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Introduction

“If you, like us, have applications in mind, it will take no effort

whatsoever to convince you that not all random fields occurring in

the ‘real world‘ are Gaussian. ”
Robert Adler, Jonathan Taylor

In continuous spatial modeling, the Gaussian fields are so dominant that all pro-

cesses not being Gaussian are generally classified into the broad generic category

of non-Gaussian fields.

There are several reasons for the underrepresentation of non-Gaussian ran-

dom fields in spatial modeling. It is not trivial to define a model that corresponds

to an actual random field. For a model not producing a random field there is no

valid distribution at an arbitrary location, and thus interpretation oft the model

and prediction with the model may not be possible. Even if the model defines a

valid random field, the posterior distribution of the field when observed at some

location is in general unknown, or at least practically impossible to deal with. An-

other difficulty is that in spatial statistics everything is based, for historical reasons,

on the covariance function while, generally a processes is not specified uniquely

by its covariance function.

An alternative to defining fields through the covariance function, is formu-

lating a stochastic partial differential equation (SPDE). If a linear PDE is driven

by Gaussian white noise, then a solution is a Gaussian field with some covari-

ance function depending on the differential equation; if the field is driven by a

Lévy noise, the resulting field will be non-Gaussian yet have the same covariance

function as its Gaussian counterpart. However, there might be several differential

equations generating different processes with the same covariance function. Thus,

formulating the problem as an SPDE provides, in general, more information than

the covariance function. The SPDE formulation also facilitates refined numerical

methods for PDEs that have been developed in numerical analysis.

In this thesis we introduce two new “non-Gaussian” random field models. In

Paper C, we build upon Bolin (2013) to create two different types of fields driven
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Introduction

by Lévy noise, allowing for flexible marginal distribution and having the popular

Matérn covariance class.

In Paper E we combine two classical random field models: the Potts-field

(a discrete Markov random fields) and the classical latent Gaussian random field

model to generate a dependent mixture of, possible multivariate, random fields.

What follows in this section is a brief overview of some of the theory and

models used in this thesis and at the end there is a short introduction to each

paper.

0.1 Stochastic Process

This section gives a very brief introduction to the theory of stochastic processes,

which is the backbone of this thesis. Most of the material in this section is based

on the three books Adler & Taylor (2007), Azaı̈s & Wschebor (2009) and Lind-

gren (2012) .

A probability space (Ω,F ,P) consist of: a sample space Ω , a family of events

F in Ω , and a probability measure P on F . Let (B,B) be a measurable space,

then any measurable function

Y : Ω → B

is a random variable with probability distribution given by

P(Y (ω) ∈ A)

for A ∈ B. Let (T ,T ) be a measurable space, then any function

X (ω, t) : Ω × T → B

which is measurable for fixed t is a stochastic processes, with parameter space T .

Thus, by definition, for each fixed t0 ∈ T , X (ω, t0) is a random variable from Ω
to B; for each fixed ω0 ∈ Ω , X (ω, t) is a function from T to B, often denoted

realization, sample path, or trajectory.

From above definition it is not easy to define a stochastic process, the Kol-

mogorov extension theorem gives some assistance with this issue. Basically, the

theorem says that every consistent family of finite-dimensional distributions de-

fines a unique probability measure on (BT ,BT ) and thus a stochastic process.

2



0.2 Stationarity

One often needs to limit the study of stochastic process to certain subclass in order

to handle them both practically and theoretically. One of the most important

subclasses are the stationary processes.

Definition 1. A stochastic process X (ω, t) is strictly stationary if for any choice of

the positive integer n and {t1, . . . , tn} ∈ T n the joint distribution of {X (ω, t1 +

τ), . . . ,X (ω, tn + τ)} does not depended on τ.

There also exists a weaker (if the process has finite second moment) property

namely that of weak stationarity which only requires that the first two moments

are invariant to shift transformations. It should be noted that when dealing with

actual data, stationarity is often quite unrealistic.

0.3 Gaussian processes

Another common subclass are the Gaussian processes. A process is Gaussian if for

all finite sets of locations, the corresponding marginal distribution is multivariate

normal. Thus, the Gaussian process is completely specified by its two first mo-

ments: its mean function μ(t) and its covariance function Σ(t, s) which must be

a non-negative definite function

Definition 2. A real function Σ(s, t) for s, t ∈ T , is non-negative definite if for

all finite sets of locations {t1, . . . tm} ∈ T , the (covariance) matrix:











Σ(t1, t1) Σ(t1, t2) . . . Σ(t1, tm)

Σ(t2, t1) Σ(t2, t2) . . . Σ(t2, tm)
...

...
. . .

...

Σ(tm, t1) Σ(tm, t2) . . . Σ(tm, tm)











(1)

is non-negative definite.

An important property of the multivariate normal distribution is that its pre-

dictive distribution given that one has observed the process at some finite num-

ber locations is explicit. More precisely, if one has observed the process X (t) at

t = {t1, . . . tm}, then the distribution of the process at s = {s1, . . . sm} is normal

with mean

μ(s) +Σs,tΣ
−1
t (X (t) − μ(t)),

3



Introduction

where and covariance matrix

Σs −Σs,tΣ
−1
t Σt,s.

Here, Σs,t denotes the covariance between the vectors X (s) and X (t).

0.4 Differentiability

Even though, the finite dimensional distribution determine a stochastic process,

many sample path properties are hard to investigate by just examining the finite

dimensional distribution. An important example of this is continuity and differ-

entiability of sample paths. Fortunately there are results that makes it easier to

determine if a process has continuous sample paths:

Theorem 1. Assume that the process X (ω, t), where t ∈ [0, 1]d , satisfies

E[|X (t + h) − X (t)|p] ≤ K |h|d
| log |h||1+r

,

where p, r and K are positive constants, p < r. Then the processes has a version

with continuous sample paths.

If a processes is weakly stationary with covariance function r, then by setting

p = 2, the theorem states that if

r(h) − r(0) = O

( |h|d
| log |h||1+r

)

for r > 2, then the he processes has a version with continuous sample paths.

Note that, the theorem above only states sufficient conditions. In fact if the

processes is Gaussian, the requirement can be greatly reduced to the dimension-

free condition:

Theorem 2. If a Gaussian process X (ω, t), where t ∈ [0, 1]d , with continuous

mean function, satisfies

V[X (t + h) − X (t)2] ≤ K

| log |h||r ,

where r > 3. Then it has a version with continuous sample paths.

4



1. The Rice distribution

1 The Rice distribution

The behavior of a stochastic processes can often be different from what one would

expect. A good example of this is the behavior of the derivative for the process

at level crossings. For example, consider a stationary ergodic Gaussian processes

X (t), where the parameter space is T = R, with continuously differentiable sam-

ple paths. Since, for a fixed t0 ∈ T , X (t0) and X ′(t0) are independent, one expects

that for

P(X ′(t) ∈ B|X (t) = u) = P(X ′(t) ∈ B) =
1√
2πλ

∫

B
e−

x2

2λ dx,

where λ is the variance of X ′(t). However, some care need to be taken when

conditioning on A = {X (t) = u} since P(A) = 0 and we are thus conditioning

on something that does not occur almost surely. To overcome this problem one

can try to give meaning to conditioning on A by defining it as

P(·|A) = lim
δ→0

P(·,Aδ)

P(Aδ)
,

where Aδ has the following two properties: P(Aδ) > 0 for each δ and limδ→0 Aδ →
A. A set of events belongs to Aδ if it satisfies the two previously mentioned prop-

erties. For instance, A1
δ = {x(t) ∈ [u, u+δ]} belongs to Aδ. It can then be shown

that

P(B|A) = lim
δ→0

P({x′(t) ∈ B} ∩ A1
δ)

P(A1
δ)

=
1√
2πλ

∫

B
e−

x2

2λ dx.

So we get the answer we expected. However, A1
δ is not the only possible sequence

of events in Aδ. Another possible Aδ sequence of events is “there exists a t̂ ∈
[t, t + δ] such that x(̂t) = u” which we denote by A2

δ. Then

P(B|A) = lim
δ→0

P({x′(t) ∈ B} ∩ A2
δ)

P(A2
δ)

=

∫

B

|x|
2λ

e−
x2

2λ dx.

We now have two different answers (see Figure 1) to the same question, so which

of these two distributions, if any, is actually observed on trajectories of the process?

To answer that, one needs to study the empirical distribution, P̂, of the behavior

at u-level crossings in some interval [a, b]. Let N[a,b](u) denote the number of t’s

5
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−4 −3 −2 −1 0 1 2 3 4

Figure 1: Two possible densities for the probability density function of X ′(t) given

that X (t) = u.

such that x(t) = u for t ∈ [a, b], and let N[a,b](B, u) denote the number of t’s
such that x(t) = u, x′(t) ∈ B for t ∈ [a, b]. Then

P̂(B|A) =
P̂(B,A)

P̂(A)
=

N[a,b](B, u)

N[a,b](u)
.

The limit (|a−b| → ∞) of the above ratio defines (as a function of B) the dis-

tribution we want. By the ergodicity of the process, the limit equals
E[N[a,b](B,u)]

E[N[a,b](u)] . It

is enough to consider [a, b] = [0, 1] since the process is stationary. The following

result summarize our discussion

Theorem 3. (Rice’s formula). For any stationary process {x(t), t ∈ R} that has

continuously differentiable sample paths and density fx(0)(u), the crossing intensi-

ties are given by

μ(u) = E[N[0,1](u)] =

∫ ∞

−∞
|z|fx(0),x′(0)(u, z) dz. (2)

6



2. Lévy processes

A similar result, often referred to as a generalized Rice formula is giving a

similar expression for E[N[a,b](B, u)]. In the Gaussian case plugging in the formula

from the theorem (and some calculations) leads to

P(B|A) =
E[N[0,1](B, u)]

E[N[0,1](u))]
=

∫

B

|x|
2λ

e−
x2

2λ dx, (3)

Thus the empirical distribution will correspond to the limit of P(B|A2
δ), and not

of, as some (including the author) would expect, P(B|A1
δ).

For more details about crossings and Rice’s formula see for instance (Azaı̈s

& Wschebor, 2009), (Lindgren, 2012), or the paper Kac & Slepian (1959), on

which this section is heavily influenced by.

2 Lévy processes

A Lévy process, L, on R
+ is a process that is stochastic continuous with stationary

independent increments and L(0) = 0. In R
d a Lévy process is not as straightfor-

ward to define as on R
+. The following definition comes from Dalang & Walsh

(1992), a Lévy process (noise) L = (L(A), A ∈ B(Rd )) where B(Rd ) are the set

of all bounded Borel subset of Rd , is a family of random variables such that

1. L(A ∪ B) = L(A) + L(B), if A ∩ B = ∅;

2. L(A1), . . . L(An) are independent if A1, . . . ,An are disjoint;

3. if An ↓ ∅ then limn→∞ L(An) = 0 in probability (stochastic continuous).

For a Lévy process the log-characteristic function κA(ξ) of L(A) has the form

κA(ξ) = iγ(A)ξ− 1

2
σ2(A)ξ2 +

∫

eiξx − 1 − iξxI(|x| ≤ 1) νA(dx),

where γ is a signed measure, σ2 is a non-negative measure, and νA is a Lévy

measure, i.e., a non-negative σ− finite measure s.t for all A

νA{x : |x| ≥ 1} < ∞, νA(0) = 0, and

∫

|z|<1

z2νA(dx) < ∞.

The formula above, is known as the Lévy-Khinchin formula (see Adler et al.
(1983)). Lévy-Khinchin notes that three measures (γ,σ2, νA) uniquely defines

7
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a Lévy processes and are refered to as the Lévy triplet. The first measure, γ,
defines is the deterministic part of the process, the second measure, σ2, represent

the Gaussian component of the process, and the third measure, νA, represent the

jump components of the processes.

The Levy triplet gives some basic understanding of the behavior of a specific

Lévy process. Example of very basic Lévy process in R
2 are:

1. (|A|, 0, 0) which represent the regular Lebesgue measure,

2. (0, |A|σ2, 0) which represent a Brownian sheet,

3. (−|A|λ, 0, |A|λδ1) which represent a Poisson sheet.

2.1 NIG and GAL Lévy processes

The main Lévy processes studied in this thesis are the normal inverse Guassian

and the generalized asymmetric Laplace Lévy processes, which means that L(A) is

either NIG or GAL distributed. The NIG and GAL distributions are special cases

of the generalized Hyperbolic (GH) distribution.

2.1.1 The generalized Hyperbolic distribution

The GH distribution has five parameters σ, ν ∈ R
+, γ, μ, τ ∈ R, and a density

function

f (x) = c1

(

√

(νσ)2 + (x − γ)2

c2

)τ−1/2

e
μ

σ2 (x−γ)Kτ−1/2

(

c2

√

(νσ)2 + (x − γ)2

)

,

where c1 =
2(τ−1)/2

√
π(σ2ν)τKτ(

√
2ν)

and c2 =
1
σ

√

2 +
μ2

σ2 . The parametrization above is

not the regular parametrization for the GH distribution; however, it is an conve-

nient parametrization when formulating a GH random variable (r.v.) as a normal

mean-variance mixture r.v., i.e. if X is a r.v. with a GH distribution then

X
d
= γ+ μV + σ

√
V Z ,

where V is generalized inverse Gaussian (GIG) distributed with parameters (p, a, b)

set to (τ, 2, ν2) and Z ∼ N (0, 1). The GIG(p, a, b) distribution has the density

8



2. Lévy processes

function

fV (x) =

(

a/b
)p/2

2Kp

(√
ab
)xp−1e−

ax+b/x
2 ,

where the parameters satisfy a > 0, b ≥ 0 if p > 0, a > 0, b > 0 if p = 0,

and a ≥ 0, b > 0 if p < 0. A useful property of the GH distribution is that

given an observation of GH r.v. X the conditional distribution of its random

mixture r.v. V is again GIG distributed. This property is used in Paper C, when

estimating parameters and making predications, and in Paper E, for sampling of

at level-crossings.

The reason for using the NIG and GAL distributions is that both are closed

under convolution (if certain parameters are fixed). A class of random variables is

closed under convolution if the sum of two random variables from this class also

belongs to the class. Ideally one would like a stronger alternative which is that a

sum of linear combinations of two independent copies has the same distribution.

Unfortunately, this property is very uncommon and, in fact, the only process with

that property and finite variance is the Gaussian process.

For moments and other properties of the GH distribution see Schoutens

(2003).

