided by the supervisor to allow simulations of the
crazyflie. These would give some insight into the craziflies
behaviour.

5. Electro-Mechanics
The main component of this system is of course the CrazyFlie
drone, mounted with a positioning board as seen in Figure 2.
For positioning, we use 6 loco positioning nodes placed as
the corners of a triangular prism. An image of a single node
can be seen in Figure 3. Finally a CrazyRadio PA was used
to communicate with the drone by connecting the radio to a
USB port. The radio can be seen in Figure 4.

6. Control System Design
The control system which was implemented consists of a po-
sition controller cascaded with a attitude and thrust controller,
an overview of the control system can be seen in figure 6.

The inner controller controls the attitude and the thrust of
the quadcopter, it consists of four PID’s which controls the
thrust, roll, pitch and yaw of the quadcopter. The outer control
loop controls the position of the quadcopter, i.e the position
in X,Y and Z. To control the position three PID’s have been
designed, one for every direction. The PID was chosen since it
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Figure 4. CrazyRadio PA

Figure 5. Control System

is easy to implement and relative easy to tune. The control law
for the PID can be seen in equation 1. There is also a Kalman
filter implemented by the manufacturer. This estimates the
position of the drone respect to the global frame, its velocity
in the body frame and the attitude in terms of quaternions.

To control the position of the quadcopter an control error
is created between the desired position in each direction, ex ,
ey and ez . These control errors needs to be remapped to angles
representing the rotations aroundX,Y and Z axes, i.e roll, pitch
and yaw, φ, θ, ψ. The control signals, ux, uy from position
controller will then act as a reference signal to the attitude
controller. The rotation matrix for this transformation can be
seen in the equation 2. For the Z-direction the control signal
uz was sent directly as reference to the attitude controller.

u(t) = Kpe(t) + Ki

Ti

∫ t

0
e(t)dt + Kd

de(t)
dt

(1)

[
φ
θ

]
=

[
sin(ψ) −cos(ψ)
cos(ψ) sin(ψ)

] [
ux

uy

]
(2)

The position measurement from the Kalman filter showed
to be quite noisy, causing the time-derivative of the position
error in the D-part of the controller to be large at times which
resulted in bad performance. This was avoided by using the
estimated velocity of drone instead and a reference velocity
for the D-part instead since the velocity estimation is more
smooth than the position measurement. However this velocity
is measured in the body frame of the drone and needs to be
remapped to the global frame. This was done with equation
3 which shows the rotation matrix from body frame to global
frame which was used for remapping the drones velocities to
the global frame. This matrix is the inverse of the rotational
matrix generated from a unit quaternion. Note that this only
applies when the rate of change for angles (or quaternions)

is small. The rotational matrix is denoted Rv and is seen in
equation 3 and the rotation estimation in equation 4.


1 − 2(q2

2 + q2
3) 2(q1q2 + q3q0) 2(q1q3 − q2q0)

2(q1q2 − q3q0) 1 − 2(q2
1 + q2

3) 2(q2q3 − q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) 1 − 2(q2

1 + q2
2)


(3)


dxg
dyg
dzg


≈ Rv


dxb
dyb
dzb


(4)

6.1 Controller Implementation
For the implementation of the PID-controller a PID library
have been used called simple-PID. It works by sending the
current measurements as arguments to the PID-object and
assigned the references to the desired value. The D-part is cal-
culated with the velocity error instead of the time derivative of
the position error. The estimation velocity which is described
in the drones body frame is first remapped with the rotation
matrix in equation 3 to the global fixed frame before it’s sent to
the D-part. Then the P and D part is summed together and later
remapped into the angles roll and pitch according to equation
2. The procedure can be seen in figure 6. The last step shows an
offset of 38000 and a scaling of 5000. This will be discussed
in the tuning of the controllers in section 7.2.

6.2 Simulation
Simulations in Simulink was made to get a sense of the behav-
ior of the quadcopter. Models were provided by the supervisor.
In simulink the controllers were tuned although these settings
would not apply on the real process. A trajectory planning
was also implemented and tested in Simulink, more about this
later. The tuning in the simulations was done by choosing a
pole,p and then using the following relationship between the
P- and D Part.

Kp = p2 (5)
Kd = 2p (6)

6.3 Trajectory Planning
One attempt to a simple trajectory planning have been imple-
mented in Simulink. Where the idea is to specify the initial
point A and the final point B. Choose a velocity,v for the quad-
copter that it should travel with and calculate the time T it will
take to travel the distance between the two points A and B.
The algorithm is shown in equation 7. This will give a ramp
reference change rather than a step.

P(t) = A +
B − A
‖B − A‖ tv (7)

The velocity and the direction from equation 7 was used
as a velocity reference for the D-part in the controller. As the
velocity becomes a pulse the velocity reference is low pass
filtered to smooth out the edges, which is especially importan
when reaching the setpoint, which can be seen in figure 7 . It is
also given a "headstart" to make sure the velocity has already
decreased sufficiently when the drone reaches the setpoint.

This method also makes it possible to make larger steps
without getting too large angles and causing the drone to get
unstable, since the step is divided by to smaller steps this way.
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Figure 6. Flow from input values to output

Figure 7.
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Figure 8. Low-pass filtering of position measurements

7. Results
In this section the results from the tuning and the results from
flying attempts will be shown.

7.1 Position Measurements
As described above, the position signal we receive from the
Kalman filter is quite noisy. Therefore we decided to apply the
following first order low-pass filter to the position measure-
ments:

yk = ayk−1 + (1 − a)uk (8)

where u is the position estimate from the Kalman filter
and y is the low-pass filtered position. To get the desired
filtering of the measurements, the pole was placed at a = 0.05.
Figure 8 shows the results of the filtering of the x position.
While performing this experiment, the drone was lying on the
ground without any movement. It is important to note here
that we decided not to alter the tuning of the on-board filter,
but rather attempt to filter at a later stage. As mentioned above
in the case of the position-derived velocity being jittery, it is
possible that a more stable filter could be achieved by also
factoring in drone accelerations and velocities.

7.2 Tuning of controller
Although models for simulating the drone was available and
gave valueble input on how the drone responds, these only
gave rough estimations of suitable parameter values. A large
amount of time was spent on tuning the controllers.

Before discussing the tuned parameters it is necessary to
know that the drone accepts a control signal on the form of
(roll, pitch, yawrate and thrust) where the thrust value needs
to be in the range [10000 - 60000]. As the error is measured
in meters, the gains of the controllers was intially quite large.

Initially z-position controller was tuned to get the drone of
the ground. Once the drone was in the air the control signal
would reveal a suitable offset value, an approximate minimal
value for the drone to hover. Once the z-controller could hold
the drone in the air the x and y controllers could be tuned
to a working level. With all three controllers working to to
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Param pidX pidY pidZ
K 30 30 13
Ki 0 0 0
Kd 14 14 5

Table 1. PID parameters. Note that the I part is intentionally turned
off
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Figure 9. Step Response in x-direction

some extent they could all be further tuned to achieve better
performance.

To reduce the magnitude of the controller parameters a
secondary gain, or scaling, of 5000 was used to get the control
signal of the thrust to be in the appropriate range. The offset
was set to 38000 as this was the necessary value for the drone
to hover.

The final parameters used for the controllers is seen in
table 1. These were tuned as a tradeoff between the stability
and speed for all three positions.

7.3 Drone Control
The controllers seen in the tuning section were able to stabilize
the drone in the air. Due to large variations from position
measurement it was hard to make drone hover in one point,
this also affected the drones ability to track a desired trajectory.

To show the results of the designed controller, steps were
performed in all directions, x, y and z, that can be seen in
figure 9, figure 10 and figure 11.

Figure 12 shows a step performed in all directions at the
same time, to see the coupling between the different positions.

Moreover we performed an experiment, where we sent
several steps in x and z-direction to the drone, so that the
drone’s movement followed the shape of a rectangle. Every 4
seconds a new step was sent to the drone. The result can be
seen in figure 13 where 4 loops was performed.

8. Discussion
The position measurements have offsets on them, for example
the z measurements thinks 0.5 m is the ground. These can
in regard to control performance be neglected although its
necessary to remember it when observing graphs.
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The noise on the position measurements seen in figure
8 can be seen as a great concern if an improvement in the
controller is to be attempted. This project used a first order
lowpass filter of the signal to reduce the effects. The choice
of pole became a trade off between a high damping of the
noise and the ability for the filter to be able to keep up once
the drone was actually moving. This filter could have been
improved with perhaps an increased damping due to another
choice of pole placement or by implementing a higher order
filter. The measurements based on the Loco positions system
could have benefited from an increased amount of anchors.

The drone calibrates itself whenever it starts with the im-
port note on the yaw angle which is defined in the direction
the drone is pointing. Any deviation from the true (defined
by user) yaw which should be in the direction of the xaxis
will cause the drone to have a slight difference in its reference
frame causing slow shifts.

As seen in figures 9, 10 and 11 its seen that each controller
overshoots slightly indication to aggressive control. However,
attempts to remedy any of these controllers resulted in the
others becomingmore unstable.Adjusting is probably possible
but will require all adjusting all three controllers.

The rectangle movement seen in figure 13 shows a drift
whenever rising and the opposite while falling. This could
be due to the so-called ground effect. This means whenever
close to the ground the drone will experience a floating effect.
With the offset in z-values mentioned 1 meter in z position
is actually 0.5 m. This may be close enough for the drone to
start floating increasing the difficulty for the controller. At the
higher values of z = 2 (or 1.5) the done reaches in x position
much better (although overshooting on the z position). No
deeper studies on the ground effect has been made so it cant
be stated whether the symmetry of this floating confirms the
result.

The ramp reference allowed the control to be much faster
and allowed for larger step changes without the risk of instabil-
ity and has been a great benefit. The ramp could possibly have
implemented similar to the low pass filtering of the velocity
reference by low pass filtering the step change.

9. Conclusion
The drone is working satisfactory although the controllers still
overshoot to much and should be tuned more. Improving the
filtering of the position measurements or supplementing them
with additional input should be evaluated as they are key to a
good position control.

The project hoped to evaluate other problems such as fic-
tional scenarios, picking up packages. These have not been
achieved or even attempted as the precision of the drone is not
yet adequate.

In all the project group is happy with the result and the
lessons learned during the project.
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Abstract: In this project, a process used to control a LEGO built truck and trailer with the help
of a LEGO Mindstorms EV3 kit is developed. The project aim was to parallel park the vehicle
using image analysis together with a control system. The image analysis was enabled using
OpenCV for Java. The control system was created using a pure pursuit and PI controller, which
parameters were calculated using Matlab and Simulink. This method along with some manual
tuning, lead to a stable closed-loop control system with the theoretical ability to park the vehicle.
The control system was implemented using the firmware leJOS that is supported by the EV3 kit.
The embedded system was connected through sockets to enable communication between the EV3
brick and the computer. The result of the implementation enabled the trailer of the vehicle to
follow a path into a given parking space. However, the whole vehicle did not park itself, only the
trailer was able to go into the parking space. Therefore, systematic troubleshooting was made,
together with discussion of possible improvements.

Further work would include making the whole vehicle park itself by straightening it up inside the
parking space. This would most easily be done by hard coding the truck to drive with specific
commands. This would eventually result in a parked vehicle.

Figure 1. Picture of robot

1. INTRODUCTION
The aim with this project is to design, build and control a
LEGO Mindstorms process. In this particular project, the pro-
cess will be a LEGO Mindstorms EV3 truck with a trailer.
The purpose of this project is to enable the vehicle to parallel
park autonomously. The goal is for the truck to parallel park
successfully, avoiding any obstacles such as other cars or the
sidewalk. The truck will be built using LEGO Mindstorms
EV3 available in the labs at the department and the software
that is going to be used to implement the truck and trailer is
the firmware Java leJOS together with Matlab and Simulink

for the control design part of the project. A camera will be
mounted above the truck to be used for image processing in
the implementation. The image processing will be executed
using the open source library OpenCV.

2. MODELING
2.1 Design
The truck and trailer are both built in LEGO. The truck has
two sets of wheels, which are placed in the front and in the
rear of the truck. Both of the wheel pairs are connected to
one servomotor each. The embedded system, i.e. the EV3
programmable "brick" is mounted on top of the truck, in the
center. The reason for this is to have the center of gravity
as close as possible to the middle of the truck for smooth
movements, as well as for aesthetic purposes.

The trailer has one set of wheels, located in the rear part
of the construction, to resemble a "real world" trailer as much
as possible. This set of wheels is not connected to any servo
motor, thus not able to drive by itself. The trailer is fastened
in the rear axle on the truck using a LEGO "cylinder piece"
working as an axle to allow for the trailer to turn freely around
the fastening point. All six wheels in the construction are
of the same type, small, wide rubber standard wheels from
LEGO. The truck along with the trailer are symmetrical along
the central axis, with the four rear wheels equally wide apart.
The front wheels are slightly wider apart, to enable for the
front wheels to rotate with a greater angle. In the rear part of
the trailer, above the wheels, a red ball is placed, to allow for
object tracking via the image processing.
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Motors The servomotors used for the wheel sets of the truck
were included in the LEGO Mindstorms EV3 kit. The servo
motor connected to the front pair of wheels, is placed in the
middle of the two wheels, "horizontally", see Fig.2.

Figure 2. Front part of the vehicle

The motor is only attached to one of the wheels, but a set
of gears connects the wheel motions. The motor is placed in
the shown way to allow for the front wheels to turn. In this
manner, it is possible to steer the truck to the left and right by
rotating the wheel pair in a desired angle. Important to notice
here is that the front wheels cannot drive the truck forwards
or backwards, only steer the direction of the truck.

The rear pair of wheels also has a servo motor placed
between them. This motor is not placed horizontally as the
front one. The construction is the same in the sense that the
motor is only attached to one of the wheels and connected to
both of them via a set of gears. This motor allows for the truck
to drive forward and backwards, and are therefore the driving
wheels of the vehicle construction.

Sensors An angle sensor is mounted on the rear axle of the
truck, to allow for angle measurements between the truck and
the trailer. The trailer is fixed with an axle in the angle sensor,
which enables the sensor to read the angle of the trailer in
comparison to the truck.

The camera used for image processing acts as an external
source, and is mounted above the entire construction, in the
roof of the lab used as demonstration location. The webcam
used is a Logitech c270 with a maximum capacity of 30 FPS
[2]. The group believes that lower a FPS will be sufficient for
this application, why the chosen camera is considered to fit
the purpose.

Parking space The parking space designed for the process
was chosen to be the double length of the trailer, which leaves
enough margin for the entire vehicle to fit in the space. This
decision was based on the relative size of a life-size parking
space for a truck with a trailer. The parking lot was created
using black tape that was fastened on the floor in the lab.

3. CONTROL
To enable the vehicle to parallel park without any human
interference, the process must be controlled. The accessible

variables available from the vehicle are the angle between
the truck and trailer, the reversing speed and the front wheel
rotation angle. Furthermore, the position of the trailer can
be retrieved through image processing, where the red ball is
tracked. Additional items needed in order to park are

• a path for the vehicle to follow into the parking space

• a control system that compels the vehicle to stay on this
path

In order to be able to design the control system, the dynamics
of the vehicle had to be derived.