2.2 The NIG processes

The NIG distribution has four parameters (γ, μ,σ, ν2), and is a GH distribution

with λ = −1/2. Its normal mean-variance mixture representation is given by

letting V be inverse Gaussian distributed. An example of three symmetric (μ = 0)

NIG distributions with varying ν2 is shown in Figure 2. The Lévy processes comes

from letting

L(A)
d
= NIG(γ|A|, μ,σ, ν2|A|).

The Lévy triplet for a NIG process is (γ|A|+ ξ, 0, νA) where

ξ =
2γα

π
|A|
∫ 1

0

sinh(
μ

σ2
x)K1(α|x|) dx,

νA(x) =
γα|A|
π|x| e

μ

σ2 xK1(α|x|),

9
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and α = σ−2
√

μ2 + 2σ−2. It may seem counter intuitive that the NIG distri-

bution is a normal mean-variance distribution since it completely lacks Gaussian

component in its Lévy triplet.

The tail of the NIG distribution is proportional to

|x|−3/2 exp
(

−α|x|+ μ
σ2

x
)

.

2.3 The GAL processes

The GAL distribution has four parameters (τ,γ, μ,σ), and is a GH distribution

with ν2 = 0. An example of three symmetric (μ = 0) GAL distributions with

varying τ is shown in Figure 2. Its normal mean-variance mixture representation

is given by letting V be Gamma distributed. The Lévy processes comes from

letting

L(A)
d
= GAL(τ|A|,γ|A|, μ,σ).

The corresponding Lévy triplet is given by (γ|A|+ ξ, 0, , νA) where

ξ =
τ|A|
MG

(M(e−G − 1) − G(e−M − 1)),

νA(x) =

{

−τ|A| exp (Gx) x−1, x < 0,

τ|A| exp (−Mx) x−1, x > 0,

where G =

(
√

1
4μ

2 +
1
2σ

2 − 1
2μ
)−1

and M =

(
√

1
4μ

2 +
1
2σ

2 +
1
2μ
)−1

. Like

the NIG process the GAL process lacks Gaussian component in the Lévy triplet.

The tail of the GAL distribution is proportional to

|x|τ−1 exp
(

−α|x|+ μ
σ2

x
)

,

where α = σ−2
√

μ2 + 2σ−2.

3 Spatial statistics

This section discuses some topics that, although relevant for any stochastic pro-

cess, are most prevalent in spatial statistics.

10



3. Spatial statistics

−6 −4 −2 0 2 4 6

ν2 =0.1

ν2 =1

ν2 =100

−4 −3 −2 −1 0 1 2 3 4

τ=0.1

τ=1

τ=100

Figure 2: Left: the NIG densities with varying ν2. Right: the GAL densities with

varying τ. In both, σ2 is chosen so that the variance for the distributions are one,

and μ = γ = 0. The NIG distribution is always differentiable, whereas the GAL

distribution is not differentiable if τ ≤ 1 and further it is unbounded if τ < 1/2.

In spatial statistics, stochastic processes are typically refereed to as fields, i.e.

a stochastic process for which the dimension of the parameter space T is greater

than 1. This section, is by no mean indented to cover with (any) generality spatial

statistics. For this we refer to Gaetan & Guyon (2009), Cressie (1993) or Gelfand

& Diggle (2010), and for a more theoretical treatment of random fields see Adler

& Taylor (2007) and Ibragimov & Rozanov (1978).

3.1 Matérn covariance

This section introduces the most popular covariance function for stationary pro-

cess in spatial statistics. That is the Matérn covariance family (Matérn, 1960),

named after the Swedish statistician Bertil Matérn. The Matérn covariance func-

tion is defined by

Σ(s, t) =
21−νσ2

(4π)d/2Γ(ν+ d/2)κ2ν
(κ||h||)νKν(κ||h||),

where d is the dimension of the field, ||h|| = ||t − s|| is the distance between

the two points, Γ is the Gamma function and Kν(.) denotes the modified Bessel

function of the second kind. The covariance function uses only the distance be-

tween the points thus the function is isotropic. Figure 3, displays a few different
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0 0.5 1

0.5

1

Figure 3: Matérn covariance functions for ν = 1 (solid line), ν = 0.5 (dotted

line) and ν = 100 ( dashed line). Note the difference of the functions when the

argument is close to zero.

covariance function from the Matérn covariance family. The reason for the popu-

larity of the Matérn covariance is its flexible parametric form, which captures the

main properties needed for interpolation of stationary spatial processes: that is, κ
controls the dependence range, σ controlling the variability of the processes, and

finally ν defining the level of differentiability of the covariance function which

correspond the smoothness of the stochastic processes.

Both in Paper C and D processes with Matérn covariances are used; it should

be noted that the parameter ν is not estimated for these models, due to some diffi-

culties with numerical approximation, and some of the flexibility of the covariance

is lost.

3.2 Measurement error

When using stochastic process in practice, it is often unreasonable to assume that

one observe the process X (t) directly; usually the observations are noisy or the

model for X (t) does not capture the behavior of the true process. To improve the

12
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0.0 0.5 1.0 1.5 2.0

σ 2
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Figure 4: The effect of adding measurement error. The underlying process, X (t),
is stationary Gaussian with zero mean, and Matérn covariance function such that

V[X (t)] = 1. The three black dots represent the observations. The lines display

the posterior mean of the process for the varying variance of the measurement

errors.

agreement of the model with reality, one assumes that the measured observations

y(t), equals the process X (t) plus some measurement error. The adding of the

measurement error avoids over-fitting of the process to the data. Also, if the

estimated variance of the measurement error is high, then this is an indication

that the process does not represent the true process (or that the measurement

really are noisy). Figure 4 describes the effect of the measurement error variance

for fitting the process to data.

Modeling with measurement error generates a hierarchical model. At the top-

level is the distribution of the data model P(y(t)|X (t),θ), that is the distribution

of the measurement given the process and some parameters. At the next level

is the process model distribution P(X (t)|θ), that specifies the distribution of the

process of interest. By defining another layer with some prior distribution P(θ)
one creates a Bayesian hierarchical model.

13
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3.3 GMRF

An important subclass of Gaussian random fields are the Gaussian Markov ran-

dom fields (GMRFs). To properly define a GMRF for a discrete vector of random

variables, one needs the notation of neighborhood and neighborhood-system: For

the random variable x = [x1, . . . , xn] with distribution f , a neighborhood of xi is

a set of indices Ni such that f (xi|x−i) = f (xi|xNi ); the neighborhood system of x

is the set N = {Ni}N
i=1.

A random variable

x ∼ N (0,Q−1),

where Q is the precision matrix (the inverse of the covariance matrix), is a GMRF

for the neighborhood-system N if

Qi,j = 0 ⇐⇒ j 6∈ Ni.

This includes any multivariate normal random variables, however the useful case

is when most of the neighborhoods are small compared to the size of x. The

advantage with formulating a GMRF compared to the regular multivariate distri-

bution is, at least, twofold: firstly, it defines the distribution of the r.v. through its

conditional distributions, which typically is much easier to understand and deal

with compared to the joint distribution, although care needs to be taken so that

the conditional distributions form a valid joint distribution. Secondly, when the

neighborhoods are small, the precision matrix is sparse, and efficient numerical

methods can be used to simulate x and compute f (x).

GMRFs have been used especially in spatial statistics on lattice domains, when

defining neighborhoods for X (t) is natural. A frequently used GMRF model is the

Gaussian conditional autoregressive model (CAR), Besag (1974) is an influential

paper that popularized the models. The model can be though of as the lattice

counterpart of the autoregressive model that is fundamental in time series analysis.

For further details on GMRFs, see Rue & Held (2005).

3.4 The SPDE approach

A long time ago, Whittle (1954) linked the linear stochastic differential equation

(SPDE)

(κ2 −Δ)α/2X = φ2W, (4)

14
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to a Gaussian random field with Matérn covariance; the solution, X , of the dif-

ferential equation, where W is a Brownian sheet, is a Gaussian random field with

the Matérn covariance. Not so long ago, in Lindgren et al. (2011), the knowledge

of the link together with the finite element method Strang & Fix (1973), was

utilized to create computationally efficient methods for estimation and prediction

of the corresponding Gaussian random field. Basically, the idea is to approximate

X (s) with a sum of deterministic basis function with stochastic weights

X̂ (s) =

n
∑

i=1

ψ(s)wi. (5)

To define the weights distribution, one requires that the approximation satisfies

a weak formulation of the SPDE with respect to some test functions ψi, i =

1, . . . , n:
∫

φi(s)X̂ (s) ds
d
= φ2

∫

φi(s)W ds,

for i = 1, . . . , n. The equation above can be formulated in matrices form as

Kw
d
= z

where Ki,j =
∫

ψi(s)(κ
2 −Δ)α/2φj(s) ds, w are the weights in equation (5) and

z ∼ N (0,C−1) where Ci,j =
∫

ψi(s)φj(s) ds. After, some technical tricks, the

resulting distribution of w is a GMRF with sparse precision matrix.

Other advantages of the SPDE approach it is that the PDE formulation

is suitable to create non-stationary Gaussian processes, see (Bolin & Lindgren,

2011).

3.5 Fields generated with Lévy noise

A subset of the non-Gaussian random fields are the fields generated by a stochastic

integral with respect to a Lévy measure. For example, a stationary the random

field X (t) is obtained by

X (t) =

∫

f (s − t) dM(s), (6)

where M is a Lévy measure. The function f controls the dependence structure of

the process. In Åberg & Podgórski (2010), this type of process was studied where
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the convolution above was with respect to a Laplace measure, and the function f
was chosen so that the covariance function of the process had Matérn covariance.

In the paper all parameters were fitted through the method of moments. In Bolin

(2013) it was shown that the SPDE approach, introduced above, can generate

random field, of the type defined in equation (6). If X (t) satisfies

(κ2 −Δ)α/2X (t) = φ2Ṁ ,

where M a Lévy measure, then it is, at least in distribution, equivalent to X (t) in

(6) where f is the Green function of the PDE. In Bolin (2013), estimation of the

parameters was done through the maximum likelihood method.

Although the distribution of X (t) has no known explicit form, it is easy to

see from the characteristic function that X (t) has more flexible marginals than

its Gaussian counterpart. Since the finite marginal distributions determines a

stochastic process, it is reasonable to expect that the trajectories of X (t) should

behave different from the trajectories generated by a Gaussian processes with the

same covariance function. This assumption is verified in Adler et al. (2013),

where it is shown that for high level excursions of a process generated by Lévy

field without Gaussian component (recal Lévy-Khinchin formula) the behavior

is fundamentally different from a Gaussian field generated by the same moving

average function.

3.6 Interpolation

The most common problem in spatial statistics is the problem of interpolation.

From a statical perspective the question about interpolation is how to predict the

process at some locations, tp (usually unobserved) given that the process is ob-

served at t (possible with measurement error). It is not possible to mention statis-

tical interpolation without mentioning kriging. Kriging, named after the South

African mining engineer D. G. Krige (Krige, 1951), is the best linear unbiased

predictor (BLUP), where best refers to the prediction with the least mean square

error. It is by far the most used method in statistics for preforming interpolation.

Given a known mean function, μ(t), and covariance function, Σ(t, s), kriging is

an explicit formula of the observed data y(t), namely:

ŷ(tp) = μ(tp) +Σtp,tΣ
−1
t,t (y(t) − μ(t)).

Note that this equivalent to the conditional mean for a Gaussian process, in

fact for a Gaussian process the kriging predictor is the best predictor linear or
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not. For non-Gaussian processes this is not the case. An illuminating, although

somewhat artificial, example on how poorly the BLUP can preform versus the

best predictor is given in Stein (1999).

For the models considered in Papers C and D we preform interpolation using

Gibbs sampling, by calculating the posterior mean of the random field at the lo-

cation tp. However, for a non symmetric distribution using the mean as a point

predictor might not always be what one actual is looking for, both from practical

and theoretical perspectives. Often the mode of the distribution is a better alter-

native, in the sense of what a non-statistician would consider as the best guess, i.e.

the most likely value.

4 Parametric inference

This section gives a brief overview of the method used in the preceding papers

for estimation of parameters. We do not assume that observations are from pro-

cesses here and thus use slightly different notation compared to earlier sections.

Throughout this section we assume that a random vector Y is observed at y.

Y belongs too parametric family if its distribution p(.;θ) is completely deter-

mined by a vector of parameters θ. Typically, the parameters are unknown and

thus it is necessary to estimate them for making inference about Y . The most

popular estimator is the maximum likelihood estimator, i.e. the estimator

θ̂ = argmaxθ p(y;θ).

If ∇θp(y;θ) is available, a common estimator is the z-estimator θ̂, satisfying

∇θp(y; θ̂) = 0.

Ideally the estimator θ̂, if not given analytically, is found using some standard

optimization or root finding method like for example the Newton method. How-

ever, in many, if not most, situations direct optimization of the likelihood is not

possible. Below, two methods, often used when the likelihood is unsuitable for

direct optimization, are presented: the EM-algorithm, and the less known Expec-

tation Conjugate Gradient algorithm.

4.1 EM-algorithm

The Expectation Maximization algorithm, first introduced in Dempster et al.
(1977), is an iterative procedure for maximizing the likelihood function. In many
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cases the likelihood for the data y is intractable, however the data augmented with

a r.v, X , often produces a tractable likelihood p(y,X ;θ). In these situations the

EM-algorithm is useful since it does not require evaluation of the data likelihood

but it is enough to use p(y,X ;θ).
The ith iteration of the algorithm consists of two steps

• E − step : Compute the function

Q(θ,θ(i−1)) = E[log p(y,X ;θ)|Y = y;θ(i−1)]

• M − step : Preform the maximisation

θ(i)
= argmaxθQ(θ,θ(i−1)).

Here the E − step denotes the Expectation step and M − step denotes the Maxi-

mization step. Under mild conditions the EM-algorithm converges to a stationary

point, Wu (1983). The rate of convergence for the EM-algorithm is linear making

it an annoyingly slow optimization algorithm.

From a practical perspective the EM-algorithm is often stable and requires

no tuning of any parameters by the user, and these are likely two reasons for its

popularity.

For many models the E − step is not explicitly available, an alternative is to

replace the Q with an Monte Carlo approximation. The modification to the EM-

algorithm is known as the MCEM algorithm,Wei & Tanner (1990). Typically,

for the algorithm to be practically useful the non-deterministic information of Q,

that needs to obtained through an MC sampler, should be contained in a few

sufficient statistics. In paper C, we utilize an MCEM-algorithm to estimate the

parameters for the Levy-random fields.

For a thorough introduction to the EM-algorithm we refer to Meng & Van Dyk

(1997).