3.1 Mathematical model
A nonlinear model for the truck with trailer is derived with the
inspiration from a previous similar project [3], and a master
thesis covering the topic of a reversing truck and trailer [4].
The mathematical model is derived based on the assumption
that the truck has rear-wheel drive and front-wheel steering
while the trailer has no inputs, and is completely controlled by
the truck. Also, rolling slip of the wheels is disregarded in the
model. A graphic representation of the truck with the trailer
is shown in Fig. 3 with the denotation of the variables shown
in Table. 1.

Figure 3. Graphical representation of the mathematical model of
the truck with trailer

Equation (1) through (9) shows the derivation of the vari-
ables shown in Fig. 3. The direction of the trailer is controlled
by the angle between the pivot point that connects the truck
and trailer, β. The dynamics of this angle can be seen in (10)
and is a nonlinear differential equation. Since this angle is
measurable by the angle sensor placed on the truck, the main
idea is to control this angle. This would enable controlling
the path leading into the parking space. In order to control a
nonlinear system one can either use a nonlinear controller or
linearize the system around a stationary operating point. The
second option - linearization - is the chosen method for this
project due to simplicity and satisfying control.

Ûθ1 =
v1
L1

tan(α) (1)

Ûx1 = v1 cos(θ1) (2)

Ûy1 = v1 sin(θ1) (3)
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Table 1. Definition of parameters

Variable Meaning
θ1 Global angle of truck
θ2 Global angle of trailer
(x1, y1) Global coordinates of the rear axle of

the truck
(x2, y2) Global coordinates of the rear axle of

the trailer
L1 Length between front and rear axles of

the truck
L2 Length between front and rear axles of

the trailer
v1 Velocity of the rear axle of the truck
v2 Velocity of the rear axle of the trailer
M1 Length between the rear axle of the

truck and the connecting point between
the truck and the trailer

β Angle between truck and trailer, β = 0
meaning perfect alignment

α Steering angle of the front wheels

Ûθ2 =
v1 sin(θ1 − θ2)

L2
− M1 cos(θ1 − θ2) Ûθ1

L2
=

= v1(cos(β) +
M1 sin(β) tan(α)

L1L2

(4)

v2 = v1(cos(β) +
M1 sin(β) tan(α)

L1
) (5)

Ûx2 = v2 cos(θ2) =

= v1 cos(θ2)(cos(β) +
M1 sin(β) tan(α)

L1

(6)

Ûy2 = v2 sin(θ2) =

= v1 sin(θ2)(cos(β) +
M1 sin(β) tan(α)

L1

(7)

β = θ1 − θ2 (8)
Ûβ = Ûθ1 − Ûθ2 =

=
v1
L1

tan(α) − v1(
sin(β)

L2
− M1 cos(β) tan(α)

L1L2
)

(9)

Ûβ =
v1
L1

tan(α) − v1(
sin(β)

L2
− M1 cos(β) tan(α)

L1L2
) (10)

With linearization of the system (10) around (β, α) = (0,0)
the linear system (11) is achieved, which corresponds to a
linear state space model{

Ûx = Ax + Bu
y = Cx + Du

where the input, x, to the process is the angle β and the output,
u, is the front wheel angle, α.

y = β

∆β = β − β0

∆u = u − u0

∆y = y − y0




∆ Ûβ = − v1
L1

∆β +
v1
L1

(1 +
M1
L2

)∆u

∆y = ∆β
(11)

The open transfer function of system (11) can be seen in
(12) which is unstable for v1 < 0. A negative velocity means
that the vehicle is reversing which is intended for this project
purpose. The aim is to always reverse with a constant speed
of v1 = 0.1m/s. The physical model is designed in such a way
that M1 is very small and will therefore be approximated to
zero.

Gp(s) =
v1
L1

1

(s +
v1
L1

)
(1 +

M1
L2

) (12)

3.2 PI Controller
The linearized system (11) has a transfer function (12) of rel-
ative degree 1 (no zeros and one pole), which means that the
derivative part of the controller is unnecessary. The require-
ment of the controller is to be able to follow a step response
well with small overshoot - thus a PI-controller is chosen.
By introducing a PI-controller together with the open transfer
function of the linearized system (12) the closed loop transfer
function (13) and (14) is achieved. By placing the poles at
s = −1.1 ± 0.3i, the controller values K = −6.33 and Ti = 1.3
are obtained - an initial guess with requirement on stability.

PI(S) =
KsTi + K

sTi

Gcl(s) =
Gp(s)PI(S)

1 + Gp(s)PI(S)
(13)

s2 − s(
0.1
L2

+
0.1K

L1
) − 0.1K

L1Ti
= 0 (14)

3.3 Path planning
The trajectory planning is generated using an interpolation
method and stays fixed throughout the process. This is in order
to facilitate the control system implementation. The path is
generated through a set of assumptions: at time zero the truck
and trailer are almost fully aligned with respect to both them-
selves and to the parking space, and the parking is performed
on the right hand side of the road, seen from the perspective
of the vehicle. Both of these assumptions could be ignored
with a more generalized parking program, but for this project
time has been a deciding factor in some decisions. Starting
out simple and getting it working was the first goal, and if time
allowed it more ambitious solutions would be considered. The
interpolation method chosen was Cubic Hermite interpolation
as it has shown to be sufficient for this type of path generation
in earlier projects [3].

The path planning is one of the first things that should be
created in the implementation. To be able to create a spline
from the vehicle into the parking space, the coordinates of
both the trailer and the parking space are needed. The path is
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a discrete valued spline created with Cubic Hermite interpo-
lation where the values represent coordinates. The end points
of the interpolation are the rear axle of the trailer and a point
at the far end of the parking space. The assumption that the
trailer is parallel to the parking space allows the interpolation
to be performed with tangent values of zero at both end points,
as this represents a parallel to the parking space.

The Cubic Hermite Spline has the general equation (15)

p(t) = h00(t)pk + h10(t)(xk+1 − xk)mk+
h01(t)pk+1 + h11(t)(xk+1 − xk)mk+1

(15)

where
t = (x − xk)/(xk+1 − xk)

h00 = 2t3 − 3t2 + 1

h10 = t3 − 2t2 + t

h01 = −2t3 + 3t2

h11 = t3 − t2

This equation creates a polynomial with the start and end
points at the coordinates (xk, pk) and (xk+1, pk+1) respectively.
The variables m0 and m1 are the respective tangent values, and
hi j are the Hermite basis functions.

Depending on the starting position, some problems may
occur if the generated path is not considered, as it then could
cross over the boundaries of the parking space. To prevent
this the distance to the closest corner of the parking space
on each path point is checked. If a point that is too close
to the parking space boundaries is found, an extra point is
generated. This point lies on a large enough distance on the
line crossing the two points from the corner. The interpolation
is then performed again with regards to this new point, giving
an extra polynomial in the spline. Finally, a path is achieved
which in theory should be possible to follow by the vehicle.
An example of what a generated path could look like is seen
in Fig. 4.

Figure 4. A simulated path

3.4 Pure pursuit controller
When the path is generated, an algorithm is needed in order
to investigate how the trailer is supposed to move to be able
to follow said path. The Pure Pursuit Controller was chosen
as the algorithm for this task as it is a simple algorithm that
yields good results.

Given a path to follow, a current point for the trailer, a
chosen target distance Td and the global angle of the trailer,
θ2, the Pure Pursuit Controller calculates a point on the path at

a distance Td from the trailer. The angle θe between the trailer
and the target point, called the angle error, is then used to get a
desired angle, βre f between the truck and the trailer. To follow
the path it is simply a matter of maintaining the βre f , which
is a job for the PI-controller. As the trailer moves closer to the
point the Pure Pursuit Controller will eventually calculate a
new point on the path and a new βre f is calculated, giving a
smooth following of the path, given that the path has enough
points. The distance Td to the target point that the Pure Pursuit
Controller calculates is held constant and can be chosen to
obtain a desired result. A larger distance gives a smoother ride
but a larger error, while a shorter distance gives larger angles
to turn to but a smaller error. This distance has not yet been
chosen at the time of writing this report as the distance is
supposed to be chosen through testing.

The formula for βre f is seen in equation (16) and (17).

βre f = arctan(
2L2sin(θe)

R
) (16)

θe = arctan2(Yp − y2, Xp − x2) − θ2 (17)

where (Xp,Yp) is the target point coordinates. The full deriva-
tion for equation (16) and (17) can be seen in section 5 in [3].
The sign difference of βre f is due to a different sign conven-
tion.

3.5 Resulting control system
The resulting control system is a fusion of both the PI con-
troller and the Pure Pursuit Controller. The Pure Pursuit and
the PI controller are serial connected, where the Pure Pursuit
controller sends its output signal, βre f , as a reference signal
into the PI Controller, which will yield the angle α, the desired
angle of the front wheels to obtain the angle βre f of the trailer.
A graphical representation of the control loop can be seen in
Fig. 5.

Figure 5. Control scheme

3.6 Implementation
Throughout the implementation of the control process in the
chosen environment, all units in meters are converted into
pixels, to facilitate the implementation with respect to the
frame taken by the camera. This means that the lengths of the
vehicle, L1 and L2 are represented in pixels, as well as the
coordinates of the parking space, and the points generated in
the spline.
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Control system implementation To be able to implement the
control system correctly in real-time, the PI controller is dis-
cretized. The Pure Pursuit controller only feeds information
to the PI controller, and is already discrete, thus it is sim-
ply implemented in the program as an individual class. The
PI controller, which ultimately controls the vehicle, can be
described as

u(kh) = P(kh) + I(kh)

where h denotes the sample time and k denotes the sample.
To discretize the controller, each part is discretized separately
[8].

P(k) = K(βysp − y(k))

I(k + 1) = I(k) − Kh
Ti

e(k)

where βysp denotes a set point weighting, which is used to
reduce the overshoot in the output, following step changes in
the set point [9]. The I-part of the controller is discretized
using forward difference, where K is the proportional gain, Ti
the integral term and e(k) is the error. In practice, there is a
limitation on the magnitude of the control signal that can be
realized by the actuator. The control can deteriorate drastically
unless the controller detects when the control signal is satu-
rated. The problem is that, when the control signal saturates,
the integral part of the controller can continue to grow. This
is called integrator windup, which can cause large overshoots
[10]. To avoid this, constraints must be implemented for the
control signal. One solution to this, called tracking, is when
the control signal saturates, the integral is recomputed so that
its new value gives a control signal at the saturation limit. The
scheme in Fig.6 represents the implementation of tracking for
a PID controller.

Figure 6. Tracking scheme of a PID controller in continuous time

Image processing To simplify the parallel parking process,
image processing with color tracking is utilized. The camera
is mounted above the vehicle in a fixed position, to overview
the parking sequence. The colored ball fixed in the rear part
of the trailer, is used to be able to trace the position of the
rear axle of the trailer. The webcam continuously feeds the
video into the computer, where color tracking is performed in
each frame. The position of the ball is then used by the Pure
Pursuit controller in order to find the desired angle between
the trailer and the truck. Since the groupmembers did not have
any prior knowledge in image processing, the open source li-
brary openCV was used, together with a guide found online
[7] that shows how to track a tennis ball. Slight alterations
had to be made to this example in order to fit the application

to the current project. The color tracking algorithm works as
following pseudo code:

Following statements are executed periodically with a pe-
riod of 33 milliseconds (which corresponds to 30FPS) {

• grabFramefromWebcam();

• void imageProcessing {

– frame.convertRGBtoHSV();
– HSVimage.blur(); //remove noise
– for (all pixels inHSVimage): pixel.getHSVvalues();
– boolean pixel.inCorrectHSVRange();
– image.erode(); //exclude outliers
– image.dilate(); //group same type of pixels

}

• maskedImage.drawContours(); //Draw contours around
grouped pixels

• contours.getArea(); //Calculate mass center of area
within the countour.

• area.meanValue();

• return Point p; //mass center (x,y coordinates)

}
A picture of the Color Tracking GUI is shown in Fig. 7

below. The center of the ball is then found by retrieving the

Figure 7. Color Tracking GUI

contours of the tracked object, and then the mass center of the
area within the contours is calculated, using methods from the
image processing library openCV.

Installation The programming language Java leJOS is used
to implement the control process in the EV3 brick. The soft-
ware is developed in Eclipse with a plugin for the leJOS
firmware to allow for a smooth work flow and easy com-
munication with the brick, since the code developed on the
computer is alsomade in theEclipse environment. All commu-
nication between the brick and the computer is done through
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bluetooth network tethering, together with socket communi-
cation to enable sending and receiving messages between the
brick and the computer.

The leJOS operating system used in this project has to
be loaded onto an SD-card and inserted into the EV3 brick
according to the instructions on their website [5]. The leJOS
plugin to Eclipse has to be downloaded and installed from
their website [6]. This plugin can be used to create leJOS
projects and includes libraries for accessing the physical ports
and buttons of the EV3 brick, as well as interfaces for working
with the servo motors and sensor used in this project.

To start a program on the brick, the EV3 needs to be
connected to the computer through a bluetooth network tether.
After a bluetooth connection has been established, the EV3
can be connected as a PAN client through the network settings
of the computer. Furthermore, the IP address of the computer
and a commonly chosen port (in this case; ’4444’) are required
to establish a socket connection between the two devices. The
computer opens a server socket that the brick connects to upon
starting the program. Input- and OutputStreams are used to
send strings of data from the brick to the computer containing
information about the process, and vice versa. The data sent
from the brick contains the angle β given from the angle
sensor, while the data sent from the computer contains the
calculated angle α from the PI-controller. The information is
represented as a one word string made up of digits.

Program structure The schematics of the classes and the
communication implementation is visualized in Appendix A.
Classes are represented by rectangles and their respective
methods inside of these rectangles. The communication be-
tween them is shown by the drawn lines that connect the
different rectangles. An arrow pointing at a rectangle means
that that method is called from the class where the arrow
origins from. In order to control the power to the motors
directly, each motor has to be configured as an unregulated
servo motor in leJOS. This allows control of power settings
through a setPowermethod of theUnregulatedMotor class pro-
vided by leJOS. The program is built in such a way that both
main classes (MainOSX and MainEV3) run continuously, in
a sequential manner, sending and receiving data through the
communication between the Client and Server classes. The
CameraController class is run on a thread in order to keep the
camera feed running continuously.

4. RESULTS
By bringing all components together in a simulation model
and creating a theoretically realistic scaled parking lot - the
control theory could be tested. By tuning the Pure pursuit
parameters, PI-parameters and analyzing results fromprevious
simulations, optimal parameters for the process were found.
The Simulink schematics and corresponding Matlab code can
be seen in Appendix B and C.