4.2 Expectation Conjugate Gradient

A close relative to the EM-algorithm is the the Expectation Conjugate Graident

algorithm (ECG) Lange (1995a). The method is a regular conjugate gradient

method split into two steps:

1. E − step : Calculate the gradient of the log likelihood using that

∇θ log p(y;θ(i−1)) = E[∇θ log p(y,X ;θ)|Y = y;θ(i−1)]|θ=θ(i−1)
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2. S − step : take a CG step:

gi−1 = ∇θ log p(y;θ(i−1)),

di =

{

gi−1 i = 1,

gi−1 +
||gi−1||2
||gi−2||2 di−1 i > 1,

θ(i)
= θ(i−1)

+ αdi.

Here α > 0 is the step length.

Like the EM-algortihm, the ECG-algorithm does not require the ability to

calculate the full data log likelihood log p(y;θ), in fact it enough to calculate

∇θ log p(y;θ(i−1)) which sometimes, see Paper D, can be easier than calculating

log p(y;θ(i−1)). An advantage over the EM-algorithm is that the S − step is often

much faster than the M − step, and since both algorithms have the same rate of

convergence, making the ECG-algorithm much faster in practice. Also there exist

methods for improving the rate of convergence of the ECG-algorithm see Lange

(1995b).

Approximating the E − step as for MCEM algorithm results in a stochastic

gradient descent algorithm, which is an optimization method that has become

popular for the popular ”big-data” problems, see Bottou (2004). A big advantage

over the MCEM algorithm is that one does not need to worry about sufficient

statistics since all we need to store is the gradient in each Monte Carlo iteration.

The stochastic gradient descent algorithm is used to estimate parameters in

paper D, and in a paper in progress we use the stochastic gradient for more general

spde models driven by the same noise as in Paper C.

5 Outline of the papers

Paper A: Maximizing leave-one-out likelihood for the location param-
eter of unbounded densities

In this paper a new type of estimator is introduced, it is developed to handle

estimation of distribution that is unbounded at the mode. For a density f the

estimator, δ̂, is the argument that maximizes

ln(δ) =

∏n
i=1 f (Xi − δ)

f (Xk(δ) − δ)
,
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where k(δ) = argmink∈{1,...,n} |Xk−δ|. In the paper, it is shown that the estimator

can be super-efficient, that is the rate of convergence can be faster then n1/2,

which is the standard rate of an estimator. The rate of convergence is shown to

be nearly the optimal one, however if the estimator is optimal or not remains an

open problem. The intended application is to fit parameters of the generalized

asymmetric Laplace distribution, for which the distribution is singular in certain

section of the parameter space. The main contribution of the paper is an estimator

that is almost optimal for singular distribution and also, similarly to the maximum

likelihood method, is well suited for a multi-parameter setting.

Paper B: Convolution invariant subclasses of generalized hyperbolic
distributions

The invariance under convolution of a class of distribution is an important and

desired property, in particular, when dealing with irregular discretization of meshes

that are typical for the SPDE methods in section 3.4. Since the Gaussian mean

variance mixtures leads to important distributions, determining parametric mod-

els of convolution invariant classes is an important problem. In this paper, it is

proven that only two subclasses of the GH distributions are closed on the convo-

lution, namely the NIG and GAL distributions. This result has been previously

quoted (sometimes mistakenly) in literature, but not proven. The main contribu-

tion of this paper is rigorously proving the results.

Paper C: Non-Gaussian Matérn fields with an application to precipi-
tation modeling

This paper deals with random fields generated by Lévy noise introduced in Bolin

(2013). The marginal distributions of the fields are flexible, allowing for varying

shape, asymmetry and some flexibility in the tails. The main focus of the paper

is formulating models and methods so that the processes can be used for real

data; important contributions are: accounting for measurement error, stochastic

estimation methods for the parameters, and methods for efficiently preforming

prediction at unobserved locations. The model for the observed data y can be

formulated as a hierarchical model:

y ∼ N (Bβ+ Aw,σ2
εI),

w|V ∼ N (μV,ΣV),

V ∼ π(V)
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where π(V) is either gamma distribution or inverse Gaussian distribution, and w

are the random weights of the basis approximation to the solution of the SPDE

discretization described in section 3.4. Using that the distributions of w|V, y and

V|w, y are explicit allows for efficient generation of the posterior distribution of

the random field. The posterior distribution is used in both estimation of the pa-

rameter (through MCEM-algorithm) and in prediction at unobserved locations.

Finally, the model is fitted to rain data for a region in Brazil. The predictive

ability of the models compared to regular Gaussian random fields and transformed

Gaussian random fields using by cross validation.

Paper D: A Gaussian mixture model for multivariate spatially depen-
dent data using discrete and continuous Markov random fields

This paper introduced a novel type of random fields, combining two random

fields models: the classical (multivariate) latent Gaussian random fields and a

Potts model (or discrete a Markov random field). A Potts model, x, is a discrete

valued random field, typically defined on a regular grid. The value of a node, xi

depends on the values of a predefined neighborhood Ni, typically used to cluster

nodes with same value. More specifically, the latent model is defined as a mixture

of multivariate Gaussian random fields and which field that is observed is deter-

mined through the Potts model. A simplified model can be described through the

following hierarchical model:

yi ∼ N (ξi,xi
,σ2
ε),

ξ.,j ∼ N (μj,Σj), i = 1, . . . ,K ,

x ∼ mrf (α,β).

The conditional distribution of a node in the Markov random field is

P(xi = k|Ni,α,β) =
exp
(

αk + βkfi,k
)

∑K
j=1 exp

(

αj + βjfi,j
) ,

where fi,k is the number of neighbourhoods of i with value k.

There are many possible applications for the models, ranging from interpola-

tion of missing pixel values of images to detection of underlying soil types from

multivariate spatially dependent measurements of chemicals. Since many of in-

tended applications will have massive data sets, methods for efficient estimation
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are developed. Finally, an example where the model is used for smoothing of an

MR image is presented.

Paper E: Slepian model for moving averages driven by a non-Gaussian
noise

In this paper, a Slepian model of a non-Gaussian moving average model is stud-

ied. The main focus is an moving average models driven by symmetric GAL

noise. The Slepian model describes the behavior of a processes around a level

crossing. The distribution of the Slepian model is typically derived from Rice

formula described in section 1. Since a closed form of the Slepian model exists

only for Gaussian processes, the problem of finding effective ways to generate

Slepian models beyond the Gaussian domain is of great importance. We develop

efficient simulation method for moving average models driven by Laplace noise.

The simulation methods relies on the fact the Laplace noise can be represented

as subordinated Brownian motion, where the subordinate is a Gamma process.

More precisely, the moving average model can be written as a hierarchical model:

xt |L =

∫

f (t − s)L,

L|K ∼ N (0,K),

K ∼ Γ(τdt, 1),

Then discretizing the problem and using that K|L and L|x,K are known distri-

bution one can, after several steps, generate samples from the Slepian model using

a natural Gibbs sampler. The novelty in our approach is that we study Slepian

models for noise that is driving the considered stochastic process. By using such

the Slepian noise one can simultaneously analyse complex Slepian models at the

crossings by simply replacing in the original formulation of the models the origi-

nal noise by the Slepian noise.
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The Annals of Probability 20, 591–626.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) , 1–38.

23



Introduction

Gaetan, C. & Guyon, X. (2009). Spatial statistics and modeling. Springer Series

in Statistics. Springer.

Gelfand, A. & Diggle, P. (2010). Handbook of spatial statistics. Chapman

& Hall/CRC Handbooks of Modern Statistical Methods. Taylor & Francis

Group.

Ibragimov, I. & Rozanov, I. (1978). Gaussian random processes. Applications of

mathematics. Springer-Verlag.

Kac, M. & Slepian, D. (1959). Large excursions of gaussian processes. The Annals
of Mathematical Statistics 30, 1215–1228.

Krige, D. (1951). A statistical approach to some basic mine valuation problems

on the witwatersrand. Jnl. C’hem. Met. and Min. Soc. S. Afr .

Lange, K. (1995a). A gradient algorithm locally equivalent to the em algorithm.

Journal of the Royal Statistical Society. Series B (Methodological) , 425–437.

Lange, K. (1995b). A quasi-newton acceleration of the em algorithm. Statistica
sinica 5, 1–18.

Lindgren, F., Rue, H. & Lindström, J. (2011). An explicit link between Gaussian

fields and Gaussian Markov random fields: the stochastic partial differential

equation approach (with discussion). Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73, 423–498.

Lindgren, G. (2012). Stationary stochastic processes: Theory and applications. Chap-

man & Hall/CRC Texts in Statistical Science. Taylor & Francis.

Matérn, B. (1960). Spatial variation. Meddelanden från statens skogsforskningsin-
stitut 49.

Meng, X.-L. & Van Dyk, D. (1997). The em algorithm- an old folk-song sung

to a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 59, 511–567.

Rue, H. & Held, L. (2005). Gaussian Markov random fields; theory and applica-
tion, vol. 104 of Monographs on Statistics and Applied Probability. Chapman &

Hall/CRC.

24



References

Schoutens, W. (2003). Levy processes in finance: Pricing financial derivatives. Wiley

Series in Probability and Statistics. Wiley.

Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer.

Strang, G. & Fix, G. J. (1973). An analysis of the finite element method, vol. 212.

Prentice-Hall Englewood Cliffs.

Wei, G. C. & Tanner, M. A. (1990). A monte carlo implementation of the em

algorithm and the poor man’s data augmentation algorithms. Journal of the
American Statistical Association 85, 699–704.

Whittle, P. (1954). On stationary processes in the plane. Biometrika 41, 434–449.

Wu, C. (1983). On the convergence properties of the em algorithm. The Annals
of Statistics 11, 95–103.

25





A





Paper A

Maximizing leave-one-out likelihood
for the location parameter of
unbounded densities
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Abstract

We propose an approach to estimation of the location parameter for a density that

is unbounded at the mode. The estimator maximizes a modified likelihood in

which the singular term in the full likelihood is left out, whenever the parameter

value approaches a neighborhood of the singularity location. The consistency and

super-efficiency of this maximum leave-one-out likelihood estimator is demon-

strated through a direct argument. The importance for estimation in parametric

families of distributions is discussed and illustrated by an example involving the

gamma mixture of normal distributions.

Key words: unbounded likelihood and location parameter and super-efficiency

and generalized asymmetric Laplace distribution
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1 Introduction

The classical problem of the location parameter estimation frequently serves as an

illustration of how the asymptotic theory can be used to identify an estimator with

some optimal properties. In particular, the asymptotics for the maximum likeli-

hood estimators (MLE) has been established not only under the so-called regular

conditions but also when the density has a cusp at its mode. The history here

goes back to the Ph.D. Thesis of Prakasa Rao, Rao (1966), and the subsequent

related paper Rao (1968), where consistency and super-efficiency of the MLE of

the location parameter have been demonstrated for a bounded density with a cusp

at the mode.

Estimation of the location can be also considered for an unbounded density.

This case has been first approached in Ibragimov & Khasminskii (1981a) and later

summarized in the influential monograph Ibragimov & Khasminskii (1981b),

where, to deal with the unboundedness of the likelihood, Bayesian estimation

has been considered. There, as well as in Rao (1966), weak convergence of the

log-likelihood ratio process to an appropriately defined Gaussian process has been

established yielding the consistency for the MLE, whenever this is well defined,

or otherwise for Bayesian-type estimators.

This work also deals with the unbounded density case but instead of resorting

to the Bayesian approach we modify the likelihood approach. A modification is

needed since the likelihood is unbounded at each data point and the classical MLE

is not even properly defined. To remedy this issue, we propose to leave a singular

term out from the full likelihood in a neighborhood of the datum location and

define an estimator δ̂ that maximizes the leave-one-out likelihood function. Un-

der rather natural conditions it is shown that δ̂ is consistent. Moreover, a lower

bound for the rate of convergence is established showing, in particular, that the

estimator is super-efficient, i.e. its rate is faster than in the classical case of n−1/2.

The proof presented is completely self-contained, direct, and uses only elemen-

tary arguments. Consequently, it is formally independent of any other asymptotic

results, including these for the convergence of the likelihood ratio process. Nev-

ertheless, the intuitive reason for the supper-efficiency is the rate of convergence

the likelihood ratio process (or its moments as exploited in this work). Namely,

for the densities that are unbounded this rate is faster than under the standard

regular conditions, see Lemma 4.5 (this faster rate is tied to the asymptotics of the

density around the location parameter as presented in Lemma 4.4).

The idea of leaving out a trouble causing factor in the likelihood seems to be
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quite natural and, in fact, has been recently proposed in the problem of estimation

of parameters for a finite mixtures of normal densities in Seo & Kim (2012).

Despite general similarities between the approaches, neither the estimators nor

the results of that work translate to the setup of this paper.

The paper is organized as follows. Section 2 motivates the problem and, in

particular, points at convenience of the method when used in a general multi-

parameter setup. In Section 3, we present the assumptions and the main result

which is Theorem 3.1. In Section 4, we formulate and prove the lemmas that

eventually lead to the proof of Theorem 3.1 presented in Section 5. Finally, in the

Appendix, we present an example illustrating how a version of the EM algorithm

can be applied to maximize the leave-one-out likelihood.

2 Motivation

Although in this work we concentrate on the location parameter, the applica-

bility of the approach extends to the multiparameter context. The leave-one out

likelihood function presents only a slightly modified likelihood and thus the max-

imizers over other than location parameters would have the asymptotic properties

dictated by the classical MLE theory given, of course, that appropriate assump-

tions of the likelihood are satisfied. For this reason, the proposed estimation of

location in the unbounded density case is not only of a theoretical interest but also

have important implications for actual estimation problems. In fact, there are nat-

ural parametric families for which estimation in the presence of unboundedness

becomes an important practical issue. This study was inspired by investigation

of applicability of the EM algorithm to parameter estimation for linear models

involving the generalized Laplace distributions.

Recall a generalized Laplace random variable X admits the representation X =

δ + μΓ + σ
√
ΓZ , where Γ has Gamma distribution with the shape τ and scale

one, while Z has the standard normal distribution, see Kotz et al. (2001) for

details. This class is made of infinitely divisible distributions, is closed under the

convolutions and the corresponding Lévy motions are referred to as the Laplace

motions (in mathematical finance, specially in the symmetric case, these models

are naturally known as the gamma variance processes). The density of X is of the

form p(x)|x|α, where α = 2τ − 1 and p(x) being a function that is bounded and

non-negative around zero.