Simulation of the PI controller, yielded in following step
response, see Fig. 8 where the overshoot and stationary error
does not exceed 5%. Furthermore, Fig. 9 shows the simulation
of β and βre f angles of the resulting control system including
both the Pure Pursuit controller and the PI controller, when
this is simulated using the optimal simulation parameters. Fig.
10 shows the the parallel parking setup. The setup includes the

Figure 8. A simulated step response at time t=1

Figure 9. Beta reference and beta from a simulation with optimal
simulation parameters

initial path generated by the Cubic Hermite spline functions
together with the simulated path taken by the trailer. The path
taken by the vehicle is as a result of the Pure Pursuit controller
together with the PI controller. The end position of the vehicle
is also shown in the figure, represented by green and red
crosses. The resulting controller parameters in the optimal
simulated case are presented in Table 2 below.

Table 2. Optimal simulation parameters

Parameter Value
K -13
Ti 1
Ts (sample time) 0.05 s
Td (target distance) 0.2 m
L1 0.26 m
L2 0.356 m
v1 0.1 m/s

The resulting controller parameters in the real applica-
tion were found after some extensive tuning of the process in
the implementation environment. These are represented in the
table 3 below. The parameters L1 and L2 are the only param-
eters in this table that are not tuned, since these represent the
constant lengths of the truck and trailer, respectively.

5. DISCUSSION
At the time of writing this report the project has not yet fully
succeeded in parking the trailer. Because of this it is difficult
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Figure 10. Parallel parking simulation with optimal control param-
eters

Table 3. Final parameters

Parameter Value
K -15
Ti 3
Ts (sample
time)

0.1

Tr (tracking
constant)

2

L1 150 pixels
L2 250 pixels
v1 98 pixels/s

to draw proper conclusions about some of the components in
the implementation. The group is confident that its designed
control system is sufficient to succeed with the aim of parallel
parking the vehicle. This is based on the performed simula-
tions, where it is clearly seen that the control system behaves
as desired. The step response from the PI controller shows that
there is a minimum error, and that controller follows the step
response smoothly, and is therefore a stable system. Further-
more, when the entire control system is simulated, it is seen
that the βre f follows the β angle closely without any major
errors. It is also convincing that the simulation of the parking
sequence looks as expected, where the vehicle follows the gen-
erated path and avoids any obstacles, in this case stays within
the parking space boundaries.

At the current state in the project, the group believes that
the issue is regarding the actual implementation of the pro-
cess in the programming environment, and not in the control
design. The vehicle is able to reach inside the parking space,
but not as smoothly as desired. The vehicle finds its end of
the path somewhere in the middle of the parking space, when
the desired point of stopping would have been more to the
end of the parking space. Also, the group has encountered an
issue where the programming environment crashes after an
uncertain amount of time.

5.1 Troubleshooting
In this section, the group has chosen to include some of the
major problems that occurred during the project. The section
also includes the time consumption when trying to solve the
problems, which was a setback for the group’s progress and

planning.
Throughout the implementation, the group has systemati-

cally gone through every section of code in order to facilitate
troubleshooting. Each section of code has been isolated and
tested independently from the rest of the structure. This was
done in order to find possible problems that affected the entire
process.

The trajectory generation has been tested by simply mov-
ing the red ball by hand and checking the calculated coor-
dinates given by the image analysis. When comparing the
ball coordinates and the spline coordinates the numbers look
proper. This is easily verified by moving the ball in roughly
the same manner the spline would. Also, the generated spline
was tested in Matlab, with the values given from the program-
ming environment, and the resulting plot, Fig. 11 shows that
the spline visually looks as expected.

Figure 11. Spline generated from the programming environment

The PI-controller has been tested by setting constant βre f
values, essentially bypassing the Pure Pursuit controller and
the image analysis. This has been working as expected, the
vehicle is able to smoothly follow a constant reference signal
for a longer time without generating any errors. Thus it can be
concluded that the PI-controller works.

Given that the PI-controller can handle reference values it
entails that the EV3 brick itself seems to perform as it should.
With this it would be safe to assume that the fault lies in the
Pure Pursuit controller. While it has undergone testing it is
still not clear as to why it seems to not behave as intended.

However as is mentioned in the beginning of this chapter it
is hard to draw any final conclusions about the components of
the implementation. Somethingmay still have been overlooked
somewhere in the code and without a fully functioning end
result nothing should be seen as fully functional.

OpenCV + leJOS At the beginning of the project, a lot of
time was spent downloading the various software applications
for Eclipse. This was rather difficult at first due to the group’s
lacking knowledge of the applications.

Communication The group have experienced some prob-
lems with the communication part of the project. Since the
image analysis is implemented using OpenCV, all including
classes must be ran through Java version 1.8. OpenCV is not
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compatible with any other version. Meanwhile, all classes for
controlling the robot are used with Java leJOS, which is only
compatible with Java version 1.7. This caused a lot of trouble
when first implementing the code. An enormous amount of
time was spent on trying to figure out how to work around
this problem. After re-arranging the code and classes, creat-
ing a better structure, the group came to the conclusion that
a Client/Socket communication would be the best solution.
An attempt to use this type of communication between all
classes run on version 1.8 and 1.7 did not give any results.
This was due to the fact that the communication was run
from the computer to itself. The final solution then became
to use the Client/Socket between the computer and the LEGO
Mindstorms brick. The final program structure is shown in
Appendix A.

Java crashes At the time of writing this report, the latest
occurring problem was that the programming environment
Eclipse was crashing when running the code. This was to the
fact that the code includes a lot of different applications such
as the image analysis and the leJOS plugin. After investigating
the error message, the group believed that the main cause of
the problem was the fact that the JavaFX plugin was running
on an older version of Eclipse/Java. After testing this idea,
the group could conclude that this was not the issue, which
to this day remains unknown. Therefore, when Java crashed,
the group simply executed the code again, hoping on a better
result.

5.2 Potential improvements
After solving most of the major problems described above,
the group was able to start tuning the parameters and narrow
down the errors. Unfortunately, this happened rather late in the
project, resulting in a very short time to debug small errors. If
the opportunity to re-do the project was given, a few changes
in the work flow would have been made. First of all, a better
guide on how to implement all the required applications would
have helped a lot. Also, more and deeper knowledge on how
the communication should work would have made a huge
difference.

A future goal of the project would have been to try to
straighten up the truck and trailer after getting the trailer into
the parking spot. The easiest way to achieve this would be to
hard code minor commands to the LEGO Mindstorms brick.
For an example, once the back of the trailer has made its way
into the parking spot, the commands could be to, continuously,
drive back and forth with a slight angle on the front wheels
for a while. This would eventually result in the entire vehicle
straightening up. In this project, however, the limitation was
set to only having the trailer parallel to the parking spot at the
end of the parking sequence.

The choice for what interpolation method to use was for
the most part affected by the time limitation of the project.
The idea was to start out with something that would work,
and later perhaps look at other methods. Since [3] showed that
Cubic Hermite interpolation was working, this was chosen as
a starting point. Unfortunately, there was not enough time to
try out other methods in the end.

Overall, the group are satisfied with the project, having
learnt a lot from the different obstacles encountered over

time. Also, havingmade such progress considering the limited
amount of time that was left when the program finally started
working, is something that the group are proud of. It would
have been interesting to continue working on the project, for
further improvements and a "flawless" parallel parking.
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%Trajectory generator for the trailer with plotting 
%Currently has arbitrary numbers until we can get data from the image 
%analysis 
%distanceMargin minimal distance to corner i.e length from center to tire on 
%trailer 
distanceMargin = 6; 

 
%Input: 
%Parking lot corners 
xpark1=100; 
ypark1=40; 
xpark2=250; 
ypark2=100; 

  
%trailer coordinates at t = 0 
xtrailer0 =0; 
ytrailer0 = 10; 

  
%Plot parkinglot 

  
 %[150, 150, 100, 100] 
 %[40, 60, 60, 40]   

  
xpark = [xpark2, xpark2, xpark1, xpark1]; 
ypark = [ypark1, ypark2, ypark2, ypark1]; 
xedge = xpark1; %Edges to be caseful with 
yedge = ypark1; 

  
plot(xpark, ypark, 'b-', 'LineWidth', 3); 
% hold on; 
% xlim([0, xpark2*1.2]); 
% ylim([0, ypark2*1.7]); 
% viscircles([xpark1, ypark1],distanceMargin); %Plot "danger zone" 

  
%plot trailer 
xtrailer1= xtrailer0-26; 
xtrailer2= xtrailer0; 
ytrailer1= ytrailer0; 
ytrailer2= ytrailer0; 
xtrailer = [xtrailer1, xtrailer2, xtrailer2, xtrailer1, xtrailer1]; 
ytrailer = [ytrailer1, ytrailer1, ytrailer2, ytrailer2, ytrailer1]; 
plot(xtrailer, ytrailer, 'b-', 'LineWidth', 3); 
% hold on; 

  
xend = xpark2 - 0.1*(xpark2 - xpark1); 
yend = 0.5 * (ypark1 + ypark2); 
xstart = xtrailer0; 
ystart = ytrailer0; 
xHermite = xstart:0.1:xend;%Adds evenly distributed x-values between the start 

and end points with increments of 0.1 
maxIndex = numel(xHermite); 
sHermite = []; 
for xx = 1:maxIndex 
    t = (xHermite(xx) - xstart)/(xend - xstart); 
    h0p = 2*t^3 - 3*t^2 + 1; 

Appendix C
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    h1p = t^3 - 2*t^2 + t; 
    h2p = -2*t^3 + 3*t^2; 
    h3p = t^3 - t^2; 
    sHermite = [sHermite, h0p * ystart + h2p * yend]; 
end 

  
plot(xHermite,sHermite); 
% hold on; 

  
%Find closest point to corner of parking space 
SHermite = [xHermite;sHermite]; 

  
% Compute the distance of each of those points from (xedge, yedge) 
distances = sqrt((SHermite(1 , :) - xedge) .^ 2 + (SHermite(2, :) - yedge) .^ 

2); 
% Find the closest one. 
[minDistance, indexOfMin] = min(distances); 

  
%If closest point is too close we interpolate on an additional point 
%further from that corner 
if (minDistance < distanceMargin) 
    k = (SHermite(2,indexOfMin) - yedge)/(SHermite(1,indexOfMin) - xedge); 
    newPoint = [1.1*distanceMargin/sqrt(1 + k^2) + xedge, 

1.1*distanceMargin*k/sqrt(1 + k^2) + yedge]; 
    sHermite = []; 
    midTangent = -1/k; 
    for xx = 1:maxIndex 
        if (xHermite(xx) < xHermite(indexOfMin)) 
            x0p = xHermite(1); 
            y0p = ystart; 
            x1p = newPoint(1); 
            y1p = newPoint(2); 
            deltax = newPoint(1) - xHermite(1); 
            m0 = 0; 
            m1 = midTangent; 
        else  
            x0p = newPoint(1); 
            y0p = newPoint(2); 
            x1p = xHermite(maxIndex); 
            y1p = yend; 
            deltax = xHermite(maxIndex) - newPoint(1); 
            m0 = midTangent; 
            m1 = 0; 
        end 
        t = (xHermite(xx) - x0p)/(x1p - x0p); 

         
        h0p = 2*t^3 - 3*t^2 + 1; 
        h1p = t^3 - 2*t^2 + t; 
        h2p = -2*t^3 + 3*t^2; 
        h3p = t^3 - t^2; 
        sHermite = [sHermite, h0p*y0p + h1p*deltax*m0 + h2p*y1p + 

h3p*deltax*m1]; 
    end 
end 

  
SHermite = [xHermite/100;sHermite/100]; 

Trajectory generation (2/2)
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%% Parameters 

  
L1 = 0.26; %Length of truck 
L2 = 0.356; %Length of trailor 
M1 = 0    ; %Hitch length 

  
k = (-2.2-0.1/L2)*L1/0.1     
Ti = -0.1*k/(L1*1.3)         
parameters = [L1,L2, M1]; 

     
%% Initial conditions 
h    = 0.01;  % Time step 
theta1_0 = 0; 
x1_0 = L2; 
y1_0 = 0; 
theta2_0 = 0; 
x2_0 = 0; 
y2_0 = 0;    
beta2_0 = 0; 

  
%% Run simulation  
open('model2.slx') 
sim('model2.slx') 

  
%% Plot results 
stateResponse = {X1pos,Y1pos,theta1,theta2,X2pos,Y2pos,beta2}; 
colors        = {'r-','b--','k-','g--'}; 
ylabels       = {'$x1(t)$', '$y1(t)$', 

'$theta_1$','$theta_2(t)$','$x2(t)$','$y2(t)$','$beta2$'}; 

  
subplot(4,1,1); hold on; 
plot(controls.Time, controls.Data(:,1), 'r', 'LineWidth',2) 
plot(controls.Time, controls.Data(:,2), 'b', 'LineWidth',2) 
legend({'Velocity, $v(t)$', 'Steering angle, $\delta_f(t)$'}, 

'Interpreter', 'latex', 'Location','NorthWest') 

  
for ii = 1:7 

     
    subplot(8,1,1+ii); 
    hold on; 
    states = stateResponse{ii}; 
    plot(states.Time, states.Data(:,1), colors{1}, 'LineWidth',2) 
    legend({'Continuous time'}, 'Interpreter', 'latex', 

'Location','NorthWest') 
    ylabel(ylabels{ii}, 'Interpreter', 'latex') 

     

  
end  
x1 = X1pos.Data(:,1); 
y1 = Y1pos.Data(:,1); 
x2 = X2pos.Data(:,1); 
y2 = Y2pos.Data(:,1); 
betu = beta2.Data(:,1); 
reff_ = beta_ref.Data(:,1); 

  
%reff_tid = reff.Time(:,1); 
betu_tid = beta2.Time(:,1); 

 

Initiation code
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function dotX = fc(U, parameters, X) 
% Continuous time nonlinear model 
v  = U(1); 
alfa  = U(2); 

  

  
theta1 =  X(1); 
theta2 = X(4); 
beta2 = X(7); 

  
% Parameter extraction 
L1_ = parameters(1); 
L2_ = parameters(2); 
M1_ = parameters(3); 

  
dotTheta1 = v/L1_*tan(alfa); 
dotX1 = v*cos(theta1); 
dotY1 = v*sin(theta1); 
dotTheta2 = v*sin(beta2)/L2_ - M1_*cos(theta1-theta2)*dotTheta1/L2_; 
 v2 = v*cos(beta2)+M1_*sin(theta1-theta2)*dotTheta1; 
dotX2 = v2*cos(theta2); 
dotY2 = v2*sin(theta2); 
dotBeta2 = v/L1_*tan(alfa) - v*(sin(beta2)/L2_-

(M1_*cos(beta2)*tan(alfa)/(L1_*L2_))); 

         

  
 dotX = [dotTheta1; dotX1; dotY1; dotTheta2; dotX2; dotY2; dotBeta2]; 

Continuous model function block
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    function betaRef = fc(parameters, X, Spline) 
% PureSuitController 

  
targetDistance_ = 0.2  ;%Distance to target 

  
RearPointX = -X(5); %everything else designed for growing X value  
RearPointY = X(6)+0.1; 
L2_ = parameters(2); 
S_ = Spline; 
rearPoint = [RearPointX, RearPointY];  
S_ = S_(:,S_(1,:) >= rearPoint(1)); %Remove "old" coordinates  
A = 0; %variabel to end simulation if A = 1  

  
distance = 99; %this value will never be used - only to make simulink happy 
BetaRef_ = 0;  %this value will never be used 

  
if ( numel(S_(1,:)) == 0 ) 

     
    A = 1; 
    disp('nume = 0') 
else 
    for indexTarget_ = 1:numel(S_(1,:)) 
            distance = sqrt((S_(1,indexTarget_) - rearPoint(1)).^2 + 

(S_(2,indexTarget_) - rearPoint(2)).^2); 
           % disp('forloop after distance') 
         if (distance > targetDistance_) 
             %disp('at break') 
             break; 
         end 
    end 

     
    if (indexTarget_ == 1) 
    %We have reached our destination (indexTarget = 1), return or smth. 
    disp('work done') 
    A = 1; 
    else 

         
    deltax = S_(1,indexTarget_) - rearPoint(1); 
    deltay = S_(2,indexTarget_) - rearPoint(2); 

         
    angleError = atan2(deltay,deltax); 

     
    BetaRef_ = atan(2*L2_*sin(angleError)/distance); 
    end 
end 

      
betaRef = [BetaRef_, A]; 

 

Purepursuit function block
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figure(2) 
d = zeros(1000,1); 
axis([-3 1 -1 1]) 
hold on 
plot(- SHermite(1,2:2351),SHermite(2,2:2351)); 

  

  
xpark1=-1; 
ypark1=0.4; 
xpark2=-2.50; 
ypark2=1; 

  
xpark = [xpark2, xpark2, xpark1, xpark1]; 
ypark = [ypark1, ypark2, ypark2, ypark1]; 

  
plot(xpark, ypark, 'b-', 'LineWidth', 1); 

  
plot(x2(numel(x2(:,1)),1), y2(numel(x2(:,1)),1),'g+'); 

  
for t=1:numel(x2(:,1)) 
   crank = line([x1(t,1) x2(t,1)], [y1(t,1) y2(t,1)]); 
   hold on 
   h1 = plot(x1(t,1), y1(t,1),'r+'); 

  
   h2 = plot(x2(t,1), y2(t,1),'g+'); 

  
   %pause(0.0001) 

  
  d(t,1) = sqrt((x1(t,1)-x2(t,1))^2+(y1(t,1)-y2(t,1))^2); 
if (rem(t,90) == 0) 
    plot(x2(t,1), y2(t,1),'b+') 
end 
   if (t<numel(x2(:,1))) 
        delete(crank) 
        delete(h1) 
        delete(h2) 
   end 
end 

  
legend('Path trajectory','Parking lot','End position of the trailer','Path 

taken by the trailer'); 
xlabel('x [m]') 
ylabel('y [m]') 

  

         

  

     

 

Code for analysis
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Abstract: The objective of the project has been to get a robotic arm to catch a ball being thrown
to it. The main tasks have been to perform image analysis, calculate a ball trajectory, as well as
to move a robot to the correct position. Different methods have been tested with varying results.
The end result was satisfactory, the robot used was able to catch balls thrown within its reach and
without dropping them. The project was however limited to 2D and is only able to catch balls in a
plane. This was due to limited time as well as 3D increasing the difficulty substantially.

1. Introduction
The main goal of this project has been to get a robot arm to
catch a ball that was thrown to it. This was done by recording
the throw and through image analysis detecting the ball by
color and movement. When the ball was detected, the com-
puter would calculate a trajectory and thus determine where
the ball would land. These coordinated were then used to cal-
culate what angles the robotic arm needed to position itself in
order to reach the coordinates and catch the ball.

This has been done modularly. Each large part of the
project has been solved towork individually before being com-
bined into one unit. Thereafter the project consisted largely of
optimizing and tuning each part in order to allow for cooper-
ation.

This project was done last year and that report was read
as research1. There has also been a similar project done by
Magnus Linderoth [1] which has been an inspiration to the
project.

Figure 1. The full system setup. The camera is aimed at the robotic
arm and the white background screen.

1http://portal.research.lu.se/portal/files/38414307/
projektrapport.pdf

2. Modeling
2.1 Trajectory Calculations
The goal of the trajectory calculationwas to predict a trajectory
for the ball and to calculate the position where the robot should
catch the ball. Due to some problems with the sampling, two
methods for trajectory calculations were developed. The first
one, using a model of the ball which did not work properly
due to an issue with sampling. The second solution utilized
polynomial regression.

Model of ball With the position vector p = [X,Y ]T the
differential equation (1) describes the ball in motion

Üp = −c Ûp| | Ûp| |2 −
[
0
g

]
+ vc (1)

where c is a air drag constant, g is the gravitational constant
and vc is a load disturbance i.e disturbance caused by wind.
By using the state vector x = [X,Y, ÛX, ÛY ]T the differential
equation can be written in state space form seen in (2)

Ûx =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


x +



0
0
−c ÛXV
−c ÛYV − g


+


0
0
vc


(2)

where V =
√ ÛX2 + ÛY2 is the speed of the ball. The dis-

cretized system is given by (3)

x(k + 1) =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1


x(k)+



h2

2

[ −c ÛX(k)V(k)
−c ÛY (k)V(k) − g

]

h
[ −c ÛX(k)V(k)
−c ÛY (k)V(k) − g

]

+ v(k) (3)

For simplicity the air drag was neglected (c = 0) giving a
linear system (4).
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x(k + 1) =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1


x(k) +



0
−gh2/2

0
−gh


+ v(k)

= Φx(k) + Γ + v(k) (4)

Since the air drag was neglected the decision of what ball to
use was very important, as a light ball relative to its size would
be heavily affected by drag.

With a given initial state x(0) one can iterate the system
in Equation 4 to get a prediction of the position at future time
points. This model was used together with a Kalman filter
described in Section 4.3.

Polynomial regression This method used polynomial re-
gression to fit a second order polynomial to the gathered
measurements. This polynomial would then be the estimated
trajectory of the ball. The polynomial coefficients were calcu-
lated and a curve could then be fit to the trajectory.

Catching point Assuming a known trajectory of the ball
and an interception boundary from which the interception
point could be calculated. For this project two boundaries
were tested.

The first one was a vertical limit. Whenever the trajectory
intersects the boundary the "catch point" was determined. This
can be seen at Figure 2 where the vertical line is the boundary.

The second one was a boundary consisting of the upper
part of a ellipse and a vertical line, the red line in Figure 2.

Figure 2.

2.2 Robot arm model
The model of the robot arm was used to describe the angle
between the robot segments, e.g. the joint angles of the robot
and the position of the servo motors used to control the arm.
For the innermost and outermost servo motors, this was done
by defining the angle of the servo motor to be equal to the
angle of the joint it was controlling, as the servos had direct
control of the joint

For the servo controlling the middle joint however, the
problem was not as trivial, as the angle of the middle joint is

determined by two servos, the servo used to control the joint
angle and the servo used to control the innermost joint. Figure
3 shows the model of the middle joint and the components that
were used in determining the servo angle. From themodel, and
with some slight simplifications, the relationship between the
servo angle θ2 and the joint angles θ j1, corresponding to the
innermost joint angle, and θ j2, corresponding to the outermost
joint angle, was calculated as

θ2 = cos−1((l1 − l2 − l3sin(90 − θ j2))/l4) − θ j1. (5)

Figure 3. Model used to calculate the desired angle of the servo
controlling the middle joint.

2.3 Robot arm movement
The first solution attempted was using an algorithm called
FABRIK and the second one was modeling the arm segments
as two circles and then finding the point where these intersect.
However, initially the cup used to catch the ball needs to be
aligned by position the end segment of the arm.

Aligning the cup In order to be able to catch the ball the
alignment of the cup is important. If it is not correctly aligned
with the incidence angle that the ball is approaching the robot
with, then the ball will hit the edge of the cup and thus not
land in it. A picture of this can be seen in Figure 4

This was solved in a way such that the incidence angle of
the ball was a parameter for the algorithm. The last segment
then used this angle in order to align the cupwith the trajectory.
This allowed for the algorithms explained in the following seg-
ments to only determine the position of two segments instead
of three, which reduced the amount of calculations and thus
also calculation time.

Kinematics Two operations were needed in order to perform
FABRIK. These were inverse kinematics as well as forward
kinematics. Inverse kinematics was central for calculating the
movements of the robot arm as it was the way of finding
the angles between each segment in order to reach a certain
coordinate [2]. By knowing the measurements of the robot
arm inverse kinematics would make this possible.

However, inverse kinematics is not enough. There was one
additional method that was used in order to find the proper
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Figure 4. Showing how the cup was aligned with the trajectory.

movement of the arm, forward kinematics. This is a much
simplermethod. It calculates where the end-effectors arewhile
knowing the measurements for the arm, as well as the angles
between the between them[2].

FABRIK As stated in previous sections, forward and inverse
kinematics are of great help when determining the movements
of the arm in order to reach the ball. However, simply using
one of these is not enough. The solution is using an algorithm
called FABRIK (Forward And Backwards Reaching Inverse
Kinematics). This method uses both inverse and forward kine-
matics in order to find the position of the end-effector aswell as
the angles between each segment that allows for this position.

Theway that this algorithmworks is that it does one inverse
followed by one forward calculation and then evaluates the
result. If the result is satisfactory, then the arm will move to
the calculated angles. Otherwise the calculation will be done
once more until the result is good enough. What this means
is that FABRIK is a heuristic method, meaning that gives the
guess. However good it may be, the result will hardly ever be
perfect. Although, the achieved result will improve with every
iteration, it is up to the developer to determine when it is good
enough to use.

The way that each iteration of FABRIK is executed is
by first placing the end-effector of the last segment at the
target point. After this the remainngi segments are moved to
fit this constellation of the robot arm. Following this the base
segment is once again moved to the base and the last segment
is corrected.

Circle intersection There is another method used to model
the robot arm movements that proved to be more efficient than
FABRIK. This was done by modeling the robot arm as two
circles with the origin at the two points where the arm should
end up. The first circle has its origin at the base of the robot
arm and has a radius that is the length of the first segment of
the robot. The second circle has its origin at the base of the
third, already correctly positioned segment, and the radius of
the circle is the length of the second segment of the arm. A
picture of what this looks like can be seen in figure 5

As can be seen in Figure 5 there are two points of intersec-
tion for the two circles. These are the two possible solutions
in order to position the arm and reach the ball. These are then
evaluated based on which is possible to reach considering the
limitations of the servos.

This solution also solves for when the ball is not within
reach of the robot. This is the case where there are no inter-
sections of the circles, as can be seen in figure 6.

Figure 5. Second method of finding the position of the robot arm.

Figure 6. Second method of finding the position of the robot arm
when the ball is out of reach for the robot.

GUI To be able to view the results from moving the robot a
GUI that allowed showing the change of the robot arm position
as well as where that ball was located was developed. Pictures
from the GUI can be seen in Figure 7.

Figure 7. Graphics of the robot. The red circle symbolizes the ball
and the grey box is the base on which the arm is placed. The dashed
line is the arm before movement and the green line is the arm after
movement

Figure 7 shows the robot arm before and after a solution
has been found.

3. Electro-Mechanics
3.1 Robotic arm
The robot arm used in the project was already built when
the project started. Figure 8 shows a picture of the robotic
arm used in the setup. The arm is controlled by six servos,
although only three were used in this project. Which three
were used can be seen in Figure 9. The choice to only control
three servos was made as a result of the problem being solved
in two dimensions. All of the joints that were not used would
only have allowed for control in three dimensions and were
thus not used. To be able to power and control the servomotors
anArduino and topmounted servo shieldwas used. The servos
take a pulse width modulated (PWM) signal as input, and the

Ball Catching Robot

55



duty cycle of the PWM signal determines the servo position,
or angle. The servos also require a supply voltage of 4.8-6 V
and the voltage determines the speed of the servos as well as
their strength2 3. For this reason, a voltage of 6 V was used
as supply. The two innermost servos are of model MG996R,
described as a high torque servo, and the outermost servo,
which did not do any heavy lifting is of model MG90S. The
speed of the servos at the chosen supply voltage is about 0.14
s/60°for the heavier servo and 0.08 s/60°for the lighter.

Figure 8. The robotic arm that is used to catch the ball. To the left
of the ball it is possible to see the Arduino that controls it.

Figure 9. The ways the robot arm can move. Movements not used
are crossed out. Courtesy of group A, FRTN40 2017 1.

3.2 Camera Setup
The camera used for the final setup was a Basler ACA800-
200GC. This is a high speed camera that can reach 200 Frames

2https://engineering.tamu.edu/media/4247823/
ds-servo-mg90s.pdf

3https://www.electronicoscaldas.com/datasheet/MG996R_
Tower-Pro.pdf

Per Second, which is a step up from the initially used webcam
that could reach around 30 FPS. The camera is connected to
the main computer with an ethernet cable connected through
a Gigabit switch. An ethernet-to-USBC adapter was also used
to connect it to the main computer (a laptop) as it did not have
any ethernet port. The camera and how it is mounted is shown
in figure 10.

Figure 10. The high speed camera and its mounting that was used
to capture the ball location.

4. Control
4.1 Real-time implementation
The control algorithm for the system was implemented on the
main computer in the programming language Python 3.6. The
reasoning behind the choice of this programming language
comes from its ease of use, many and well documented li-
braries, as well as its good interface with the library OpenCV
that was used for image analysis. It was implemented with re-
spect to the necessary real-time programming aspects and was
run on a single thread. There are four main parts of the con-
trol algorithm: the image analysis, the trajectory calculation,
the robot kinematics calculations, and the transmission of the
actuator signals to the robot. As these are quite separate tasks,
they could have been implemented in four different threads,
but due to the high speed requirements of the algorithm, the
python threading libraries was to slow for this. The sample
time was set to 20 Hz (sample every 50 ms) and the algorithm
took around 25-35 ms; the algorithm was sufficiently fast. But
as Python does not allow real multi-threading, the packages
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implementing these features do it virtually, adding a lot of
overhead that draws a lot of computational power. This makes
the control algorithm much slower and it will not finish within
the required 50 ms. It would of course be possible to make the
sample time slower, but 20Hz has been tested to be sufficiently
fast for the trajectory calculation and to make the robotic arm
catch the ball. Furthermore, it is logical to have a sequential
algorithm as the tasks should be executed in a specific order.

Figure 11. Control algorithm for the system. The different tasks
are done sequentially every iteration. The input to the algorithm is
an image from the camera, and the output is the servo angles for the
robot sent to the Arduino through a serial connection.

Figure 11 shows a block diagram for the control algorithm.
The control algorithm has access to the camera feed that is
provided by the high speed camera and from this the latest
frame is sampled at every iteration. The sampling time for
the control algorithm has been set to 20 Hz so the algorithm
reads an image every 50 ms. To be able to sample this camera
stream, a camera driver module provides functions to make it
easy to connect to, and get images from the camera using the
Pylon interface provided by the camera manufacturer.