The explicit form of the density involves one of the Bessel functions so the
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distribution is also refered to as the Bessel function distribution. To maximize

the likelihood one has to resort to numerical methods and, for example, the EM

(expectation-maximization) algorithm can be conveniently employed to evaluate

the MLE of the parameters (δ, μ,σ, τ). We refer to Protassov (2004) for a pre-

sentation of such an approach applied to a subclass of the generalized hyperbolic

distributions (the latter were introduced by Barndorff-Nielsen (1978) and include

also the generalized Laplace distributions). Since the range of values of τ is a’priori

not known, one can not exclude a possibility of an unbounded density, which oc-

curs when τ < 1/2, i.e. −1 < α < 0. In fact, the value of τ is tied to the grid of

sampling for spatial or temporal models involving the Laplace motion – the finer

grid the smaller value of τ which typically leads to an unbounded density.

The EM algorithm can be adopted to the leave-one-out likelihood by not

accounting in each loop for the observation that is closest to the evaluated values

of the location parameter. This is actually the EM algorithm applied to a penalized

log-likelihood where the penalty term is − log f (xk(δ̂)), in which it resembles the

method of Chen et al. (2008). In these applications, the EM algorithm preserves

the fundamental monotonicity property entertained by the original EM method

of Dempster et al. (1977). In the resulting approximations, the estimate of δ has

the same super-efficient asymptotic behavior as demonstrated in this work, while

the estimates of μ, σ and τ behave asymptotically in the same way as the MLE

under the standard regularity conditions. The formal argument supporting these

statements in full generality is left for another occasion. However in the Appendix

we do discuss main steps in such an EM approach when applied to the maximizing

for the leave-one-out likelihood for the generalized Laplace distributions.

It should be mentioned that the proposed method is useful also in the case

when the densities are bounded for all values in the interior of the parameters

range but may become unbounded if the parameters reach boundaries of the

range. Let us mention two examples when this is of importance. Firstly, for the

generalized Laplace distribution, if τ ∈ [1/2, 1) and σ > 0, then the generalized

Laplace density is bounded. However, if the parameter value for σ reaches the

boundary σ = 0, then the distribution approaches the gamma distribution with

the shape τ ∈ [1/2, 1) which constitutes an example of unbounded density. In

consequence, using the leave-one-out method allows to avoid ensuing problems.

The second case relates to the fact that the generalized Laplace distributions repre-

sent a special and the only unbounded density case of the generalized hyperbolic

distributions. Here again the leave-one-out method can be applied to deal with
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Figure 1: Left: The full log-likelihood (solid line) vs. the leave-one-out log-

likelihood (dashed line) used for the sample of the size n = 10 (Top) and n = 500

(Bottom). In the bottom figure the dashed line cannot be distinguished from the

lower envelope of the log-likelihood. Right: Asymptotics and super-efficiency of

the estimator: the optimal rate – straight thin line, the estimated rate from Monte

Carlo simulation – thick line, a trajectory of the absolute estimation error |δ̂n−δ0|
with increasing sample size – thin line. For comparison the rate of MLE under

regular assumptions is given by the dashed line.

the unboundedness due to the parameters approaching the values corresponding

to a generalized Laplace distribution.

For illustration of the leave-one-out likelihood and the discussed properties of

the estimator, we performed a small Monte Carlo (MC) study based on samples

generated from an asymmetric generalized Laplace distribution with (δ0, μ,σ, τ) =
(1,−0.5, 1, 0.4). In Figure 1 (Left), the full likelihood is compared to the leave-

one-out one (dashed line) in a small sample size case (n = 10, top) and a large

sample size case (n = 500, bottom) cases. We can clearly observe the smoothing

effect offered by the method.

The asymptotic behavior of the estimator is illustrated in Figure 1 (Right),
where, on the logarithmic scale, we see the optimal rate (straight thin line) and

the rate for the proposed estimator obtained through MC simulations. The latter

is represented here by 90% MC-sample quantiles of |δ̂n − δ0| computed for 1000

MC samples and for a number of sizes n (thick line). For comparison, a trajectory

of |δ̂n − δ0| evaluated for the subsequently increased n values of a single large
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sample is represented by the thin line. Finally, the dashed line on the graph

corresponds to the regular rate of convergences n−1/2, from which we clearly see

a super-efficient rate of the estimator.

3 The maximum leave-one-out likelihood estimator and

its supperefficiency

3.1 Assumptions

Through the remainder of the paper, let X1, . . . ,Xn be an iid sample from a dis-

tribution given by a density f (x − δ0) that is differentiable everywhere except

for zero. Recall that the Fisher information for a location parameter associated

with a density f is defined as If = E[((log f )′(X ))2] = E[f ′2/f 2(X )], where X
is a random variable with the distribution defined by f . In our case the Fisher

information is not finite due to the assumed unbounded behavior of f around

zero so instead we use the incomplete Fisher information defined for ε > 0 as

If (ε) = E[f ′2/f 2(X )||X | > ε]. We assume that

A1 f (x) = p(x)|x|α, α ∈ (−1, 0), p has bounded derivative on R\{0} and, for

some ε0 > 0, is non-zero and continuous either on [−ε0, 0] or on [0, ε0] .

A2 There exists b > 0 such that f (x) = O(|x|−b−1) when |x| → ∞.

A3 For some (and thus for all) ε > 0 the Fisher information If (ε) is finite.

3.2 Maximum leave-one-out likelihood estimator

Here we introduce the estimator and present several convenient representations

of the leave-one-out likelihood ratio process.

Let us denote

k(δ) = argmin
k∈{1,...,n}

|Xk − δ|,

with the convention that if there are two indices we take the one for which corre-

sponding Xk(δ) is on the right hand side of δ. Define the estimator δ̂ = δ̂n as the

argument that maximizes

l(δ) = ln(δ) =

∏n
i=1 f (Xi − δ)
f (Xk(δ) − δ)

(1)
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Note here that l(δ) is a cadlag function (the left hand side continuous) and con-

verging to zero at infinity so there is a maximizer (if there are more than one

maximizer, we choose, for example, the smallest one). We also observe that

ûn = δ̂n − δ0 is the maximizer of

Z (u) =Zn(u) =
l(u + δ0)

l(δ0)
=

f (Xk(δ0) − u − δ0)

f (Xk(u+δ0) − δ0)

∏

i 6=k(δ0),i 6=k(u+δ0)

f (Xi − u − δ0)

f (Xi − δ0)
.

By introducing the event Ci,δ = {k(δ) 6= i} and its indicator function ICi,δ ,

we obtain the following convenient representations of the above functions

l(δ) =
n
∏

i=1

f (Xi − δ)ICi,δ =

n
∑

k=1

IC c
k,δ

n
∏

i=1,i 6=k

f (Xi − δ), (2)

and

Z (u) =

n
∏

i=1

f (Xi − δ0)
−ICi,δ0

n
∏

i=1

f (Xi − u − δ0)
ICi,u+δ0 =

(

n
∑

l=1

IC c
l,δ0

n
∏

i=1,i 6=l

f (Xi − δ0)−1
)

·
(

n
∑

k=1

IC c
k,δ0+u

n
∏

j=1,j 6=k

f (Xj − u − δ0)
)

.

(3)

3.3 The main result

The purpose of this paper is to establish consistency of δ̂n which is done together

with getting a super-efficient rate of convergence in the following result.

Theorem 3.1. Let f satisfy the above assumptions and let δ̂n be the maximizer of

ln given by (1). Then δ̂n is a consistent estimator of δ0 and for any β < 1/(1+α):

lim
n→∞

nβ (δ̂n − δ0)
p
= 0. (4)
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4 Lemmas and the proof of the theorem

Additionally to the notation and assumptions of the previous section, we also use

what follows. For λ > 0 and L > 0:

Aλ = An,λ = { min
i,j=1,...,n

i 6=j

|Xi − Xj| > λ}, (5)

BL = Bn,L = { max
i=1,...,n

|Xi − δ0| < L}. (6)

In our argument the variable L is eventually increasing without bound so when-

ever the symbol O(Lρ) is used for some ρ, it means that lim supL→∞ |O(Lρ)|/Lρ <
∞. Finally, for compactness of our formulations, we define Sr(u0) = [u0−r, u0+

r].

We start with a result about the rate of convergence of the minimal distance

between Xi’s.

Lemma 4.1. Assume that a sequence of positive numbers λn has the following asymp-
totics for a certain c > 0:

λn = O
(

n−1− 1
α+1

−c
)

Then for An = An,λn defined through (5) we have

lim
n→∞

P(An) = 1.

Proof. Since λn ≤ D ·n−1− 1
α+1

−c for some D > 0, it is enough to show the result

for λn = D · n−1− 1
α+1

−c. Define

Cn = {Xn+1 ∈
n
⋃

i=1

[Xi − λn,Xi + λn]}.

We first demonstrate that for a proof it is sufficient to show that C = lim supn→∞
Cn is of probability zero, which is equivalent to saying that with probability one

the number of times that an observation Xn+1 is inside of ∪n
i=1[Xi − λn,Xi + λn]

is finite.

To see this consider an outcome ω from C c. Then there exists n0 such that

for n > n0:

|Xn+1(ω) − Xi(ω)| > λn, i = 1, . . . , n.
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For such n0, let

ε0 = min
i,j=1,...,n0

i 6=j

|Xi(ω) − Xj(ω)|

while n1 be such that for n > n1 > n0 we have λn < ε0. Take n > n1

and note that the minimum of |Xi(ω) − Xj(ω)| over all pairs (i, j) such that

i, j = 1, . . . , n, i 6= j is obtained as the minimum of the numbers standing on

the left hand side of the following inequalities

min
i,j=1,...,n0

i 6=j

|Xi(ω) − Xj(ω)| > λn,

min
i=1,...,n0

|Xi(ω) − Xn0+1(ω)| > λn0 ≥ λn,

min
i=1,...,n0+1

|Xi(ω) − Xn0+2(ω)| > λn0+1 ≥ λn,

...

min
i=1,...,n−1

|Xi(ω) − Xn(ω)| > λn−1 ≥ λn.

Consequently the outcome ω has to be in An for each n > n1, which proves that

C c ⊂ lim inf
n→∞

An.

Thus if A denotes the right hand side event in the above and P(C c) = 1, then

1 =P(C c) ≤ P(A) = lim
n→∞

P
(

⋂

k≥n

Ak

)

≤ lim inf
n→∞

P(An) ≤

lim sup
n→∞

P(An) ≤ 1

and consequently it is indeed enough to show that P(C ) = 0.

To prove the latter, by the Borel-Canteli lemma, it is enough to show that

P(Cn)’s form a convergent series. To this end notice that by Assumption A1, the

density of Xi is bounded except at δ0. Hence there exists sufficiently small u > 0

and an interval neighborhood I of zero and of the diameter not exceeding u such

that f (x) = p(x)|x|α for x ∈ I is larger than the value f (y) for any y /∈ I . Thus if
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a subset D ⊂ R has measure at most u, then

P(Xn+1 ∈ D) =

∫

D
p(x − δ0)|x − δ0|α dx

≤
∫

I
p(x)|x|α dx ≤ P(X ∈ [−u + δ0, u + δ0]).

Using this fact, the convergence of nλn to zero, and independence of Xn+1 from

Xn = (X1, . . . ,Xn), we obtain for sufficiently large n:

P(Cn) =P
(

Xn+1 ∈
n
⋃

i=1

[Xi − λn,Xi + λn]
)

=

E
(

P
(

Xn+1 ∈
n
⋃

i=1

[Xi − λn,Xi + λn]|Xn

))

≤

P(X ∈ [−nλn + δ0, nλn + δ0]).

Note that there exists K > 0 such that for sufficiently small u we have

P(X ∈ [−u + δ0, u + δ0]) ≤ Kuα+1, so for sufficiently large n:

P(Cn) ≤ K (nλn)α+1 ≤ K
(

n−1/(α+1)−c
)α+1

= Kn−1−c(α+1)

and thus convergence of the series holds.

The next lemma is a quite obvious consequence of Assumption A2.

Lemma 4.2. If n/Lb
n converges to zero, then for Bn = Bn,Ln given in (6):

lim
n→∞

P(Bn) = 1.

Proof. By A2, the following inequality holds for some K > 0 and sufficiently

large L:

P
(

|X − δ0| ≤ L
)

≤ 1 − KL−b

and the result follows immediately from

P(Bn) = P{ max
i=1,...,n

|Xi − δ0| < Ln} ≤
(

1 − KL−b
n

)n
,

which holds for sufficiently large n.
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In the proof of the next result we use Assumption A3, i.e. the finiteness of

the partial Fisher information. Let us introduce the following function that is also

used in the proof of Lemma 4.4:

v(x) =
p′(x)|x|
2p1/2(x)

+
α

2
sign(x)p1/2(x), (7)

and note that it is bounded in neighborhood of zero. Moreover for x 6= 0:

(f 1/2)′(x) =
f ′(x)

2f 1/2(x)
= |x|α/2−1v(x). (8)

Lemma 4.3. There exists K > 0 such that for each x0 ∈ R, c < 1 and r ∈ (0, c
2 ):

∫

[−c,c]c
sup
|h|<r

|f 1/2(x) − f 1/2(x − h)| · f 1/2(x + x0) dx ≤ Kr(α+1)/2. (9)

Proof. First by the Schwartz inequality
∫

[−c,c]c
sup
|h|<r

|f 1/2(x) − f 1/2(x − h)|f 1/2(x + x0) dx

≤
(

∫

[−c,c]c
sup
|h|<r

(f 1/2(x) − f 1/2(x − h))2 dx

)1/2

=
1

2





∫

[−c,c]c
sup
|h|<r

(

∫ h

0

f ′

f 1/2
(x − y) dy

)2

dx





1/2

.

By the Jensen inequality and then by the Fubini theorem

∫

[−c,c]c
sup
|h|<r

(

∫ h

0

f ′

f 1/2
(x − y) dy

)2

dx

≤
∫

[−c,c]c
sup
|h|<r

(

h

∫ h

0

f ′2

f
(x − y) dy

)

dx

=r

∫ r

0

4

∫

[−c,c]c
|x − y|α−2v2(x − y) dx dy

=r

∫ r

0

4

∫

[−c+y,y+c]c
|s|α−2v2(s) ds dy.
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Note that for y ∈ [0, r] we have −c + y < −c + r < −r and y + c > c > r.