The image is then processed in the Image analysis module.
This module searches for the ball characteristics in the image
as it looks for the specific ball color and moving objects. This
is described in further detail in Section 4.2. When the image
analysis has been completed the ball coordinates have been
determined and are passed to the next module, the trajectory
calculation. The trajectory calculation then uses the measured
values and the model of the ball trajectory to calculate the
optimal point, where the robotic arm will catch the ball.

When the catching point coordinates have been deter-
mined, the joint angles has to be calculated for the robotic
arm to move to the desired position. This is done by passing
the catching point coordinate to the module for the robotic
arms kinematics. The joint angle calculations are described
in Section 4.4. When the angles for the robotic arm’s servo
motors has been calculated, they are transmitted over a serial
link to the Arduino which applies the correct servo signals
to move the robotic arm to the correct position. The Arduino
runs a separate program that listens for commands sent over
the serial link, and when a command has been received it is
directly executed. The robotic arm’s servo motors are powered
through a servo shield mounted on top of the Arduino. To be

able to use this shield a driver library fromAdafruit was used4.

4.2 Color and motion based object detection
In order to detect the ball, a high speed camera has been set
up to deliver a video stream to the main computer. The main
program is running on the main computer and analyses the
video stream frame by frame to get the exact location of the
ball. Currently there are two methods being used to detect the
ball:Color detection andMotion detection. Bothmethods have
different strengths and weaknesses, and are therefore best used
in different situations. Motion detection is the most reliable of
the two methods, however in the current implementation both
of them are working together, complementing each other to
get an almost perfect ball tracking. Awhite background screen
was used to get better contrasts in the images, making them
easier to analyze.

Color detection As the ball has a singular color and the
background has another singular color a way to detect the
location of the ball is to search for the color of the ball in
every analyzed frame. This is done by setting a color gradient
range that is possible for the ball to have and then say that
every pixel in the frame that has a color within this color
range is the ball. The color space used to set the colors that
should be detected is not the traditional RGB representation
but instead the HSV (Hue, Saturation, Value) representation.
This representation is used because it is easier to change the
color to be detected, as only the Hue value has to be changed
to go from the color red to the color blue. See the HSV color
cylinder in figure 12

Figure 12. The HSV color cylinder. An alternative way to describe
the color spectrum.

When this method is used it is important that only the ball
has a color within the desired color range, such that no double
readings will occur, otherwise it is hard to determine which
one of the objects is the ball.

A problem when using color to detect the ball is to have a
light source that gives the exact same light every experiment,
as the perceived color of the ball can change with the light
source. To counter this problem an extra light source with a
constant bright light, has been acquired and is aimed toward
the area of interest where the ball could be detected. Since the
light from the light source is bright, there are some problems
with glares on the ball. The glares can make the color of the
ball go outside the color range and the tracking will be lost.

4https://www.adafruit.com/product/1411
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This is fortunately not a big problem and can be avoided if
the light sources are set up right. The largest problem with
the color detection method is though to track the ball when
it is moving fast. The camera has an electronic shutter that is
slow. Therefore when the exposure time is long, fast-moving
objects are displayed as a blur. The blur makes the color of the
ball merge into the background, thus making it much harder
to detect the ball.

Using color detection for locating the ball works fairly
well but it can be unreliable if the light sources are not strong
enough, or if the object that should be tracked is moving fast.
Figure 13 and 14 shows an example of how the color detection
methodworks. In this example themethod is configured to find
the blue ball, and as can be seen in Figure 13 a yellow circle
has been added on top of it to mark a successful localization.

Figure 13. The frame to be analyzed for the color detectionmethod.
A circle has been added on top of the ball to see that the method has
located it.

Figure 14. The mask matrix of the color detection matrix with the
input frame from figure 13. As seen from this mask the ball has been
located.

Motion detection As the ball will always move along the
captured frame a motion detection method has been imple-
mented to get the location of the ball. To detect the movement
of the ball, two consecutive frames are analyzed to see what
has changed between them. Since the only thing that should

have changed between the two frames is the ball, it can eas-
ily be located. This is done by doing an absolute differential
between the two images. In pixels where nothing has changed
between the two frames the result will be zero and where the
ball has moved it will be a non-zero value. By then passing this
result though a threshold function a mask can be constructed
to get a matrix where the pixels have a maximum value (255)
where the something has moved and a minimum value (0)
where nothing has moved. By then analyzing the mask it is
possible to detect contours and groups of pixels with high val-
ues to get where something has moved to get the location of
the moving ball.

An example of the motion detection is presented in Figure
15 and 16. In figure 15 a green square has been drawn on top
of the moving ball to show that the motion detection method
was able to locate the ball. Figure 16 shows which pixels has
changed between two consecutive frames. The white color
means that change has happened and black means that no
change has happened. Since it is known that these changes are
due to the moving ball it is possible to infer the ball location.
However, there are twowhite contours in themask, and there is
only one moving ball. This is because one of these is the ball’s
location in the previous frame. But as the ball was located in
the previous time-step it is possible to discard one of the read
locations if it matches the previous ball location. Then only
one of the readings is of interest which corresponds to the new
location of the ball.

Figure 15. The frame to be analyzed for the motion detection
method. This is the latest frame in a sequence of frames that is
to be analyzed. A square has been added on top of the ball to see that
the method has located it.

4.3 Kalman Filter
The Kalman filter used in this project is slightly different from
the basic Kalman filter. The Kalman filter used in this project
change over time compared to the simpler version which is
stationary. The Kalman filter uses three matrices (R, P, Q)
that can be modified to get the desired performance. If the
measurements are known to be precise the diagonal elements
of the R matrix should be low. If the system model is good
with low amounts of disturbance the diagonal elements of the
Q matrix should be chosen small. The P matrix should be
initialized with low values on the diagonal elements if the
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Figure 16. The mask matrix of the motion detection matrix with
the input frame from figure 15. As seen from this mask, the method
has two alternatives of the ball location to choose from. But as the
computer knows the previous location of the ball, this location is
discarded and one unique ball location is left.

initial states are precise. Each time-step these equations are
executed:

Pk = ΦPk−1Φ
T +Q (6)

Sk = CPkCT + R (7)
Kk = PkCT S−1

k (8)
x̂k+1 = Φx̂k + Γ + Kk(yk − Cx̂k) (9)

Pk = (I − KkC)Pk (10)

Equation (9) is the standard Kalman filter Equation for dis-
crete time and Equations (6), (7), (8) and (10) is for updating
the K matrix. During each iteration matrices K and P will be
updated. The diagonal elements in the P matrix gets smaller
due to number of measurement acquired. One important vari-
able choice is the initial values of the states. Since the ini-
tial velocity and position differ a lot between throws it is set
by the two first measurements where speed is calculated by
ÛXinit = (X2 − X1)/h and ÛYinit = (Y2 − Y1)/h where h is the
sample time and Xinit = X2 and Yinit = Y2.

4.4 Robot Arm Control
Feed forward control was implemented to control the robot
arm. It was implemented as a mapping, from the point where
the ball is caught, to the output signal to the servos. This
mapping was divided into two parts, calculating the angles of
the robot joints, such that the robot will catch the ball, and
mapping these angles to the corresponding signal to send to
the servos.

Servo Control The servos were controlled using an Adafruit
servo shield for Arduino. In addition to this a servo control
library from Adafruit was used to write to the servos. As input
the servo library takes a frequency at which it sends pulses to
the servos (60 Hz was used in the project) where the length
of the pulse control the servos. The pulse length, i.e the input
signal to the servos, was calculated from the desired servo
position via linear regression. The linear regression takes the
maximum and minimum value of the servo angle as well as

the corresponding pulse lengths and outputs a pulse length for
a desired servo angle.

Angle Calculations As mentioned in the Section 2.2 there
are two methods of calculating the correct angles. For this
project.we ch The to modelisoos is a ftwo hercle arims as a
tsct and easy solution which generated two correct placements
of the arm that achieve the same end result. As can be seen
in Figure 5. In order to decide which of these intersection
points to use, an evaluation is done where the angles for both
solutions are compared to the servo limitations. If the initial
solution is feasible, it will be used by the algorithm. If not, a
flip is done where the second solution is tested. If the second
intersection point is not reachable by the servos, there simply
does not exist a solution where the robot can catch the ball.
Finding the intersection points is done with Equations (11-15)
where Figure 17 shows the scenario.

d = a + b (11)

h =
√

r2
0 − a2 (12)

a =
(r2

0 − r2
1 + d2)

2 · d (13)

P2(x,y) = P0(x,y) + a (14)
P3(x,y) = P2(x,y) + h (15)

Figure 17. Intersection of the two circles.

This flip is done by calculating a line between the origins of
the circles and mirroring the point of intersection to the other
side of the line. The reason for doing it this way instead of just
evaluating the second solution of the intersection problem is
that it can be used for the FABRIK algorithm, it is also fast
with regards to calculations.

The equation for doing this flip can be seen in equation
(17), where a is the end point of the segment closest to the
base, v is the line from the origin of the first circle to the end
point of the second segment and y is the normalized vector
along v.

y(x,y) =
a(x,y) · v(x,y)
| v(x,y) |

· v(x,y) (16)

(x, y) f lipped = 2y(x,y) − (a(x,y) + (x, y)base) (17)

Lastly, there needs to be a conversion from coordinates to
angles as all calculations are done by considering the coordi-
nates of each vector instead of angles. This was done by using
Equation (18).
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angle = arctan(x1 · x2, x1 × x2) (18)

Where x1 and x2 are the two vectors between which the
calculated angle is located.

5. Results
5.1 Image Analysis
The resulting method to locate the ball works very well. It
detects the ball by both searching for the color of the ball and
the movement of it. Most of the information comes from the
motion detection as the color detection method looses track
of the ball at higher speeds. In Figure 18 the current and the
last three measurements of the ball location is plotted in the
sample image. Hence, it is clear that the image analysis gives
very accurate measurements of the ball location.

Figure 18. A sample image with the last four measured ball loca-
tions plotted with red dots.

5.2 Trajectory Planning
When the Kalman filter was used to predict the states, some
problems occurred when calculating the trajectory. From time
to time the estimates were very poor and resulted in an inac-
curate catching point.

The method with polynomial regression worked very well
and resulted in a good trajectory (which can be seen at Figure
19). The results can also be seen in the videos located in the
documentation in the Git repository5.

5.3 Robot Arm accuracy
The accuracy of the arm movement is determined by using a
tape measure to find the position of the cup as well as drawing
a line in the stream from the camera to be at the x value that
the end effector should be at.

These measurements resulted in an maximal error of ap-
proximately 1 centimeter, which is good enough. It has never
been an issue when testing as the cup is wider than the maxi-
mal error as well as the error being smaller than 1 centimeter
for most cases.

5https://gitlab.control.lth.se/regler/FRTN40/2018/GroupF

Figure 19. A sample image with the polynomial trajectory plotted.

5.4 Overall Results
In conclusion, the robot arm works very well and is able to
catch balls within a large spectra. There is no problem with
either speed or accuracy and the goal of the project has been
fulfilled. However, there are always aspects that could be im-
proved upon. Those are described in Section 6.3. Videos of
the functioning system catching balls can be found in docu-
mentation of the Git repository for the project5.

6. Discussion
6.1 Choice of camera
At the beginning of the project an ordinary webcam was used
to track the ball. The resolution of this camera was good and
it was easy to use in the system but it only delivered a video
stream with 30 Frames per second. This did not seem to be
a problem at first but when the Kalman filter and trajectory
calculation was implemented a problem with frame skips was
significant. As the sample time of the control system is 20 Hz
and the video stream delivers a new frame with a frequency
of 30 Hz, one frame can be skipped and the measured relative
distance between two samples will be wrong. To minimize
this frame skip effect the high speed camera with 200 FPS
was used.

Figure 20 and 21 visualizes how a faster camera decreases
the problem of frame skips and make the measurements more
exact. In the figures the time is on the x-axis. The black vertical
lines represents the time the program samples the video stream
(20 Hz), and the red arrow shows when the camera is taking an
image. In a sample the last image of the video stream is used.
The black line show how the ideal sample time-line should
look like, with equal time between the samples. The red line
shows the resulting sample time-line. In Figure 20 with the 30
FPS camera it is clearly visible that the image frame used at
the sample time is not actually the frame at that specific time,
but rather the image from the last time the camera captured
a frame. This will give an inaccurate location of the ball at
the specific time as the image used might show the current
location of the ball. It is also possible to see that if there are
twomeasurements within the time of two samples one of them
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is skipped which will make the ball look like it has traveled
longer between these two samples.

Figure 20. Figure of the the time-line of the camera feed samples
(30 FPS) and the control system samples (30 Hz). The time is along
the x-axis. The vertical black lines are the time of the control system
samples and the red arrows shows when the camera takes a new
image. The black line underneath shows what the ideal sample time-
line should look like, and the red shows the resulting sample time-line
as an image used to locate the ball might not be of the exact time of
the sample.

Figure 21. Figure of the the time-line of the camera feed samples
(200 FPS) and the control system samples (30 Hz). The time is along
the x-axis. The vertical black lines are the time of the control system
samples and the red arrows shows when the camera takes a new
image. The black line underneath shows what the ideal sample time-
line should look like, and the red shows the resulting sample time-line
as an image used to locate the ball might not be of the exact time of
the sample.

Figure 21 shows how a high speed camera can minimize
this problem. When there are many more frames delivered
from the camera, the last image will still be used. As the time
is nowmuch smaller between the frames the effect of the frame
skips will also be much smaller. As seen in the same figure,
the black line is how the samples should look ideally, and the
red line is the resulting sample time-line. As seen here, the red
time-line is very close to the ideal, and the frames used at the
sample time for image analysis is therefore very accurate and
gives the location of the ball at the exact time. The effect of
the delay is though not eliminated completely. The location of
the second to last dot on the red time-line is not aligne with
location of the black dot, but it is significantly closer than in
figure 20.

6.2 Kalman vs polynomial regression
One large problem encountered during the project was the
camera and the measurements which was explained in Section
6.1. Even though a high speed camerawas used to decrease this
problem, there were still some visible effects of this problem
which caused a lot of troubles for the Kalman filter when
estimating the states.

Since the measurements were performed indoors and the
ball selection was made such that air drag would not affect the
ball that much, the speed in the horizontal direction should al-

most be constant when airborne. This would mean that the dis-
tance between each sample in the horizontal direction would
be the same. This caused troubles for the Kalman filter when
estimating the velocity. This could be accounted for in the
R-matrix but since the measurements were very precise this
did not help that much. Due to this problem the results for the
Kalman filter varied each run.

Since the measurements of the position were so precise, a
new idea for the trajectory prediction was implemented. This
idea was to use polynomial regression to fit a second degree
polynomial with the measurement points. This gave a very
precise trajectory of the ball from just 4-5 measurements.

6.3 Future work
Although the group is very satisfied with the result and the
end result fulfills what the project specifications said it should
there are certainly improvements and more work that could be
done.

The main improvement that would have been interesting
to implement is if the robot was able to catch balls in a 3D
spectrum instead of only 2D. This would however require one
more camera in the image analysis. Parts of the trajectory
calculation would need to be modified for more than x and
y coordinates. One large change is also when calculation the
angle of the robot arm. Instead of using two circles as the solu-
tion, there would need to be two spheres with the intersection
in the shape of a circle.

Another improvement that could be made is the introduc-
tion of feedback control to the system.With a colourful marker
at the side of the robot arm cup, the position of the cup could
be measured and controlled for. The feedback would allow
for correction of any inaccuracies in the mapping from the
catching point to the output to the servos. It would also intro-
duce new challenges. More image analysis would have to be
implemented. Where to place the control is also an issue to
debate. Should the reference point be changed to accommo-
date for the error, or perhaps directly on the control signal.
These problems would all require a lot of time, and therefore
feedback control was put on hold as something to maybe work
on if there was time and need.

There is also the issue of speed. As seen in the results the
robot arm is not in a position to catch the ball well ahead of
time, but often barely makes it to the right position. Feedback
control when the ball is not yet in position would not be
beneficial as the supply voltage, and thus the speed of the
servos, cannot be controlled. This leaves a small window of
time where feedback control would be beneficial and the robot
might not have time to adjust for this control. Another reason
for feedback not being implemented is the results of the robot
arm accuracy. Because the error of the cup position is small
enough to be a non-factor when catching the ball, feedback
control has been deemed not worth implementing.

6.4 Concluding thoughts
Although a few things that could be improved upon, the final
result of the project was satisfactory. The goal set at the begin-
ning of the project was reached and the group is very satisfied
with the result. For many of the challenges several solutions
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were tested and as a result valuable lessons were learned and
the goals of the project were achieved.
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Abstract: The project task was to run a continuous stirred tank reactor (CSTR) in continuous
mode. This means that a liquid should be flowing through the tank without interruption. The
main goal was to investigate and (if possible) realize a control structure for running an exothermic
reaction process. For this to be possible the liquid has to have the correct temperature and
concentration when flowing out from the tank. The main focus in this project was the design,
implementation and realization of a controller and software and not the mechanical design of the
process. The majority of the controller design were made on a simulated model in Simulink in
Matlab and the fine tuning was made by experimenting on the real process. The final result was a
process controlled by two PI controllers, one for the level and one for the temperature.

1. Introduction
A continuous stirred tank reactor (CSTR) is a batch reactor
with a mixing device, such as an impeller, to achieve a ho-
mogeneous mix of reactants, see figure 1. In this project the
lab process on which the experiments were carried out, was
borrowed from the Department of Automatic Control, see fig-
ure 2. The equipment is used for laboratory sessions where
non continuous batch processes are used, which means that
there is no flow through the tank while mixing. The goal with
this project and report was to investigate if it is possible to
run the tank in continuous mode, i.e. having a constant flow
through the tank while mixing. To achieve this it is necessary
to control the level of fluid in the tank and the temperature
of the fluid flowing out. This is because, when mixing two or
more reactants in a batch reactor, an endothermic or exother-
mic process usually occurs. To simulate this, a heating element
(immersion heater) and a cooling element (Peltier element) is
attached to the process. In this project, an exothermic process
was chosen to be modeled on the basis that it is more com-
mon in a chemical reaction. An exothermic process means that
when two different liquids are mixed, heat will be released. If
the mixture is not cooled, the temperature of the mixture will
keep rising and the process will therefore become unstable.
To keep the process stable, the Peltier element is used to cool
the exothermic reaction while running the process. The pro-
cess has one flow into the system that is possible to control
with a DC-pump. The outflow can be controlled with either a
DC-pump or by a mechanical valve. A temperature sensor is
mounted at the bottom of the tank to be able to measure the
temperature of the liquid. A DC-motor is attached to a mixer
to be able to mix the content of the tank. All I/O is accessi-
ble through serial communication to a Linux-computer with
Simulink.

Figure 1: Example of a typical continuous stirred-tank reactor
(CSTR) [1].

Figure 2: The lab process used for modeling and testing in this
project.
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2. Theory
In order to model the tank, the following assumptions were
made:

1. The liquid in the tank is perfectly mixed. The tempera-
ture of the outflow equals the temperature of the liquid
in the tank.

2. The inflow is the same as the outflow i.e. the volume in
the tank is kept constant.

3. The density of the incoming liquid is equal to the density
of the simulated mixed fluid in the tank. Because water
is the liquid used on the real process, the density is
chosen to be equal to the density of water and that it is
constant.

4. The specific heat of the incoming liquid and the liquid
in the tank are equal and they are constant and equal to
the specific heat of water.

5. All other energies except for the heat of the inflow, heat
of the outflow, heat added and taken from the heater
and Peltier element are neglected in the energy balance
model.

Volume model The volume is modeled based on mass bal-
ance calculation

dm
dt
= min − mout

where min is the mass flow rate in and mout is the mass
flow rate out. Rewritten in a form in terms of volume, density
and volume flow rate

d(ρV)
dt

= qin · ρin − qout · ρout .

With a cylindrical tank with constant cross-section area
the change in volume can be calculated with the change in
height

d(ρV)
dt

=
d(ρAh)

dt
⇔ A

dh
dt
= qin − qout . (1)

Temperature model The temperature is modeled in a similar
way as the volume but with energy balance instead of mass
balance

d
dt
(mcp∆T) = mincpin∆Tin − moutcpout∆Tout +Q

where ∆T is temperature difference, cp is the specific heat
capacity and Q is the heat contributed from the cooler and
heater. Rewriting the mass flows and expanding the tempera-
ture differences

d
dt
(ρAhcp(T − Tre f )) = qinρincpin (Tin − Tre f )

−qout ρoutcpout (Tout − Tre f ) +Q.

Assumption 3 and 4 leads to the following equations

A
d
dt
(h(T − Tre f )) = Ah

dT
dt
+ A(T − Tre f )dh

dt

= qin(Tin − Tre f ) − qout (Tout − Tre f ) + Q
ρcp

.

Assumption 1 and 2 results in the following equation

Ah
dT
dt
= qin(Tin − T) + Q

ρcp
. (2)

Chemical reaction Asmentioned in the last section the tem-
perature is dependent on Q which can be expanded into a
cooler and heater part

Q = Qc +Qr

where Qc is the heat which the cooler transferring out of
the system and Qr is the heat contribution from the chemical
reaction. The chemical process is modeled as an Arrhenius
equation which is a common way to describe temperature
dependence of reaction rates [2]. The Arrhenius equation is
given as follows

Qr = (−∆HR)V kcA

where k is the reaction rate constant, −∆HR is the change
in enthalpy and cA is the molar concentration. k is described
by the following equation

k = k0e−
E
RT

where k0 is a frequency factor, E is the activation energy
and R is the universal gas constant. The molar concentration
also changes over time. Under the assumption that qin = qout ,
which we do in assumption 2, the change in molar concentra-
tion can be modeled as following

dcA
dt
=

qin
Ah
(cAin − cA) − kcA. (3)

Models From equation 1, 2 and 3 the model for the CSTR-
system can be described by the following differential equations

Ûh = 1
A
(qin − qout ) (4)

ÛT = qin
Ah
(Tin − T) − Qc

ρcpAh
+
(−∆HR)k0cA

ρcp
e−

E
RT (5)

ÛcA = qin
Ah
(cAin − cA) − k0cAe−

E
RT . (6)

The control signals are the inflow rate from the pump, qin,
and the heat generated from the cooler, Qc . Limitations on
the cooler leads to that Qc is limited between 0-10 Watts and
is desired to be close to 5. The measurement signals are the
temperature in the tank, T , the height of the liquid in the tank,
h, and the molar concentration cA.
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Stationary points The stationary points have to fulfill that
equation 4, 5 and 6 all equal 0

0 =
1
A
(qin0 − qout ) (7)

0 =
qin0

Ah0
(Tin − T0) −

Qc0

ρcpAh0
+
(−∆HR)k0cA0

ρcp
e−

E0
RT0 (8)

0 =
qin0

Ah0
(cAin − cA0 ) − k0cA0 e−

E0
RT0 (9)

where h0, T0, qin0 , Qc0 , cA0 and E0 are the desired sta-
tionary process states. With these state conditions the other
variables can be calculated

mt = −(
qin0

Ah0
(Tin − T0) −

Qc0

ρcpAh0
)

mc =
qin0

Ah0
(cAin − cA0 )

c =
(−∆HR)k0cA0

ρcp

t =
E0
R
.

By introducing these new variables equation 8 and 9 can
be rewritten

{
mt = ce−

t
T0

mc =
ρcp
(−∆HR )ce−

t
T0

⇔
{

ln(c) = 1
T0

t + ln(mt )
ln( ρcp
(−∆HR )c) =

1
T0

t + ln(mc).

The remaining constants can be calculated as

k0 =
e

1
T0

t+ln(mc )

cA0

(−∆HR) =
ρcp

k0cA0

e
1
T0

t+ln(mt ).
(10)

Linearization Linearization of equation 5 and 6 around the
stationary points h0, T0, qin0 , Qc0 , cA0 and E0 results in the
following Jacobian matrices

A =


−

qin0
Ah0

+
(−∆HR )k0cA0

ρcp
· E0
RT 2

0
e
− E0
RT0 (−∆HR )k0

ρcp
e
− E0
RT0

−k0cA0 ·
E0
RT 2

0
e
− E0
RT0 −

qin0
Ah0

− k0e
− E0
RT0


B =

[− 1
ρcp Ah0

0

]
.

(11)

With A and B a state space model for the linearized system
can be found on the form

Ûz = Az + Bu, z =
[

T − T0
cA − cA0

]
, u = Qc

y = Cz, C =
[
1 0

]
.

(12)

Stability Plotting the real part of the eigenvalues of the A
matrix, in the linearized process model in equation 11, over t
yields the relationship shown in figure 3. A positive real part
of an eigenvalue corresponds to an unstable system which in
this case causes thermal runaway. We observe that the system
is stable for t < 50.

Figure 3: Real part of the eigenvalues of the process over t.

Below in table 1 all variables have been gathered. The
values of the variables with predefined values have been added
and the variables without values are to be determined.

Table 1: Variable table

Description (symbol) Value Units

Mass flow rate (m) g
s

Volume flow rate (q) mm3

s
Density (ρ) 0.001 g

mm3

Volume (V) m3

Cross-section area of the tank (A) 2827.4 mm2

Liquid height in the tank (h) mm
Temperature (T) °C
Specific heat capacity (cp) 4.186 J

g·°C
Heat (Q) J
Change in enthalpy (HR) J

mol
Substance concentration (cA) mol

mm3

Frequency factor (k0) 1
s

Activation Energy (E) J
mol

Universal gas constant (R) 8.314 J
mol·°C

3. Control Design
Different controllers were designed and compared to yield a
result as good as possible. In the first iteration of the simulated
model, the level was regulated with a PI controller and the
temperature with different types of linear-quadratic regulators,
LQR in short. In the second iteration of the simulated model,
the level was regulatedwith a PI controller and the temperature
with a P controller.
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3.1 LQR
The temperature state can be measured and therefore a state-
feedback controller was a natural choice to examine. The dif-
ferent types of LQRs calculated was LQR and LQI for the
complete linearized model and LQR for a model reduced with
balancedmodel reduction. To calculate the state-feedback gain
for the LQR a state space model on the form as in equa-
tion 11 and 12 had to be calculated. The LQR for the com-
plete linearized model resulted in control signals way over the
limits and was excluded. The LQI and LQR for the reduced
model resulted in state-feedback Li = [0.1766,−0.0277] and
L = 0.1852 respectively. The results of responses with de-
creasing steps from the simulated LQR and LQI models can
be seen in figure 4 and figure 5.

Figure 4: Impulse response LQR.

Figure 5: Impulse response LQI.

The control signal, Qc , was kept within the desired region,
close to 5, but the control signal of the LQI had an oscillatory
behaviour which exceeded even the limitations of Qc .

3.2 PID
Level For level control, a PI controller with gain 0,3 and T i

= 0,001 gave the best results, see figure 11

Temperature To control the temperature, a simple P con-
troller with gain 0,3 gave much better results than the LQR
and LQI controllers, see impulse response in figure 6.

Figure 6: Impulse response P controller.

Stability Plotting the real part of the eigenvalues of the
closed loop process over t yields the relationship shown in
figure 7. It can be seen that the closed-loop system is stable
for t < 166. This enables the process to run continuously with
a t that is roughly tree times larger than the open-loop system.

Figure 7: Real part of eigenvalues for the closed-loop system
over t.

4. Implementation
In order to design controllers for the process, all of its com-
ponents had to be identified and modelled. The process had
several restrictions and non-linearities such as cooling power
and voltage thresholds for the pumps. These variables were
identified through different tests on the process. To find differ-
ent equilibrium temperatures, the cooling element was kept at
half of its effect, as the cooling was the controlling parame-
ter, while the heating element was iterated through different
values.

Further, a complete model of the system was set up in
Simulink inMatlab. This enabled a faster design of the systems
controllers.
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Fitting terms in the chemical reaction was chosen from
figure 8 and figure 9. In the real model, the exothermic chem-
ical reaction was simulated with a 150 W heating element
whilst the cooling in the system was carried out by a 40 W
Peltier element. Due to the low power of the Peltier element,
the cooling power was the process’ restricting factor. To min-
imize the impact of the restriction, a flow through the system
and a mixing volume as low as possible was coveted. To get
the flow through the system in the desired span, a head of a
syringe, which restricts water flow, was connected to the inlet
and outlet tubes, see figure 10. To solve the problem with the
inlet pump yielding no flow until a certain voltage was sup-
plied, an offset voltage had to be added to the control signal.
This effectively means that the pump always operates in its
linear region.

Figure 8: Different chemical processes at constant height.

Figure 9: Different molar concentration processes at constant
height.

Figure 10: Head of a syringe connected to the outlet tube.

5. Result
The system’s threshold values were identified through simple
experiments on the real process, see table 2.

Table 2: Threshold values

Process Value

Pump_in_start 2.65 V
Pump_in_stop 2.40 V
Pump_out_start 1.8 V
Pump_out_stop 1.3 V
Mixer 3 V
Level 60 mm

The pumps have a threshold value where they will start
if they are turned off and another threshold value where they
will stop if they are already turned on.

Stationary points The stationary points had to be chosen
such that they fitted the limitations on the real process and that
the system calculated from equation 11 and 12 was still stable.
With the stationary points in table 3 the stationary temperature
T0 could be chosen freely in the range where the real process
could operate and where the closed-loop system was stable.

Table 3: Stationary values

Desired stationary points that can be matched on the real
process that has resulted in stable closed-loop systems.

Description Desired stationary point

Inlet flow rate (qin0 ) 240
Liquid height in the tank (h0) 70
Cooler effect (Qc) 5
Inflow concentration (cAin ) 20
Mixed concentration (cA0 ) 10
Change in enthalpy (HR) 0.0042
Frequency factor (k0) 0.0162
Activation Energy (E0) 581.98

Level control Unlike the simulated model, the level of the
real process’ tank is regulated with a PI controller with a set
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offset. The offset was chosen to be +2.4 V as this was just
under the voltage required to turn on the pump in its linear
region. Due to the throttled inlet, a buffer of inlet fluid arose
at a certain pump voltage. When using a PI controller with
an aggressive integral part, this buffer caused a oscillating
behaviour. On the other hand, the buffer had a positive impact
when using a PI controller with a less aggressive integral part,
as it eliminated the occurrence of overshoot. This yielded a
good result on the level control. The PI controller generating
the best result had a gain of 0.3 and a T i of 0.001.