Combining this with the boundedness of v in a neighborhood of zero, we obtain

that for some K0 and for each ε > 0:

∫

[−c+y,y+c]c
2|s|α−2v2(s) ds ≤

∫

[−r,r]c
2|s|α−2v2(s) ds

=

∫ ε

r
2|s|α−2v2(s) ds +

∫ −r

−ε
2|s|α−2v2(s) ds +

1

2
If (ε)

≤ K0

∣

∣

∣

∣

∫ ε

r
sα−2 ds

∣

∣

∣

∣

+
1

2
If (ε)

≤ K0

2 − α |r
α−1 − εα−1|+ 1

2
If (ε)

≤ K 2rα−1,

where K is some positive constant independent of r and c. From these inequalities

we obtain
∫

[−c,c]c
sup
|h|<r

|f 1/2(x) − f 1/2(x − h)|f 1/2(x + x0) dx ≤ Kr(α+1)/2,

which concludes the proof.

The following result stands behind a super-efficient rate of convergence that

is eventually obtained in the proof of the main theorem.

Lemma 4.4. There exist B > 0 and K > 0 such that for each s ∈ R:

E

[

f 1/2(X − s)

f 1/2(X )

]

≤ 1 − K min(|s|α+1,B). (10)

Proof. Let us set r(x, s) = (f 1/2(x + s) − f 1/2(x))2 and note

E

[

f 1/2(X − s)

f 1/2(X )

]

=
1

2

(
∫

f (x)dx +

∫

f (x − s)dx −
∫

r(x, s)dx

)

= 1 − 1

2

∫

r(x, s) dx.
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Note that r(s) =
∫

r(x, s) dx is a continuous non-negative function taking value 2

at infinity, zero at s = 0, which is also its unique global minimum. Consequently,

it is enough to show that r(s) is O(sα+1).

Consider be a one-sided neighborhood of zero, say [0, ε0], where v being

negative is separated from zero by, say, −L, L > 0. Then for positive s and x such

that x + s ∈ [0, ε0] we have

r(x, s) =

(
∫ s

0

(f 1/2)′(t + x) dt

)2

=

(
∫ s

0

(x + t)α/2−1v(x + t) dt

)2

≥ L2

(∫ s

0

(x + t)α/2−1 dt

)2

=
4L2

α2
sα
(

(x

s
+ 1
)α/2

−
(x

s

)α/2
)2

.

Using this we get for positive s < ε0/2:

∫

r(x, s) dx ≥
∫ ε0/2

0

r(x, s) dx

≥ 4L2

α2
sα+1

∫ ε0/(2s)

0

((y + 1)α/2 − yα/2)2 dy

≥ 4L2

α2

∫ 1

0

((y + 1)α/2 − yα/2)2 dy · sα+1.

The argument for negative s follows the same way.

The preceding result is explicitly used only in the following lemma, which

plays a central role in our proof of the main result.

Lemma 4.5. There exist positive constants K1, K2 such that for all n ∈ N, γ and λ
both in (0, 1), if r ∈ (0, λ/6) and |u0| > γ, then

E

[

IAλ∩BL sup
u∈Sr (u0)

Z 1/2(u)

]

≤ O(La)r
α
2 n2(1 − K1γ

1+α
+ K2r

1+α
2 )n−2,

(11)

where a = max(0, (1 − b)/2).

41



A

Proof. We note that the left hand side does not depend on δ0 so let us assume

that δ0 = 0. Let us take arbitrary values λ, r, γ and u0 that satisfy the required

conditions (K1, K2 will come later). By (3)

sup
u∈Sr (u0)

Z 1/2(u) ≤ (12)

n
∑

l=1

IC c
l,0

n
∏

i=1
i 6=l

f −1/2(Xi) ·
n
∑

k=1

sup
u∈Sr (u0)

IC c
k,u

n
∏

j=1
j 6=k

f 1/2(Xj − u).

Let us note that

C c
k,u =





n
⋃

i 6=k

C c
i,u





c

=

n
⋂

i 6=k

Ci,u.

Moreover, since in Aλ all observations are at least λ apart and in Ci,u the value Xi

is not the closest to u the distance between Xi and u must be at least λ/2 which

gives

{|Xi − u| ≥ λ/2} ⊇ Aλ ∩ Ci,u.

For u ∈ Sr(u0), by the triangle inequality

Ci,u0,r
def
= {|Xi − u0| ≥ λ/2 − r} ⊇ {|Xi − u| ≥ λ/2}.

Thus for each k = 1, . . . , n:

IAλ sup
u∈Sr (u0)

IC c
k,u

n
∏

i=1,
i 6=k

f 1/2(Xi − u) ≤ sup
u∈Sr (u0)

n
∏

i=1,
i 6=k

f 1/2(Xi − u)ICi,u0,r (13)

and for each l = 1, . . . , n we have

IAλIC c
k,0

n
∏

i=1,
i 6=k

f −1/2(Xi) ≤
n
∏

i=1,
i 6=k

I|Xi |>λ/2

f 1/2(Xi)
.

(14)

Combining (12), (13), and (14) we obtain

IAλ sup
u∈Sr (u0)

Z 1/2(u) ≤
n
∑

k,l=1

sup
u∈Sr (u0)

n
∏

i=1,
i 6=k

f 1/2(Xi − u)ICi,u0,r

n
∏

j=1,
j 6=l

I|Xj|>λ/2

f 1/2(Xj)
.
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For i = 1, . . . , n let us define

Ỹi =
IL>|Xi |>λ/2

f 1/2(Xi)
,

Ȳi(u) = f 1/2(Xi − u)ICi,u0,r
.

Then we obtain

IAλ∩BL sup
u∈Sr (u0)

Z 1/2(u) ≤
n
∑

k,l=1

Ỹk sup
u∈Sr (u0)

Ȳl (u)

n
∏

i=1,
i 6=k,
i 6=l

Ȳi(u)Ỹi.

As a result and by independence, we obtain
∫

Aλ∩BL

sup
u∈Sr (u0)

Z 1/2(u) dP ≤
n
∑

k,l=1

E[Ỹk] · E
[

sup
u∈Sr (u0)

Ȳl (u)

n
∏

i=1,
i 6=k,
i 6=l

Ȳi(u)Ỹi

]

= n2
E[Ỹ1] · E

[

sup
u∈Sr(u0)

Ȳ1(u)

n
∏

i=3

Ȳi(u)Ỹi

]

≤ n2
E[Ỹ1] · E

[

sup
u∈Sr (u0)

Ȳ1(u)
]

· E
[

sup
u∈Sr (u0)

Ȳ1(u)Ỹ1

]n−2
. (15)

In what follows, we bound each of the three expectations on the right hand side

of the above inequality.

First, by Assumption A2, E[Ỹ1] ≤
∫ L
−L f 1/2(x) dx = O(La), where a =

max(0, (1 − b)/2). To deal with the second expectation, notice that by Assump-

tion A1 on f (x) there is a constant K0 > 0 such that f (x) ≤ K0 min(|xα|, 1) ≤
K0(λ/2 − 2r)α, since 0 < λ/2 − 2r < 1. Therefore, if |u − u0| ≤ r and

|x − u0| ≥ λ/2, then |x − u| ≥ λ/2 − 2r and thus

sup
u∈Sr (u0)

Ȳ1(u) ≤ K0(λ/2 − 2r)α/2 ≤ K0rα/2,

where the last inequality holds since λ > 6r.

The final expectation requires a few more steps. First, using the triangle in-

equality yields

Ỹ1 · sup
u∈Sr (u0)

Ȳ1(u) ≤ Ỹ1 ·
(

Ȳ1(u0) + sup
|h|<r

|Ȳ1(u0 + h) − Ȳ1(u0)|
)

.
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Then from Lemma 4.3 there exists K2 such that

E

[

Ỹ1 · sup
|h|<r

|Ȳ1(u0 + h) − Ȳ1(u0)|
]

≤
∫

[−λ/2+r,λ/2−r]c
sup
|h|<r

|f 1/2(s − h) − f 1/2(s)| · f 1/2(s + u0) ds

≤ K2r(1+α)/2

and from Lemma 4.4:

E[Ỹ1 · Ȳ1(u0)] ≤ 1 − K1 min(γ1+α, b).

Putting all the three bounds together in (15) completes the proof.

Chebyshev’s inequality combined with the inequality 1 + a ≤ ea yields the

following corollary to the above lemma.

Corollary 4.1. There exist positive constants K1 and K2 such that for all n ∈ N, γ
and λ both in (0, 1), if r ∈ (0, λ/6) and |u| > γ, then

P(IAλ∩BL sup
u∈Sr (u)

Z (u) ≥ 1) ≤ O(La)r
α
2 n2e−(n−2)

(

K1γ
α+1−K2r(1+α)/2

)

,

where a = max(0, (1 − b)/2).

Lemma 4.5 will enter the proof of the main theorem through the following

result, which is a consequence of the above corollary.

Lemma 4.6. Let δ̂L be the maximizer of l(δ) over [−L + δ0,L + δ0]. There exist
positive constants K1 and K2 such that for all n ∈ N, γ and λ both in (0, 1), if
r ∈ (0, λ/6), then

P(Aλ ∩ BL ∩ {|δ̂L − δ0| > γ}) ≤ (16)

O(La+1)r
α
2
−1n2e−(n−2)

(

K1γ
α+1−K2r(1+α)/2

)

,

where a = max(0, (1 − b)/2).

Proof. From the definition of δ̂L, ûL = δ̂L − δ0 maximizes Z (u) over [−L,L] and

thus Z (ûL) ≥ Z (0) = 1. Consequently, if |ûL| > γ, then

sup
u∈[−γ,γ]c∩[−L,L]

Z (u) ≥ 1.
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This leads to

P(Aλ ∩ BL ∩ {|δ̂L − δ0| > γ}) ≤ P(IAλ∩BL sup
u∈[−γ,γ]c∩[−L,L]

Z (u) ≥ 1).

Let Sr(uk), k = 1, . . . , 2[L/r]+ 1 be a cover of [−γ,γ]c ∩ [−L,L], such that

|uk| > γ. By Corollary 4.1:

P(Aλ ∩ BL ∩ { sup
u∈[−γ,γ]c∩[−L,L]

Z (u) ≥ 1})

= P(

2[L/r]+1
⋃

k=1

{IAλ∩BL sup
u∈[−γ,γ]c∩Sr (uk)

Z (u) ≥ 1})

≤
2[L/r]+1
∑

k=1

P(IAλ∩BL sup
u∈Sr (uk)

Z (u) ≥ 1)

≤ O(La)r
α
2
−1n2e−(n−2)

(

K1γ
α+1−K2r(1+α)/2

)

.

5 Proof of Theorem 3.1

Here we present our proof of the main theorem.

Proof. Set β < 1/(1 + α). Let Ln = ns 2
1+b , with s being a positive constant that

will be set later but at the moment we require only that Ln > n3/b. Further, let

λn be set so that Lemma 4.1 is satisfied.

Because of Lemmas 4.1 and 4.2, the events An,λn and Bn=Bn,n3/b that are

defined through (5) and (6), respectively, have probabilities converging to one.

Consequently, it is sufficient to show that for each γ > 0:

lim
n→∞

P(An,λn ∩ Bn ∩ {nβ |δ̂n − δ0| > γ}) = 0.

Let γn = γn−β and note that since Bn ⊆ Bn,Ln :

P(An,λn ∩ Bn ∩ {|δ̂n − δ0| > γn}) ≤
≤ P(An,λn ∩Bn,Ln ∩{γn < |δ̂n−δ0| ≤ Ln})+P(Bn∩{|δ̂n−δ0| > Ln}).

(17)
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Let us consider the first term on the right hand side and take a sequence rn so

that rn ≤ λn/6. Then, by Lemma 4.6, for a = max(0, (1 − b)/2):

lim sup
n→∞

P(An,λn ∩ Bn,Ln ∩ {γn < |δ̂n − δ0| ≤ Ln})

≤ lim sup
n→∞

O(Lβ+1
n )n2r

α
2
−1

n e
−(n−2)

(

K1γ
1+α
n −K2r

(1+α)/2
n

)

.

By choosing rn so that nr
(1+α)/2
n ≤ n−d for some d > 0, we have for suitably

chosen h > 0, ε, and K > 0:

lim sup
n→∞

P(An,λn ∩ Bn,Ln ∩ {γn < |δ̂n − δ0| ≤ Ln}) ≤ lim
n→∞

nhe−nε+Kn−d

= 0.

The second term on the right hand side of (17) also converges to zero as

shown next. Since {|δ̂n − δ0| > Ln} ⊆ {sup|u|>Ln
Z (u) ≥ 1} and by a direct

application of Chebyshev’s inequality it is enough to show

lim
n→∞

E

[

IBn sup
|u|>Ln

Z 1/2(u)

]

= 0. (18)

To this end note that on Bn, |Xi| ≤ n3/b + |δ0|, thus for sufficiently large n,

for |u| > Ln and on Bn:

|Xi − u| ≥ |u| − |Xi| ≥ Ln − n3/b − |δ0| = O(Ln).

From this, Assumption A2, and by the choice of Ln:

IBnf 1/2(Xi − u) ≤ IBnK |Xi − u|−(b+1)/2 ≤ O(L−(b+1)/2
n ) = O(n−s).

In consequence,

IBn sup
|u|>Ln

Z 1/2(u) ≤ On−1(n−s)IBn

∏

i 6=k(δ0)

f −1/2(Xi − δ0). (19)

Using the representation (2), we have

∏

i 6=k(δ0)

f −1/2(Xi − δ0) =

n
∑

k=1

IC c
k,δ0

n
∏

i=1,i 6=k

f −1/2(Xi − δ0)

≤
n
∑

k=1

n
∏

i=1,i 6=k

f −1/2(Xi − δ0).
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By Assumption A2, we also have

E(I|X−δ0|<L f −1/2(X − δ0)) = O(Lc),

where c = (1 − b)+/2, which along with the mutual independence of Xi ’s yields

E

[

IBn

∏

i 6=k(δ0)

f −1/2(Xi − δ0)
]

≤ n
(

E

[

I|X−δ0|≤n3/b f −1/2(X − δ0)
])n−1

≤ nOn−1(n3c/b).

Putting this together with (19), for sufficiently large n we obtain

E

[

IBn sup
|u|>Ln

Z 1/2(u)
]

≤ nOn−1(n3c/b−s),

where s as of now was not set yet. Thus by taking s > 3c/b+1 we make the right

hand side converging to zero, which concludes the proof.

6 Concluding remarks

We have demonstrated that the maximum leave-one-out likelihood estimator is

consistent and has a superefficient rate of convergence. The rate of convergence

does not differ by a power factor from n−1/(1+α) which would be the optimal rate

of convergence. In fact, the proof of the main theorem yields a bit stronger result

stating that the lower bound on the rate of convergence differs from the optimal

rate only by a certain power-of-logarithm factor. However, the presented proof

does not yield the optimal rate and an open question is if this rate is actually

reached by the estimator. In fact, this rate would be optimal for the minimal

variance estimation of the location as discussed in Polfeldt (1970b) and Polfeldt

(1970a), where an estimator achieving this rate is constructed. This optimal rate

is also obtained in Ibragimov & Khasminskii (1981b) for the Pitman estimators.

It is worth stressing again that the leave-one-out estimator unlike the other es-

timators has the advantage that it can be easily implemented through the MLE ap-

proach in a general multi-parameter setup, for example, when scale or/and shape

parameters are present. In the appendix it was demonstrated how the EM algo-

rithm applies when other than the location parameters are present in which case

maximizing likelihood is the most natural way to proceed.
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A Appendix

Here we present a formalized approach to the maximizing the leave-one-out like-

lihood by means of the EM algorithm and in the presence of other than location

parameter. We focus on an example of a symmetric Laplace distribution while

a more complete presentation is left for some future research. Namely, we con-

sider estimation of a vector of parameters θ = (δ,σ) of a symmetric (μ = 0)

generalized Laplace distribution with some known shape parameter τ < 0.5. See

Section 2 for the definitions and the notation. In our setup, the observed val-

ues are Yi = σ
√
ΓiZi − δ, i = 1, . . . , n and the complete set of variables is

X = (Γ1, . . . ,Γn,Y1, . . . ,Yn). As mentioned before, the density fθ(y) of Yi ’s is

having the form pσ(y−δ)|y−δ|2τ−1 for some bounded and non-vanishing around

zero function pθ.

To precisely formulate our algorithm we need some additional notation and

defintions. For a vector y = (y1, . . . , yn) ∈ R
n, the permutation of its elements

which leads to the order statistics of (|y1 − δ|, . . . , |yn − δ|) is denoted by πθ(y),

and using this function we define Rθ = πθ(R
n). Slightly abusing notation we

also write πθ(x) for (γ1, . . . ,γn, π
θ(y)). Further, for Yθ = πθ(Y), we consider the

conditional distributions of: the vector Ỹθ = (Y θ1 , . . . ,Y θn−1) given Y θ0 = y0 ∈
R, denoted by gθ(ỹ|y0) and defined on Rθy0

= {ỹ : (y0, ỹ) ∈ Rθ}; the vector Xθ

conditionally on Yθ = y ∈ Rθ, denoted by kθ(x|y) for x ∈ R
n
+ × {y}; and,

finally, the distribution of Xθ given Y θ0 = y0 for x ∈ R
n
+ × {y0} × Rθy0

and

denoted by hθ(x|y0).

We note the relation

gθ(y1, . . . , yn−1|y0) =
(n − 1)!

F (θ, y0)n−1
fθ(y1) · · · fθ(yn−1),

where F (θ, y0) = 1 −
∫ |y0−δ|
−|y0−δ| fθ(s) ds. Thus if one wants to treat the leave-

one-out likelihood as an actual likelihood it has to be normalized and then it can

be viewed as equivalent to gθ(y1, . . . , yn−1|y0). From now on we consider the

maximization of Ly(θ) = gθ(y1, . . . , yn−1|y0).

We follow a general scheme of the EM algorithm, see for example Wu (1983)

and report the following two fundamental facts that hold for any fixed value of
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incomplete observations y ∈ Rθ
′

:

Ly(θ) =

∫

Rn
+
×{y}

log hθ
(

πθ(x)|yθ0
)

kθ′(x|y) dx+

−
∫

Rn
+
×{y}

log kθ(π
θ(x)|πθ(y)) · kθ′ (x|y) dx

(20)

and
∫

Rn
+
×{y}

log kθ(π
θ(x)|πθ(y)) · kθ′(x|y) dx

≤
∫

Rn
+
×{y}

log kθ′(π
θ′ (x)|πθ′ (y)) · kθ′(x|y) dx.

These two conditions guarantee the monotonicity of Ly(θ̂n) in n of the algo-

rithm in which the updates θ̂n are based on the maximizing the first term of the

right hand side of (20), which we denote as Qy(θ|θ′).
Let us now discuss how this maximization avoids being trapped in local max-

ima that are due to the unboundedness of the likelihood. In this discussion, we

consider the case of a symmetric generalized Laplace distribution given by fθ. Let

s(γ) be the density of gamma distribution with the shape parameter τ < 0.5 and

the scale equal to one and define

M(y, y′;θ|θ′) =

∫ ∞

0

(

log s(γ)√
2πσ2γ

− (y−δ)2

2σ2γ

)

s(γ)√
2πσ′2γ

e
− (y′−δ′)2

2σ′2γ dγ

fθ′
(

y′
)

= P(y′,θ′) − log(2πσ2)

2
− (y − δ)2

2σ2
N (y′,θ′),

where

N (y′,θ′) =

∫ ∞

0

1
γ

s(γ)√
2πσ′2γ

e
− (y′−δ′ )2

2σ′2γ dγ

fθ′
(

y′
) ,

P(y′,θ′) =

∫ ∞

0

log s(γ)√
γ
· s(γ)√

2πσ′2γ
e
− (y′−δ′)2

2σ′2γ dγ

fθ′
(

y′
) .
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Straight computations lead us to

Qy(θ|θ′) =
n−1
∑

i=0

M(yθi , yθ
′

i ;θ|θ′) − log fθ(y
θ
0 )+

− (n − 1) log
(

F (θ, yθ0 )/(n − 1)!
)

=

n−1
∑

i=0

P(yθ
′

i ,θ′) − n

2
log(2πσ2) −

n−1
∑

i=0

(yθi − δ)2

2σ2
N (yθ

′

i ,θ′)+

− log fθ(y
θ
0 ) − (n − 1) log

(

F (θ, yθ0 )/(n − 1)!
)

.

(21)

If we would not consider the leave one out algorithm, the maximization

would be based on the function of δ that is listed in the second line of the above.

This is a simple quadratic function of δ and the maximum is easily found in the

explicit form. However, in the unbounded density case, the algorithm would typ-

ically be stuck in a value δ̂n = y0 and in the next step the solution would favor

the same δ̂n+1 = y0. In the leave-one-out version of the algorithm as discussed

above, the term in the last line of (21) will punish choosing the value δ̂n+1 close

to y0 as − log fθ(y
θ
0 ) converges to minus infinity at δ approaching yθn

0 . It would ef-

fectively be pushing away from taking θn approaching any particular observation.

This would have a similar effect to taking out the term M(yθ0 , yθ
′

0 ;θ|θ′) from the

second line of (21). In this sense, it would be a leave-one-out EM algorithm in

which we protect against sticking with δ in any particular observation.
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Polfeldt, T. (1970a). Minimum variance order when estimating the location of an

irregularity in the density. The Annals of Mathematical Statistics 41, 673–679.

Polfeldt, T. (1970b). The order of the minimum variance in a non-regular case.

The Annals of Mathematical Statistics 41, 667–672.

Protassov, R. (2004). Em-based maximum likelihood parameter estimation for

multivariate generalized hyperbolic distributions with fixed λ. Statistics and
Computing 14, 67–77.

Rao, B. (1966). Asymptotic distributions in some nonregular statistical problems.
Ph.D. thesis, Michigan State University.

Rao, B. (1968). Estimation of the location of the cusp of a continuous density.

The Annals of Mathematical Statistics 39, 76–87.

51



A

Seo, B. & Kim, D. (2012). Root selection in normal mixture models. Computa-
tional Statistics & Data Analysis 56, 2454–2470.

Wu, C. (1983). On the convergence properties of the EM algorithm. Ann. Stat.
11, 95–103.

52



B





Paper B

Convolution invariant subclasses of
generalized hyperbolic distributions
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Abstract

We show that the generalized Laplace distributions and the normal inverse Gaus-

sian distributions together with the corresponding two classes of variance mixing

distributions: the gamma distributions and the inverse Gaussian distributions are

the only subclasses of the generalized hyperbolic distributions and, respectively,

the generalized inverse Gaussian that are closed under convolution.

Key words: variance-mean normal mixture, generalized inverse Gaussian

distribution, inverse gamma distribution, generalized asymmetric Laplace

distribution, Bessel function distribution, gamma variance normal mixture
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1 Preliminaries

In continuous time stochastic modeling, parametric classes of infinitely divisible

distributions that are closed under convolution play a central role. Thus for any

parametric family it is of interest to identify its convolution invariant subclasses.

Within the generalized hyperbolic laws (GH), invariance under convolution of

the generalized asymmetric Laplace distributions (also known as Bessel function

or variance gamma distributions) and the normal inverse Gaussian (NIG) dis-

tributions is well known and frequently quoted in the literature, cf. Barndorff-

Nielsen (1978), Kotz et al. (2001), and Bibby & Sørensen (2003). To quote

from Bibby & Sørensen (2003): “However, in the case of the NIG and VG [vari-

ance gamma] distributions, the convolution properties ... imply that the value of

the Lévy process will be NIG-distributed, respectively VG-distributed, at all time

points. This makes the NIG and VG Lévy processes more natural generalized

hyperbolic Lévy processes than the other generalized hyperbolic Lévy processes.”

Some authors also mention that within the GH distribution, there are no other

convolution invariant families, see Fajardo & Farias (2004) (this paper, in fact,

reports only the NIG class) or Hammerstein (2010). Despite these few mentions

we did not find in the literature any explicit and rigorous argument for the char-

acterizations of the convolution invariant GH subfamilies. The intention of this

note is to provide such a one.

A wide range of infinitely divisible distributions can be obtained by mixtures

of normal distributions. Such mixtures are distributed according to a density that

is represented as a weighted average of normal densities. The most common is the

variance mixture of normal densities, the density of which is given through

f (x) =

∫ ∞

0

1√
γ
φ(x/

√
γ) dF (γ),

where φ is a standard normal density and dF (γ) an arbitrary probability distribu-

tion on [0,∞) that serves as weights with which the densities are mixed together.

The variance mixture of normal distributions is equivalently given as the distri-

bution of X =
√
ΓZ , where Γ is distributed according to F and independently

of a standard normal variable Z .

A further natural (and well-known) extension of mixing of normal densities

is given in the following definition.

Definition 3. A random variable X (and also the corresponding distribution) is

called a normal variance-mean mixture with a non-negative mixing variable Γ ,
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1. Preliminaries

variance scale σ > 0, mean scale μ ∈ R if

X = σ
√
ΓZ + μΓ , (1)

where Z is a standard normal variable independent of Γ .

This note is dealing with particular subclasses of the normal variance-mean

mixtures obtained by restricting the distribution of Γ to some parametric subclass.

Among discussed the most general is the class of generalized hyperbolic distribu-

tions with the generalized inverse Gaussian distributions as the corresponding

class of mixing distributions. For the purpose of settling notation and terminol-

ogy let us recall formal definitions of the two.

Generalized Inverse Gaussian (GIG) – This class of mixing distributions is

given by the density

f (x) =

(

ψ/χ
)λ/2

2Kλ(
√

ψχ)
xλ−1e−(ψx+χ/x)/2, x > 0,

where the parameters satisfy

ψ > 0 ,χ ≥ 0 , if λ > 0,

ψ > 0 ,χ > 0 , if λ = 0,

ψ ≥ 0 ,χ > 0 , if λ < 0.

The moment generating function of a GIG distribution is given by

M(t) =

(

ψ

ψ− 2t

)λ/2 Kλ
(√

χ(ψ− 2t)
)

Kλ(
√

ψχ)
, t < ψ/2. (2)

Let us mention two special cases.

• The inverse Gaussian distribution (the first passage time by a Brownian

motion of a fixed level) is a GIG with λ = −1/2.

• The gamma distribution is GIG with χ = 0.

Generalized Hyperbolic (GH) – This class is obtained as normal variance-

mean mixtures (1) with Γ distributed as a GIG distribution.
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The two special cases of GIG mentioned above specify two corresponding

classes of the GH distributions, namely the generalized asymmetric Laplace (GAL)

distributions with gamma as a mixing distribution and the normal inverse Gaus-

sian (NIG) distributions with inverse Gaussian mixing. For more detailed in-

formation we refer to Eberlein & Keller (1995), for the generalized hyperbolic

distributions, to Jørgensen (1982) for the generalized inverse Gaussian distribu-

tions, and to Kotz et al. (2001) for the generalized Laplace distributions.

2 Convolutions of normal variance-mean mixtures

Let us review some fundamental properties of the normal variance-mean mixtures.

First, observe that the variance-mean normal mixtures coincide if and only if their

mixing distributions are the same, see also Hammerstein (2010) for some related

results.

Proposition 1. Let X1 =
√
Γ1Z1 + μΓ1 and X2 =

√
Γ2Z2 + μΓ2 be variance-

mean normal mixtures. Then they have the same distribution if and only if Γ1

and Γ2 are also identically distributed.

Proof. Let z = z(t, μ) ∈ C be a solution to z2/2 + μz − it = 0. Then

E
(

ezX1
)

= E
(

ezX2
)

, (3)

whenever any of the sides is well defined.

However,

E
(

ezX1
)

= E

(

E

(

ez·Z√
γ+μγz|γ = Γ1

))

= E

(

eΓ1(z2/2+μz)
)

= E
(

eitΓ1
)

,

which is the characteristic function of X1. Since the same is true for X2, it follows

from (3) that both the characteristic functions are equal.

Consider variance-mean mixtures X1 =
√
Γ1Z1 + μΓ1 and X2 =

√
Γ2Z2 +

μΓ2, where (Γ1,Z1) and (Γ2,Z2) are independent. Then

X1 + X2 =
√

Γ1Z1 +
√

Γ2Z2 + μ(Γ1 +Γ2)
d
=
√

Γ1 + Γ2Z + μ(Γ1 +Γ2),
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where Z is a normal random variable and
d
= stands for the equality of distribu-

tions. Hence the sum X1 +X2 is also a variance-mean mixture with the same scale

μ and the mixing variable Γ = Γ1 + Γ2.

For μ ∈ R, let Fμ be a sub-family of normal variance-mean mixtures of the

form X =
√
ΓZ + μΓ , where Γ ∈ G. From the properties shown above we have

the following immediate result.

Proposition 2. For each μ ∈ R, Fμ is closed under convolution if and only if G
is closed under convolution.

3 Convolution invariance within GH distributions

As we have seen above, for the GH distributions it is sufficient to investigate the

closeness under convolution for the corresponding variance mixing distributions,

i.e. the GIG distributions. Thus next we investigate what subclasses of the GIG

distributions are convolution invariant.