Figure 11: Level control on the real processwith a PI controller
with reference value 70. X-axis and y-axis shows time [s] and
temperature [°C], respectively.

Temperature control For temperature control of an exother-
mic process, the simulated model showed acceptable results
with LQR of the reduced system. All simulations and calcula-
tions were based on the stationary points in table 3. Although
the simulated model yielded the best results with a simple P
controller and the simulated LQR was very slow, it was de-
cided to apply and compare both the LQR controller and the P
controller on the real process. In simulation, all the controllers
were performing well at stationary values but when applying
the LQR controller on the real process the controller had, as in
simulation, a very slow step response as can be seen in figure
12. The control signal is shown in figure 13 was too low but
did not have aggressive oscillations.

Figure 12: Temperature responsewith an decreasing step using
LQR. X-axis and y-axis shows time [s] and temperature [°C],
respectively.

Figure 13: Control signal during step response using LQR.
X-axis and y-axis shows time [s] and cooler power [W], re-
spectively.

Instead the P regulator was applied with improved results;
it was more stable and much faster. Further tuning on the real
process resulted in a PI controller. The controller were then
tested with different values of E0, see figure 14, 15, 16 and 17.

Figure 14: Temperature with PI controller and E0 = 581.98.
X-axis and y-axis shows time [s] and temperature [°C], re-
spectively

Figure 15: Control signal, Qc , when E0 = 581.98. X-axis and
y-axis shows time [s] and temperature [°C], respectively
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Figure 16: Temperature with PI controller and E0 = 8314.
X-axis and y-axis shows time [s] and temperature [°C], re-
spectively

Figure 17: Control signal, Qc , when E0 = 8314. X-axis and y-
axis shows time [s] and cooler control signal [Qc], respectively

As can be seen in figure 18, 19, 20 and 21, the step re-
sponses for both positive and negative steps in temperature are
stable. Even though oscillations arise from a decreasing step
in temperature, they are kept within the limits. The control
signal is quite aggressive but its average value is within the
desired region.

Figure 18: Response with an increasing step using PI con-
troller. X-axis and y-axis shows time [s] and temperature [°C],
respectively

Figure 19: Control signal, Qc , from an increasing step re-
sponse using PI controller. X-axis and y-axis shows time [s]
and cooler control signal [Qc], respectively

Figure 20: Responsewith a decreasing step using PI controller.
Response with an increasing step using PI controller. X-axis
and y-axis shows time [s] and temperature [°C], respectively

Figure 21: Control signal ,Qc , from a decreasing step response
using PI controller. X-axis and y-axis shows time [s] and cooler
control signal [Qc], respectively

6. Discussion
The restricting factor of the system iswithout doubts the Peltier
element. Even though the Peltier element has a power of 40
W its efficiency is only around 47 %, resulting in an effective
power of 18.75 W . With a more efficient cooling element, the
process could have been run with a bigger flow and at a higher
stationary temperature. With the current cooling element, the
flow of water into the system stands for 80 % of the cooling
at 40 C°. At higher temperatures, the room temperature also
comes into calculation. These contributing factors are why
the process was chosen to run at 27 C°. When the process
started at a stationary temperature, increasing E0 did not re-
sult in a temperature increase. When having a high E0 and
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applying a step in temperature, the temperature increase ex-
ploded. It can be concluded that the PI controller can control
highly unstable processes when starting at stationary , which
was unexpected. This might be because of the cooling from
the process’ surroundings can increase its tolerance of more
aggressive chemical reactions. However, as expected, a small
increase in temperature resulted in an uncontrollable state.

As the real process is very slow, every iteration of tests
on the system took very long time. Most of the controller
tuning were therefore done in Simulink, which had both pros
and cons. The pros are the time effectiveness and the ease of
plotting results. The cons are that the simulated model doesn’t
take all the surrounding factors of the real process into count
i.g. room temperature and changing temperature of flow into
the system. Since there was no validation of the simulated
model done to the real process its actual accuracy was un-
known. This was noticeable when designing the controllers; a
controller that appeared to work with good results in the sim-
ulation often did not work as well on the real process. Apart
from the disturbances of room temperature and the changing
temperature of the flow, the measurement signal for height and
temperature also had a quite low resolution which naturally
had an impact on how well the controller could perform. The
apparent quantization visible in the control signal Qc stems
from the controller amplifying the quantized measurement
signal as well as a heavily compressed x-axis. To achieve a
more accurate model for future work, several things have to
be implemented, such as disturbances and a more thorough
validation of process parameters.
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Abstract: The main objective of the Ball and Plate project was to balance a ball on a resistive
touch plate. An Arduino-based solution was used to enable easy controlling and reading of
the hardware. Two Arduino-compatible servo-motors were provided, among other things, and
a set up was designed and constructed. To enable the plate to tilt without swivelling; a rather
expensive universal joint was provided and a MDF-model (Medium Density Fibreboard-model)
was designed and laser cut to fixate the moving parts. The software design consisted of servo
control, Kalman filtering, and PD-regulation with support from theoretical calculations. This way,
the main objective was fulfilled, which was to get the ball to balance in the middle of the plate.

1. Introduction
The main objective of the Ball and Plate project was to bal-
ance a ball on a resistive touch plate, as can be seen in Figure
1. This has been done by obtaining the position of the ball
from the touch plate. Arduino calculates the needed angles
for the servo motors to maintain the set-point of the ball by
calculating the position of the ball in terms of coordinates.

The touch plate was supported on an universal joint and
a MDF-model was designed in CAD and laser cut. The soft-
ware design consisted of servo control, Kalman filtering, and
PD-regulation designed by theoretical calculations. The PD
that was designed to control the servo motors was calculated
mathematically, however, the values had to be modified for
suitable performance.

Figure 1. Real system setup.

2. Modeling
The control system for the ball and plate process in 1D is
illustrated by Figure 2.

The control system shown in Figure 2 is represented as a
block diagram in Figure 3.

Figure 2. Control system for controlling the position y of the ball
with the servo angle θs .

Figure 3. Assumed model for the control system, where r is the
reference, e the error, C the controller, u the control signal (servo
angle), d is a disturbance, G is the process (from servo angle to ball
position), n is noise, and y is the output (ball position).

2.1 Process
The aim was to find a model for the process G in Figure 3.
The process identification presented here was inspired by [3].

First, it was needed to relate the plate angle θp to the
forces acting upon the ball, with this input it was possible to
position the ball. This is illustrated in Figure 4.

Assuming no friction, from Newton’s second law, (1) can
be derived
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Figure 4. Illustration of how the plate angle θp will affect the forces
on the ball. θp is the plate angle, m the mass of the ball, and g the
gravity constant.

m Üx = mg sin θp . (1)

Assuming small plate angles, (2) will hold

sin θp ≈ θp . (2)

Combining (1) and (2), one could relate the plate angle θp
to the position of the ball x according to (3)

Üx = gθp . (3)

Figure 5 illustrates how the servo angle θs affects the plate
deviation h(θs).

Figure 5. Illustration of how the servo angle θs affects the plate
deviation h(θs). The two lengths of the servo arm are denoted as ds
and ls , and the servo-to-plate deviation is denoted as d0.

Figure 6 shows the result of applying trigonometry on
Figure 5.

Figure 6. Trigonometric interpretation of Figure 5.

Using the Pythagorean theorem, it was possible to identify
the length hx(θs) as seen in (4)

hx(θs) =
√

l2
s − (d0 − ds cos θs)2. (4)

The distance between the servo and the plate, hp(θs), will
therefore be as (5)

hp(θs) = hx(θs) + ds sin θs . (5)

If the plate deviation was zero at a servo angle offset u0,
then the plate deviation could be described as (6)

h(θs) = hp(θs) − hp(u0) =
√

l2
s − (d0 − ds cos θs)2+ (6)

ds sin θs − (
√

l2
s − (d0 − ds cos u0)2 + ds sin u0).

Figure 7 relates the plate deviation h(θs) to the plate angle
θp .

Figure 7. Illustration of how the plate deviation h(θs) relates to the
plate angle θp .

Looking at Figure 7, it was clear that the relation between
the plate deviation h(θs) and the plate angle θp will be as in
(7)

sin θp =
2h(θs)

lp
. (7)

If one once again assumes small plate angles according to
(2), one will instead have the relation according to (8)

θp =
2h(θs)

lp
. (8)

Finally, combining (3), (6) and (8), an equation which re-
lates the servo angle θs to the position of the ball was obtained.
This relation will be as in (9)

Üx = 2g
lp
(
√

l2
s − (d0 − ds cos θs)2 + ds sin θs (9)

−(
√

l2
s − (d0 − ds cos u0)2 + ds sin u0)).

Now, to transform this into a state space form, one could
set the following:

x1 = x, x2 = Ûx,u = θs, y = x,
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which it results in (10)

Ûx1 = x2 (10)

Ûx2 =
2g
lp
(
√

l2
s − (d0 − ds cos θs)2 + ds sin θs

−(
√

l2
s − (d0 − ds cos u0)2 + ds sin u0)).

y = x1.

Since, the state space (10) was nonlinear, it needed to be
linearized. Linearizing around x1 = 0, x2 = 0, u = u0 and
y = 0, it results in the linearized state space given by (11)

Ûx1 = x2 (11)

Ûx2 =
2g
lp
( (ds cos u0 − d0)ds sin u0√

l2
s − (d0 − ds cos u0)2

+ ds cos u0)∆u

y = x,

where ∆u = u − u0.
If the state space (11) was written in matrix form, it results

in (12)

[ Ûx1
Ûx2

]
=

A︷  ︸︸  ︷[
0 1
0 0

] [
x1
x2

]
+

B︷︸︸︷[
0

K1

]
∆u (12)

y =
[
1 0

]
︸  ︷︷  ︸

C

[
x1
x2

]
,

where K1 was according to (13)

K1 =
2g
lp
( (ds cos u0 − d0)ds sin u0√

l2
s − (d0 − ds cos u0)2

+ ds cos u0). (13)

Rearranging (12) into the transfer function G from a servo
angle to the position of an axis, it results in (14)

G(s) = K1

s2 . (14)

From (14), it is concluded that the process could be ap-
proximated by a double integrator.

2.2 Controller
The process G was going to be controlled by a PD controller
of the form given by (15)

C(s) = K + sKd . (15)

The design for the controller was inspired by [4]. The
design philosophy was as follows. First, pole placement was
used on the closed loop system to get a hint of suitable magni-
tudes for the PD parameters K and Kd . A value for K was set
within this proximity, and Kd was chosen for simulated step
responses have an overshoot of ∼14%. The pole configuration
of the resulting PD parameters was then applied to the real
process with the Kalman filter. The distance to the origin in
the s-plane for the pole configuration was then tuned, resulting
in new PD parameters with the same properties as the ones
before, but resulting in a different speed for the controller. A
suitable speed of the controller could be evaluated through the
time constant of the closed loop system and through testing.

The time constant τ for a closed loop system could be defined
as the time it takes for the system to reach 63% of a new
reference [7].

Combining (14) for the process with (15) for the controller,
the closed loop system transfer function Gcl will be as in (16)

Gcl =
K1(K + sKd)

s2 + K1(K + sKd)
, (16)

where K1 is given by (13).
If desired poles of the closed loop system were a and b,

where the real part of these were assumed to be negative, one
could then match these with the PD parameters by identifying
coefficients in the characterastic equation of the closed loop
system. The characteristic equation of the closed loop system
was given by the denominator of (16). Matching the poles
with the PD parameters results in (17).

K =
ab
K1
,Kd = −(a + b)

K1
. (17)

The design philosophy could be applied for the y-axis as
an example below, using MATLAB.

First, parameters for the y-axis were set:

ptom = 430∗2 / 0 . 2 112 ; %number o f p i x e l s
pe r me te r
g = 9 .82∗ ptom ;
ds = 0 .0285∗ ptom ; %l e n g t h o f sma l l
s e r vo arm
l s = 0 .12∗ ptom ; %l e n g t h o f l a r g e
s e r vo arm
l p = 0 .2112∗ ptom ; %l e n g t h o f p l a t e
u0 = ( p i / 1 8 0 ) ∗ 1 5 ; %se r vo ang l e o f f s e t
d0 = 0 .0373∗ ptom ; %servo − to − p l a t e o f f s e t

Note that the position output had pixels as unit length.
Therefore, all model parameters with length meter were rede-
fined in lengths of pixels instead.

Setting a = b = −10 and using (17), it results in the PD
parameters being as follows:

K = 0.0098,Kd = 0.0020

The speed of this system could be evaluated by simu-
lating a step response of the closed loop system for these
values of K and Kd . The closed-loop system was created with
K = 0.0098 and Kd = 0.0020 according to (16). This system
was then discretized using the MATLAB function c2d with
the sample time of 50 ms. c2d transformed a continuous-
time transfer function to a discrete-time one. Step responses
were then simulated using theMATLAB function step. Doing
the above, it results in the step response, according to Figure 8.

When tuning for a suitable overshoot, it may then be suit-
able to choose K = 0.01 and vary Kd around 0.0020. Further
on, the closed loop system according to equation (16) was cre-
ated with K = 0.01 and Kd = [0.0016 : 0.0022]. This system
was then discretized using the MATLAB function c2d with
the sample time of 50 ms. Step responses were then simulated
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Figure 8. Simulated step responses using discretized closed loop
transfer functions with K = 0.0098 and Kd = 0.0020. It could
roughly be seen that τ ≈ 50− 100 ms. This might be too fast because
the system was about as fast as the sampling time. It will need be
slowed down when changing the distance to the origin for the poles.

Figure 9. Simulated step responses using discretized closed loop
transfer function with K = 0.01 and Kd = [0.0016 : 0.0022] (m =
0.0016, k = 0.0001).

using the MATLAB function step. Doing the above, it results
in the step responses according to Figure 9.

Looking at Figure 9, then for Kd = 0.0019 (Kd = 3k +m)
it results in the simulated overshoot being ∼14%.

Choosing K = 0.01 and Kd = 0.0019, it results in the
poles ay and by being as in (18)

ay = −9.6862 + 2.8527i (18)
by = −9.6862 − 2.8527i

When using K = 0.01 and Kd = 0.0019 on the real system
with a Kalman filter, the controller seemed way too fast.

The poles could be slowed down by defining the poles as
(19)

ays = ay ys (19)
bys = by ys,

where ys was a design parameter.
Slower values for K and Kd could be received by inserting

poles (18) into (19) with ys = (0 : 1), and calculating new K
and Kd values using (17). Doing this with ys = 0.32 it resulted
in the new PD values Ky and Kdy which seemed much better.