Lemma 1. Let Γ1 and Γ2 be two independent GIG distributed variables, with

corresponding parameters (χ1,ψ1, λ1) and (χ2,ψ2, λ2), where χ1 and χ2 are greater

then zero. For Γ = Γ1 + Γ2 to be again GIG, say, with parameters (χ,ψ, λ), it is

necessary that

ψ = min(ψ1,ψ2),

χ = (
√
χ1 +

√
χ2)2,

λ = λ1 + λ2 + 1/2

and, additionally,

(

22χ1χ2

)1/4
ψλ/2Kλ1(

√

χ1ψ1)Kλ2 (
√

χ2ψ2) =
(

π2χ
)1/4
ψ
λ1/2
1 ψ

λ2/2
2 Kλ(

√

χψ).

(4)

Proof. The equality ψ = min(ψ1,ψ2) follows from the domain of the moment

generating function given in (2).
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If Γ is GIG with parameters (χ,ψ, λ), then for t < ψ/2:

√

ψλ

ψλ1
1 ψ
λ2
2

√

(ψ1 − 2t)λ1 (ψ2 − 2t)λ2

(ψ− 2t)λ
Kλ1 (

√

χ1ψ1)Kλ2(
√

χ2ψ2)

Kλ(
√

χψ)
(5)

=
Kλ1

(√

χ1(ψ1 − 2t)
)

Kλ2

(√

χ2(ψ2 − 2t)
)

Kλ
(√

χ(ψ− 2t)
) ,

or, equivalently,

A· exp
(

√

χ1(ψ1 − 2t) +
√

χ2(ψ2 − 2t) −
√

χ(ψ− 2t)
)

·

· (ψ1 − 2t)λ1/2+1/4(ψ2 − 2t)λ2/2+1/4

(ψ− 2t)λ/2+1/4

=
Fλ1

(√

χ1(ψ1 − 2t)
)

Fλ2

(√

χ2(ψ2 − 2t)
)

Fλ
(√

χ(ψ− 2t)
) , (6)

where Fν(x) =
√

2x/πexKν(x) and

A =

√

(2/π)
√

χ1χ2/χ · ψλψ−λ1
1 ψ−λ2

2 · Kλ1(
√

χ1ψ1)Kλ2 (
√

χ2ψ2)/Kλ(
√

χψ).

Using the asymptotics

lim
x→∞

√

2x

π
exKν(x) = 1

and letting t decreasing to negative infinity of the both sides of (6), the right hand

side converges to one while the left hand side is converging either to zero or to

infinity as long as
√

2χ1 +
√

2χ2 6= √
2χ.

We can now assume that
√
χ1 +

√
χ2 =

√
χ. The left hand side of (6)

converges to the same value as

A · (ψ1 − 2t)λ1/2+1/4(ψ2 − 2t)λ2/2+1/4

(ψ2 − 2t)λ+1/4
,

when t → −∞, that is zero or infinity unless λ1 + λ2 + 1/2 = λ. Under this

constraint one obtains by passing with t to −∞ in (6) the additional relation as

given by (4).
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3. Convolution invariance within GH distributions

In the previous lemma we have exploited the behaviour of the moment gen-

erating function at zero. In the next one, we examine its behaviour at the upper

boundary of the domain to derive further restrictions on the parameters.

Lemma 2. Let Γ1 and Γ2 be two independent and identically distributed GIG

variables, with parameters (χ,ψ, λ), where χ is greater than zero. For Γ = Γ1+Γ2

to be again GIG, and thus, by Lemma 1, having parameters (22χ,ψ, 2λ + 1/2),

it is necessary for λ to be less then -1/4 and, additionally,

√
π·22λ+1/2 ·G−2λ−1/2

(

2
√

χ(ψ− 2t)
)

= G2
−λ
(

√

χ(ψ− 2t)
)

, t < ψ/2, (7)

where Gν(x) = xνKν(x).

Proof. We use equation (4) and the relation K−ν(x) = Kν(x), to re-write equation

(5) as

B · (ψ− 2t)−1/4+|λ|−|λ+1/4|
=

G2
|−λ|

(√

χ(ψ− 2t)
)

G|−2λ−1/2|
(

2
√

χ(ψ− 2t)
) (8)

where B =
√
π · 2−|2λ+1/2| · χ−1/4+|λ|−|λ+1/4|.

For a positive ν,

lim
x→0+

Gν(x) = Γ(ν)2ν−1 (9)

so if t converges from below to ψ/2 and λ is greater or equal to −1/4, then the

left hand side of (8) converges either to zero or is unbounded, while the right

hand side convergent to a non-zero constant.

We are ready for the main result that completely describes the convolution

invariant families within the GIG distributions.

Theorem 4. Within the generalized inverse Gaussian distributions there are only

two subclasses that are closed under convolution: the gamma distributions and

the inverse Gaussian distributions.

Proof. Consider a subfamily of GIG distributions that is closed under convolution

and let (χ0,ψ0, λ0) be the parameters of a member of this subfamily.

Assume that χ0 6= 0. If λ0 > −1/2, then the increasing sequence defined

through the recurrence relation λn = 2λn−1 + 1/2, is a sequence of parameters
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of some members in the family because of Lemma 2. Since λn increases without

bound the terms will be eventually positive, which is not permitted as shown in

Lemma 2.

Now assume that λ0 < −1/2, so that for sufficiently large n leads to −λn −
1 > 0. Differentiating both side of (7) with respect to

√

χ(ψ− 2t), and using

the identity
[

xνKν(x)
]′
= −xν−1Kν−1(x), ν > 0,

we obtain

√
π22λn+1/2G−2λn−3/2

(

2
√

χn(ψn − 2t)
)

(10)

= G−λn

(

√

χn(ψn − 2t)
)

G−λn−1

(

√

χn(ψn − 2t)
)

Let now consider the limits in the above when t → ψn/2. Since −λn − 1 > 0,

applying (9) yields

√
π22λn+1/2Γ(−2λn − 3/2)2−2λn−5/2

= Γ(−λn − 1)2−λn−2Γ(−λn)2−λn−1,

or, equivalently,

√
π22λn+1 −λn − 1

−2λn − 3/2
=

Γ2(−λn)

Γ(−2λn − 1/2)
. (11)

On the other hand applying (9) in (7) yields

√
π22λn+1

=
Γ2(−λn)

Γ(−2λn − 1/2)
,

which is only possible when λn = −1/2 contradicting that λn < −1.

We conclude that either λ0 = −1/2, which corresponds to a member of

the inverse Gaussian distributions that is closed under convolutions, or χ0 =

0, which corresponds to another convolution closed family, namely that of the

gamma distributions.

An immediate consequence is the following characterization.

Corollary 1. Within the class of the generalized hyperbolical distributions with

the support over the entire real line only two classes of distributions are closed un-

der the convolution: the generalized Laplace distributions and the normal inverse

Gaussian distributions.
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Abstract

The recently proposed non-Gaussian Matérn random field models, generated

through stochastic partial differential equations, are extended by considering the

class of Generalized Hyperbolic processes as noise forcings. The models are also

extended to the standard geostatistical setting where irregularly spaced observa-

tions are modeled using measurement errors and covariates. A maximum likeli-

hood estimation technique based on the Monte Carlo Expectation Maximization

algorithm is presented, and it is shown how the model can be used to do pre-

dictions at unobserved locations. Finally, an application to precipitation data is

presented, and the performance of the non-Gaussian models is compared with

standard Gaussian and transformed Gaussian models through cross-validation.

Key words: Matérn covariances, SPDE, Markov random fields, Laplace, Normal

inverse Gaussian, MCEM algorithm
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1 Introduction

Latent Gaussian models are at the heart of modern spatial statistics. The prime

reasons for this are that they are both theoretically and practically easy to work

with; there exists a well-developed theory for likelihood-based estimation of pa-

rameters and the important problem of spatial reconstruction is easily solved us-

ing the standard kriging prediction which is optimal for Gaussian models. For

non-Gaussian datasets, the standard approach is to try to find some non-linear

transformation that enables the use of Gaussian models. This approach is com-

monly referred to as trans-Gaussian Kriging (Cressie, 1993) and common trans-

formations include the square root transform, (Cressie, 1993, Huerta et al., 2004,

Berrocal et al., 2010, Sahu & Mardia, 2005) and the log transform (Cressie, 1993,

Cameletti et al., 2013, Bolin & Lindgren, 2011). An effect of using such trans-

forms is that these induce a certain dependence structure between the mean and

the covariance for the data in the untransformed scale.

For example, consider the commonly used square root transformed latent

Gaussian model
√

yi = X (si) + εi, where yi are the observations, εi ∼ N (0,σ2
ε)

is measurement noise, and X (s) is a Gaussian field with a stationary covariance

function and a mean value B(s)β modeled using some covariates B(s). According

to this model, the mean and covariance of the data in the original scale is given by

E[yi] = CX (0) + 2(B(si)β)2,

C[yi, yj] = 2CX (si − sj)
2
+ 4(B(si)β)(B(sj)β)CX (si − sj),

where CX is the stationary covariance function of X (s) with the measurement

variance σ2
ε added at 0. Viewing the equations above, it is not obvious how

to interpret the effect of the measurement error and the the mean field on the

observations and the usage of covariates for the mean induces a non-stationary

covariance function for the data.

Furthermore, the posterior variance of the process in the same scale as the

data is given by

V[X (s)2|y] = 2V[X (s)|y]2
+ 4E[X (s)|y]2V[X (s)|y].

Hence, the observations y and the mean field affects the kriging variance for the

transformed Gaussian model, through the term E[X (s)|y]. This dependence is

often not unreasonable for real data, and it has even been used to generate covari-

ance structures (Azaı̈s et al., 2011). However, as the models grow more complex,
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1. Introduction

for example by introducing non-stationary covariance functions, spatially varying

measurement errors, or covariates, the effects of the transformation methods be-

come less transparent and more stale. In these situations, one would like to use

latent non-Gaussian models without resorting to transformations.

Compared to the Gaussian models, very little research has been devoted to

latent non-Gaussian models in geostatistics, and the aim of this work is therefore

to develop such models. We state three goals: First, we want to find a class of

non-Gaussian models that share some of the desirable properties of the Gaussian

models while allowing for heavier tails and asymmetry in the data. Secondly,

we want to provide tools for fitting these models to real data, assuming a latent

structure with covariates and measurement noise. Finally, we want to provide

tools for using the models for spatial reconstruction.

We will extend the work of Bolin (2013), where non-Gaussian models with

Matérn covariances (Matérn, 1960) formulated as stochastic partial differential

equations (SPDEs) driven by non-Gaussian noise were investigated. The work

consisted of providing an existence result for such SPDEs, and in some detail

study parameter estimation of SPDEs driven by generalized asymmetric Laplace

(GAL) noise. Although this is a good starting point for providing the tools

we seek, there are some major issues that have to be resolved in order to use

those methods for real applications: The estimation procedure proposed in Bolin

(2013) was based on using the Expectation Maximization (EM) algorithm, and it

works well as long as there is no measurement noise and all nodes in the field are

observed. Unfortunately, these requirements are too restrictive for practical appli-

cations. However, we will show that these requirements can be avoided, utilizing

an Monte-Carlo Expectation Maximization (MCEM) algorithm, and extend the

estimation technique to a larger class of non-Gaussian models.

The structure of the paper is as follows. In Section 2, a brief overview of

the methodology used for representing the SPDE models is given. This section

also introduces the class of models that is considered in this work, namely SPDE

models driven by either GAL noise or Normal inverse Gaussian (NIG) noise and

we argue that these two cases are the only relevant cases to consider in the class

of generalized hyperbolic distributions for non regular sampled observations. In

Section 3, we introduce the full hierarchical model that can be used for spatially

irregular observations with covariates and measurement error. In Section 4, the

MCEM parameter estimation procedure is derived and Section 5 shows how to

do spatial prediction and kriging variance estimation using these models. Section
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6 contains an application of these models to a real dataset consisting of monthly

mean and max precipitation measurements, and results of the non-Gaussian mod-

els are compared with results obtained using standard Gaussian models and trans-

formed Gaussian models. Finally, Section 7 contains some concluding remarks

and ideas for future work.

2 Non-Gaussian SPDE-based models

The Gaussian Matérn fields are perhaps the most widely used models in spatial

statistics. These are stationary and isotropic Gaussian fields with a covariance

function on the form

C (h) =
21−νφ2

(4π)
d
2Γ(ν + d

2 )κ2ν
(κ‖h‖)νKν(κ‖h‖), h ∈ R

d , ν > 0, (1)

where d is the dimension of the domain, ν is a shape parameter, κ a scale param-

eter, φ2 a variance parameter, and Kν is a modified Bessel function of the second

kind. Since the Matérn-type spatial structure has proven so useful in practice, we

want to construct models with this type of spatial structure but with non-Gaussian

marginal distributions. In order to do this, we use the fact that a Matérn field X (s)

can be viewed as a solution to the SPDE

(κ2 −Δ)
α
2 X = Ṁ , (2)

where Δ =
∑d

i=1
∂2

∂ s2
i

is the Laplacian, and α = ν + d/2 (Whittle, 1963).

The Gaussian Matérn fields are recovered by choosing Ṁ as Gaussian white noise

scaled by a variance parameter φ, and the mathematical details of this construction

in the case when Ṁ is non-Gaussian are given in Bolin (2013).

To use these models in practice, we need a method for producing efficient

representations of their solutions. One such method is the Hilbert space approxi-

mation technique by Lindgren et al. (2011) which was extended by Bolin (2013)

to the non-Gaussian case when M(s) is a type G Lévy process.

Recall that a Lévy process is of type G if its increments can be represented as

a Gaussian variance mixture V 1/2Z where Z is a standard Gaussian variable and

V is a non-negative infinitely divisible random variable. Rosiński (1991) showed

that every type G Lévy process can be represented as a series expansion, and for a

compact domain D ∈ R
d it can be written as M(s) =

∑∞
k=1 Zkg(γk)

1
2 I(s ≥ sk),
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2. Non-Gaussian SPDE-based models

where the function g is the generalized inverse of the tail Lévy measure for V , Zk

are iid N(0, 1) random variables, γi are iid standard exponential random variables,

sk are iid uniform random variables on D, and

I(s ≥ sk) =

{

1 if si ≥ sk,i for all i ≤ d ,

0 otherwise.

Since V is infinitely divisible, there exists a non-decreasing Lévy process V (s) with

increments distributed the same as V . This process has the series representation

V (s) =
∑∞

k=1 g(γk)
1
2 I(s ≥ sk).

In the following sections, we briefly describe the Hilbert space approximation

technique for the case when M is a type G process, and then introduce a subclass

of the type G process that are suitable for the model (2).