Ky and Kyd can be seen in (20)

Ky = 0.0010 (20)
Kyd = 6.0800 · 10−4.

A simulation of the step response and the step disturbance
using PD parameters Ky and Kyd can be seen in Figures 10
and 11.

Figure 10. Step response using PD parameters Ky and Kyd accord-
ing to (20) for the discretized closed loop system. It could roughly
be seen that τ ≈ 150 − 200 ms, which seems like a more reasonable
time constant compared to 50 − 100 ms previously.

Figure 11. Step disturbance using PD parameters Ky and Kyd

according to (20) for the discretized closed loop system. A step
disturbance may be, for example, someone putting their hand on the
plate so that the servo motor angle initially gets reduced by 1 rad.

Bode plot for the closed loop system (GC/(1+GC)) using
the new PD parameters can be seen in Figure 12.

3. Electro-Mechanics
As previously mentioned, the hardware played a key role in
the project. This is what the control theory was based on and
what the software was controlling. Most of the hardware was
provided, including the resistive touch plate, servo motors,
rods and rubber bands. Remaining components and materials
were easily acquired. The first step of this project was to create
a model to assemble the motors and plate on. MDF (Medium
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Figure 12. Bode plot using PD parameters Ky and Kyd according
to (20) for the discretized closed loop system. It looks like a typical
double integrator where the gain starts to decrease at the two poles
for Ky and Kyd .

Figure 13. Universal joint

Density Fibreboard) was chosen for its low cost and its ability
to be laser cut. A model was created with CAD (Computer
Aided Design) and was designed with flat MDF-plates to be
assembled into a 3D structure and can be seen in Figure 1.

Resistive touch plate and fence To acquire a measurement
of the ball position on the plate a resistive touch plate was
used. The control and reading of its values is presented in
Section 4.3. The plate was mounted on a simple MDF base
and secured by four corner pieces. On top of this was a frame
of MDF mounted that functioned as a fence when testing and
tuning the balancing. This turned out to be a key element for
the efficiency of PD-tuning.

Universal joint To balance the plate, a universal joint was
used which can be seen in Figure 13. This works much like
a ball joint except that it hinders swivelling. This simplifies
the control task, since any force from the servos that was
not completely perpendicular to the universal joint will turn
the table and the axis of which the forces were acting upon
will be offset. This was probably the most expensive part of
the whole design since it was completely made of metal and
very complex. This was a part that could be worked around
with an alternative design, such as adding another servo to
over-constrain the system (this would add complexity in the
terms of inverse kinematics) or a simpler joint (probably less
reliable).

Servo Motors The servos were standard MG-995 and a
CAD-Model can be seen in Figure 14. As the specifications
below describe, they were powerful enough to exert the forces
required for efficient control. The voltage, however, required
an external power supply since the Arduino was not powerful
enough to supply two servos with current.

• Axle type: Futaba

• Size: 40.7 x 19.7 x 42.9mm

• Weight: 55 g

• Speed: 0.2s / 60° (4.8V)

• Stall: 10Kg/cm (4.8V)

• Working temperature: 0 – 55°

• Deadband: 10us

• Voltage: 4.8 – 7.2

Figure 14. Motor. Tower Pro MG995 DIGI HI-SPEED.

At the end of each servo, a rod was attached that controls one
axis of the tilt of the plate. These were supplied from the start
and the origin was not known, they were length-adjusted to fit
our model and as some play at the plate attachment.

Backlash rubber bands The rubber bands were placed on
the servo arm to reduce or even eliminate backlash, as there
was some space in the attachment between the rods and the
plate. Control was very hard with backlash since precision in
the plate angle was impossible in small movements. Using
rubber bands was a common way of eliminating backlash, and
they were adjusted to exert moderate force on the plate in order
to not burden the servos too much and still reduce the backlash
efficiency.

4. Control
The systemwas implemented using anArduino and the coding
language was the Arduino version of C++. A few external
libraries were used in the code in order to simplify handling
hardware, filtering and control. The touch plate was a bit of
a niche product and was hence handled manually using input
and output to and from the analog pins.

4.1 Libraries
Some libraries were imported from GitHub. These are:

• Arduino PID Library [2]

• Servo Library [5]

• Simple Kalman Filter [6]
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4.2 Global variables, setup and loop
In C++ you may declare global variables which were available
to all functions. This concept was used in order to clean up the
code and gather all information which was commonly changed
at the top of the source code. There were also two functions
which were native to the Arduino version of C++, setup and
loop. The setup was run once on start up and the loop was
thereafter run continuously.

Global variables The global variables contained both con-
stant and dynamic values initialized by the keyword #define.
These were optimized during compile time and was not to be
changed during run time. Other variables could be changed.
Examples of declares are the pins (constant) and the position
variables (dynamic).

Setup In the setup the servos and the PD-controllers were
started.

Loop The loop function was the most important part of the
code since this was where most of the code executes from.
It was run continuously (apart from when interrupted, which
was not used here) as long as the Arduino has power. Here
both the control calculations and the movement of the servos
were handled.

4.3 Resistive touch plate
The touch plate was one of the most important components,
both hardware- and software-wise. In order to get the position
of the ball, a function called updateCoord was implemented.
The measurement worked with inputs and outputs from and
to the analog pins using voltage division. Below follows a
brief explanation of the code and the actual code for getting
the X-coordinate. In order to find the X-position we actually
measured the resistivity on the Y-pins. Since we were sharing
the same space when measuring X- and Y-coordinates we
needed to set the Y2 (and X2) to tri-state[1].

After setting the X2 to tri-state, a voltage divider was
formed between the X1 and X2. The voltage was then read
at the Y1-pin and scaled in order to fit the wanted resolution
and place (0,0) in the centre[1]. Since there were a lot of
measuring noise and disturbances the input values need to be
filtered. The filter of choice was a Kalman-filter. The actual
value of the coordinate was fed into the filter and an estimation
was returned and stored for future usage.
vo id upda teCoord ( ) {

pinMode (Y1 , INPUT ) ;
pinMode (Y2 , INPUT ) ;
d i g i t a lW r i t e (Y2 , LOW) ;
pinMode (X1 , OUTPUT ) ;
d i g i t a lW r i t e (X1 , HIGH ) ;
pinMode (X2 , OUTPUT ) ;
d i g i t a lW r i t e (X2 , LOW) ;
a c t u a l _ x = ( ( ana logRead (Y1 ) ) / (1024

/ X r e s o l u t i o n ) − 500 ) ;
e s t _ x = ( doub l e )

x _ k F i l t e r . u p d a t eE s t ima t e
( a c t u a l _ x ) ;

. . .
}

4.4 Kalman filtering
As previously mentioned, the measurement from the resistive
touch plate was contaminated with high levels of noise. It was
therefore required to filter this noise and the tool we use for this
was a Kalman filter. This LQE (Linear Quadratic Estimator)
was a two-step process where an estimate was predicted from
measured state variables and a predetermined noise level,
which were then compared to the actual measurement. The
weighting within the algorithm was then redistributed. This
recursive algorithm was at first very unstable, but once it has
gone through enough iterations the estimated measurement
was very stable and reliable. This filtering came with a price,
however. Depending on the level of noise specified in the
setup process the estimate either could be either slowed down,
eliminating all noise, but resulting in very slow estimates
which quickly become inaccurate in our system, or sped up
which does not eliminate enough noise. The complications
became prominent when the filter was paired with the PD
controller. Our estimated values for the controller do not take
the filtering effects into account which means that the filtering
of the system needs to be manually tweaked to reach the
optimal level.

We have used a library to implement the filtering
which has worked well. An example of the code is shown
where the Kalman filter was created by initiating the
SimpleKalmanFilter with the setup (Measurement Uncer-
tainty, Estimation Uncertainty, Process Noise). The filtering
was then done by the function UpdateEstimate where the
actual measurement was in the data. The function then returns
the estimated value as a double which was fed to the PD
controller.

S imp l eKa lmanF i l t e r
y _ k F i l t e r ( 10 , 10 , 0 . 0 1 ) ;

. . .
e s t _ x = ( doub l e )

x _ k F i l t e r . u p d a t eE s t ima t e
( a c t u a l _ x ) ;

TheKalmanfilterwas tuned quite aggressively and an example
of the obtained measurement data compared to the filtered is
shown Section 5.

4.5 PD-control
When implementing the actual controller, a PD library was
used for convenience. The library takes doubles, hence float-
ing numbers were used instead of fixed-point arithmetic. The
system was capable of running using floating numbers with
an update frequency of up to 500 Hz, which was more than
enough for the application. The library made the usage of the
PD very simple and intuitive. The code below demonstrates
the usage of the library and handling the control. One could
simply create an object and use its specified functions. Worth
to mention is that references were passed into the constructor,
making it possible for the past references value to be altered
meaning the functions rarely returns a value, but alters the
value stored at the referenced address directly. In C++ this is
common practice since it is much cheaper than caching and
returning values as is commonly done in Java.
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Below follows an example of the implementation of the
X-axis. This code may be duplicated and slightly modified
in order to implement stabilization for the Y-axis as well.
The variables needed throughout the program were declared
and the K-values and loop_period were initialized since these
will never change. A PD-object was instantiated passing the
variables as references using the &-sign. Since the K-values
were not to be changed, these were passed by value.

doub l e a c t u a l _ x , s e t p o i n t _ x , e s t _ x ;
doub l e Kp_x = .00060025 , Ki_x = . 0 ,

Kd_x = . 000392 ;
PID pid_x = PID(&es t_x , &r ad i a n s_x ,
&s e t p o i n t _ x , Kp_x , Ki_x , Kd_x , DIRECT ) ;
s t a t i c un s i gned s h o r t l o o p _p e r i o d = 50 ;
un s i gned long t ime_s t amp ;
Servo se rvo_x ;

Assumptions of small angles of the servos were made when
developing the control model, hence output limits were set
quite narrowly. Another benefit of the output limits was that
the system will limit itself slightly, making the testing a bit of
an easier process. The loop period of the system was fed to
the PD and it was turned on by setting it to automatic.

The set-point was set to zero since the ball should (at least
for now) stay in the middle. The servo was initialized to pin
number ten and a time stamp was read in order to know when
the setup was finished, and the main loop could begin.

vo id s e t u p ( ) {
p id_x . S e tOu t p u tL im i t s ( −40 , 4 0 ) ;
p id_x . SetSampleTime ( l o o p_p e r i o d ) ;
p id_x . SetMode (AUTOMATIC) ;
s e t p o i n t _ x = 0 ;
s e rvo_x . a t t a c h ( 1 0 ) ;
t ime_s t amp = m i l l i s ( ) ;

}

The main loop was where the actual control happens and
thanks to the earlier implemented and imported functions
and libraries this was a very smooth process. The first thing
to do was to update the coordinates by calling the function
updateCoord. This would update the estimate used in the
PD-computations.

In order to keep the measurements as fresh as possible
when calculating the function Compute was called on the PD
object. This will take the estimate updated in updateCoord
and change the value of the variable called radians_x. The
radians were then converted to degrees and pressed together
with a manual calibration to the servo motor. The servo mo-
tor will then change its angle quickly, albeit with a slight delay.

In order to calculate the integral part correctly the loop
period needed to be constant. This was handled by a busy wait
where some work may be done in the future. After the loop
period has been reached, a new time stamp was taken and the
control loop restarts.

vo id loop ( ) {
upda teCoord ( ) ;

Figure 15. Measurements from failing X-axis

p id_x . Compute ( ) ;
s e r vo_x . w r i t e ( r a d i a n s _ x ∗

r ad_ t o_deg + 8 7 ) ;

wh i l e ( ( t ime_s t amp +
l o o p_p e r i o d ) > m i l l i s ( ) ) { }

t ime_s t amp = m i l l i s ( ) ;
}

5. Results
One of the most complicated parts of the project has been
to achieve adequate values in the PD. Mathematically, the
values that were obtained had to be slightly modified in order
to achieve the desired stability. The final values used in the
control are shown below:

Kx = 0.0035,Kxd = 0.002 (21)
Ky = 0.0010,Kyd = 0.0005.

It is worth mentioning that the control of the X-axis has
been problematic. Every now and then (very irregularly) the
servo shuts down for half a second, resulting in the ball rolling
to one side. Therefore it was not possible to obtain a correct
measurement on the X axis since the motor did not work
correctly. This made it impossible to obtain coherent results.
The raw signal did not continuously follow the filtered signal,
as can be seen in Figure 15. The large spikes in the position
measurements mean that they were not entirely filtered out by
the Kalman filter and this affects the control in a negative way.
The servo has been switched for a new one, but with the same
result. Another power supply has been added to feed both
servos with enough current but with no effect. Finally, the
servo that controlled the X-axis was changed. Three different
servos were tried and the best one was chosen.

In Figure 16 shown below, it can be seen how the Kalman
filter was tuned out to be quite aggressive, as well as an exam-
ple of the obtained measurement data compared to the filtered.
However, it can be observed how the filtered signal follows the
raw signal correctly.
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Figure 16. Position filtering and PD-control example on y-axis

6. Discussion
There are many things that could be improved if the project
was redone orwas taken by students repeating the same project
in the following years. For example a new version could be
made out of more rigid material and therefore allow a better
control. Now, with the current version, when the servos were
functioning, the base moved and that destabilized the ball
control. A possible solution would be to make a stiffer base,
either by putting weight on it or making it thicker (different
layers of wood superimposed).

The 3D model could be improved allowing a better grip of
the servos; better holes to place the Arduino and the joystick;
incorporating all necessary features for a sturdier and portable
design. Also, the ball joint, one of the most expensive parts
of the project, could be replaced by using three servos instead
of two. This way we would achieve the same goal for less
money. Logically, it would be necessary to reprogram the
data collection, its interpretation and the movement of the
servos. Finally, the length of the rod that was attached to the
servos of the new version of the model could be changed for a
shorter length allowing us to achieve greater precision. Also
decreasing the radius of the servo lever allows for a better
resolution in controlling angles. The new version would be
designed based on its control, leading to a more accurate
mathematical description of the hardware.

In addition, there are different things that could be changed
to improve the global operation of the project. For example,
implementing movement patterns, which has been done, but it
could be improved and elaborated if the control was fine-tuned
further. Also, it would be better to process the signal differ-
ently to get rid of the twitching, by using something other than
a Kalman filter. It would be ideal to remove outliers, for ex-
ample, using a median-filter. We could have used fixed-point
arithmetic instead of floating numbers. This way the control
would work much faster and more efficiently. Another thing

that could be modified in the programming was the busy wait.
In the current program, a certain time was expected in the
loop, preventing the controller from doing anything else. This
was not efficient, and another system could be used, such as
interruptions or a timer. In addition, machine learning could
also be used to calibrate the parameters that were used in the
PD. It would be interesting to elaborate different programs to
make the ball move, not just keeping it stabilized in the centre
of the plate, but to do it for example move continuously in cir-
cles or to be able to draw a pattern that the ball will later follow.

Overall, we want to say that we are satisfied with the
results. We have learnt a lot throughout the project due to all
the problems that kept arising constantly, and which we were
able to find satisfactory solutions for.
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