2.1 Hilbert space approximations

Assume that M in (2) is a type G Lévy process. The starting point for the Hilbert

space approximation method is to consider the stochastic weak formulation of the

SPDE,

(κ2 −Δ)
α
2 X (ψ) = Ṁ (ψ), (3)

where ψ is in some appropriate space of test functions and Ṁ(ψ) is defined as

the linear functional Ṁ(ψ) =
∫

ψ(s)M( ds) (see Bolin, 2013, Appendix A for

details). A finite element approximation of the solution X is then obtained by

representing it as a finite basis expansion X (s) =
∑n

i=1 wiφi(s), where {φi} is a

set of predetermined basis functions and the stochastic weights are calculated by

requiring (3) to hold for only a specific set of test functions {ψi, i = 1, . . . , n}.

By assuming that {ψi} = {φi}, one obtains a method which is usually referred

to as the Galerkin method and this gives an expression for the distribution of the

stochastic weights conditionally on the variance process,

w|V ∼ N
(

K−1
α m,K−1

α ΣK−1
α

)

. (4)

Here Kα = C(C−1K)α/2 and the matrices K, C, and Σ have elements given by

Cij =
〈

φi, φj

〉

, Kij = κ
2
〈

φi, φj

〉

+
〈

∇φi, ∇φj

〉

, Σij =
∫

φi(s)φj(s)V ( ds), and

mi =
∫

φi(s)V ( ds).

In order to get a practically useful representation, we need to be able to eval-

uate the integrals Σij and mi efficiently. Whether this is possible or not depends
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on the basis {φi} and the variance process V (s). For the purpose of this work

we choose to work with piecewise linear, compactly supported, finite element

bases induced by triangulations of the domain of interest. For bases of this type,

a mass-lumping procedure gives that mi = Vi and Σ = diag(V1,V2, . . . ,Vn),

where

Vi =

∫

hi

V ( ds) (5)

and hi is the area associated with φi(s). For further details, see Bolin (2013) and

Lindgren et al. (2011).

2.2 The generalised hyperbolic processes

The most well known subclass of the type G Lévy process is the class of gener-

alised Hyperbolic processes generated by the Generalized Hyperbolic (GH) distri-

bution (see Barndorff-Nielsen, 1978, Eberlein & von Hammerstein, 2004). The

GH distribution covers a wide range of distributions including the NIG distri-

bution, the Normal inverse Gamma distribution, the GAL distribution, and the

t-distribution.

The generalised Hyperbolic distribution has five parameters σ, ν ∈ R
+, γ, μ

, τ ∈ R, and a density function

f (x) =c1

(

√

(νσ)2 + (x − γ)2

c2

)τ−1/2

e
μ

σ2 (x−γ)

Kτ−1/2

(

c2

√

(νσ)2 + (x − γ)2

)

,

where c1 =
2(τ−1)/2

√
π(σ2ν)τKτ(

√
2ν)

and c2 =
1
σ

√

2 +
μ2

σ2 .. A GH r.v. X can be repre-

sented as

X = γ+ μV + σ
√

V Z , (6)

where V is a generalized inverse Gaussian r.v. V ∼ GIG(τ, 2, ν2) and Z ∼
N (0, 1). The GIG(p, a, b) distribution has the density function

f (x) =

(

a/b
)p/2

2Kp

(√
ab
)xp−1e−

ax+b/x
2 . (7)
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2. Non-Gaussian SPDE-based models

where the parameters satisfy a > 0, b ≥ 0 if p > 0, a > 0, b > 0 if p =

0, and a ≥ 0, b > 0 if p < 0. Two special cases of the GIG distribution

are the inverse Gaussian (IG) distribution, obtained when p = −1/2, and the

Gamma distribution, obtained when b = 0. We denote the gamma distribution

by Γ(p, a) = GIG(p, a, 0) and the inverse Gaussian distribution by IG(a, b) =

GIG(−1/2, a, b). For more details of the GIG distribution see Jørgensen (1982).

A property of the GH distribution which is important for likelihood-based

parameter estimation is that the variance component V is GIG distributed also

conditionally on X . However, integrals of the variance process V (s) of a GH

process will in general not have known parametric distributions, and the random

variable Vi in equation (5) will therefore not have known parametric distributions

in general. Without this property we are not able to derive likelihood-based pa-

rameter estimation procedures, nor make spatial predictions, for the models in

this work.

The random variables Vi would have known parametric distributions if the

variance process belonged to a class of distributions that is closed under convo-

lution. There are only two special cases of the GH distribution for which the

variance components are closed under convolution (Podgórski & Wallin, 2013).

The first special case is the GAL distribution, in finance is known as the variance

gamma distribution, which was studied in the context of the SPDE models in

Bolin (2013), and the second is the NIG distribution. Thus, from now on, we

focus on the SPDE model (2) driven by either GAL noise or NIG noise.

Examples of marginal distributions for non-Gaussian Matérn fields, generated

by the SPDE model (2), are displayed in Figure 1. Compared with Gaussian

Matérn fields, the advantage with using NIG or GAL noise is that we can allow for

heavier tails and asymmetry in the marginal distributions. The main difference

between using GAL noise instead of NIG noise is that the probability density

function (pdf ) for the NIG case always is differentiable, while the GAL case can

allow for sharper peaks at the mode.

For practical implementations of the models, the most important thing to

know about the GAL and NIG distributions is how they affect the Hilbert space

approximation procedure. For both distributions, we get that m and Σ in the

Hilbert space approximation (4) can be written as mi = γτhi + μVi, and Σ =

diag(V1, . . . ,Vn) respectively. For the GAL distribution V (s) is a gamma process,

and the variance components Vi are therefore gamma distributed, Vi ∼ Γ(hiτ, 1).

For the NIG distribution the V (s) is a Inverse Gaussian (IG) process, and the
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Figure 1: Examples of marginal probability density functions for X (s) from (3)

where Ṁ is either NIG or GAL noise. In Figure a) and b) the pdf is generated

by GAL noise with different values of τ for the different curves in a) and different

values of μ for the different curves in b). In Figure c) and d) the pdf is generated by

NIG noise with varying ν2 in a) and varying μ in b). For all examples, the random

field X (s) has a stationary Matérn covariance function with shape parameter α =
2.

variance components are therefore IG distributed, Vi ∼ IG(ν2hi, 2).

Remark 1. If we would work on regular lattices, there are certain distributions

in the GH family, such as the t-distribution, where one could imagine fixing the

distributions such that the variance process has known distributions for the lattice

points; however, having to work on regular lattices is a too strong restriction for

us to consider such models any further. Also, even in situations where one has

data on a regular lattice and only is interested in predictions to that same lattice,

it is not clear what the corresponding continuous model would be if a model of

this kind would be used.
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3. Model extensions, covariates, and measurement noise

3 Model extensions, covariates, and measurement noise

To use the models discussed above for real data, we assume a hierarchical model

structure. The field of interest, X (s), is modelled using one of the SPDE models,

with observations, y1, . . . , yN , at locations s1, . . . , sN . In practice, these observa-

tions are often affected by measurement noise, and we thus need to include this

in the model. Furthermore, we allow covariates for the mean value of the field by

assuming that X (s) is on the form

X (s) =

nx
∑

i=1

Bi(s)βi + ξ(s), (8)

where ξ(s) is a SPDE field and {B1, . . . ,Bnx} are known covariates, note that ξ(s)
not necessarily has zero mean in the non-Gaussian case. Using the representation

(4) for ξ(s), where the noise process is on the form of (6), we obtain the following

hierarchical model, expressed in terms of the stochastic weights w for the basis

expansion of ξ(s)

y = Bβ+ Aw + ε,

w = K−1
α

(

τaγ+ Vμ+ σ
√

VZ
)

.
(9)

Here A is the observation matrix with elements Aij = φi(sj) linking the measure-

ments to the latent field, B is a matrix containing the covariates {Bi} evaluated

at the measurement locations, and ε is a vector of iid N (0,σ2
ε) variables rep-

resenting the measurement noise. The vector Z contains iid standard Gaussian

variables and the distribution of Vi is determined by the noise process, specifically

Vi ∼ Γ(τhi, 1) for GAL noise and Vi ∼ IG(ν2hi, 2) for NIG noise and the Vi

are independent, recall that hi =
∫

φi(s) ds. To recover the latent field X (s) at the

measurement locations, one has to calculate X = Bβ+ Aw.

For the SPDE representation of the Gaussian Matérn fields it is easy to in-

troduce non-stationarity in the model by allowing the covariance parameters to

vary with space. In practice, this is achieved by representing the covariance pa-

rameters as regressions on some smooth covariates, e.g. assuming that κ(s) =

exp
(
∑

Bκ,i(s)βκ,i
)

where {Bκ,i} are known covariates would generate a model

with a spatially varying covariance range. In the case of the model above, we have

several parameters for the noise process, and it might be of interest to allow for

these to vary with space as well, especially in cases when one has covariates that
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not only affect the mean value of the field. This can be achieved in the same

way as for the covariance parameters, by assuming regressions on some smooth

covariates. For example, we can replace γ and μ in (9) by γ(s) =
∑

Bγ,i(s)γi and

μ(s) =
∑

Bμ,i(s)μi respectively, where {Bγ,i} and {Bμ,i} are smooth covariates.

Adding the covariates to (9) generates the following hierarchical model:

y = Bβ+ Aw + ε,

w = K−1
α

(

τBγγ+ IVBμμ+ σ
√

VZ
)

,
(10)

where IV = diag(V1,V2, . . . ,Vn). The matrices Bγ and Bμ are respectively given

by {Bγ,i} and {Bμ,i} evaluated at the node locations. This is a highly flexible

model; however, one needs to be careful in defining the model so that the param-

eters are identifiable. One needs to be especially careful if using location covariates

for both X (B) and w (Bγ) since this easily leads to a non-identifiable model unless

the covariates are chosen carefully to avoid this issue.

4 Parameter estimation

Fitting the model above to data requires a parameter estimation method. In this

section, we discuss how the parameters Θ = {κ,β,σε, τ, νγ, μ,σ} can be es-

timated through likelihood methods for the NIG and GAL-driven SPDEs. The

idea is to modify the EM-algorithm in Bolin (2013). The modification needed

turns out to be the addition of Monte Carlo simulations to estimate the required

expectations. We begin with a brief overview of the MCEM-algorithm and then

cover the details needed to implement the procedure for our models.

4.1 Monte Carlo EM

The EM-algorithm (Dempster et al., 1977) is convenient to use when the data-

likelihood is difficult to work with but there exists some latent variables {w,V} so

that the augmented data {y,w,V} has a simpler likelihood (we utilize the same

variable names in this subsection as in the rest of the paper for readability, but

the result in this subsection is more general then for the models in this paper).

The EM-algorithms uses the augmented likelihood π(y,w,V|Θ ) instead of the

original likelihood π(y|Θ), but requires the ability to compute expectations of the

augmented likelihood.
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4. Parameter estimation

The pth iteration of the EM-algorithm is done in two steps denoted the E-step

and the M-step. In the E-step, one computes the function

Q
(

Θ,Θ (p)
)

= EV

[

log π(y,w,V|Θ )|y,Θ (p)
]

, (11)

and in the M-step, one maximizes Q(Θ,Θ (p)) and obtains the (p + 1)th iterate

Θ (p+1). The new iterate has the property π(y|Θ (p+1)) ≥ π(y|Θ (p)) and under

quite general conditions the procedure converges to a local maximum of the like-

lihood (Wu, 1983).

In certain cases when the E-step cannot be calculated analytically, one can

use the MCEM algorithm, introduced in Wei & Tanner (1990). The idea of the

MCEM algorithm is to replace Q in the E-step with

QMC
(

Θ,Θ (p)
)

=
1

k

k
∑

i=1

log π(y,V(i),w(i)|Θ), (12)

where {w(i),V(i)} is a sample from the distribution π(V,w|y,Θ (p)). In situations

where it is not possible sample from the joint density for a set of variables {w,V},

but the conditional densities are available one can use the Gibbs sampling algo-

rithm. The algorithm generates k samples from the joint density by sampling

sequentially w(i)|V(i−1) then V(i)|w(i) for i = 1, . . . , k. A downside is that the

samples {w(i),V(i)}k
i=1 will not be independent and also a starting point V(0) is

required.

4.2 The E-step

For the model (10), the function Q in (11) cannot be calculated analytically, and

numerical integration is not feasible for the large dimensions of both w and V.

We therefore use the Monte Carlo method described above to evaluate the E step.

Ideally we would simulate from π(V,w|y,Θ (p)) in the MC sampler, but the

joint distribution for {w,V} is not known. However, a key observation is that the

conditional distributions π(V|w, y,Θ) and π(w|V, y,Θ) are known, so we can use

a Gibbs sampler to sample from the joint density.

Note that π(w|V, y,Θ) ∝ π(y|w,V,Θ)π(w|V,Θ) where, by construction,

{y|w,V,Θ} and {w|V,Θ} are Gaussian, and {w|V, y,Θ} is therefore also Gaus-

sian. The explicit form of π(w|{V, y,Θ}) is N (m̂, Q̂−1) where

m̂ = Q̂
−1
(

Qm +
1

σ2
ε

A⊤(y − Bβ)

)

, Q̂ = Q +
1

σ2
ε

A⊤A,
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GAL NIG

p hτ− 1/2 −1

a (Bμμ)2/σ2 + 2 (Bμμ)2/σ2 + 2

b (Kαw − Bγγ)2/σ2 (Kαw − Bγγ)2/σ2 + hν2

Table 1: The distribution of {V|w,Θ}, used in the Gibbs sampler, is GIG(p, a, b)

with parameters given in the table for the cases of NIG noise and GAL noise. Note

that the distribution is independent of Y in both cases.

m = K−1
α (Bγγ+ IVBμμ) , Q =

1

σ2
KαI

−1
V Kα.

The density of {V|w, y,Θ} is proportional to

π(y|w,V,Θ)π(w|V,Θ)π(V|Θ) ∝ π(w|V,Θ)π(V|Θ).

For both GAL and NIG processes, π(V|Θ) can be written as GIG(p, a, b) and we

therefore get

π(V|w, y,Θ) ∝





∏

j

V
pj−1
j









∏

j

V
−1/2
j



 ·

· exp
(

− 1

2

(

1⊤IVa − 1⊤I−1
V b
)

+

− 1

2σ2
(Kαw − Bγγ− IVBμμ)⊤I−1

V (Kαw − Bγγ− IVBμμ)
)

=

∏

j

V
pj−3/2
j exp

(

− 1

2

(

(Kαw − Bγγ)2
j

σ2
+ bj

)

V −1
j

− 1

2

(

(Bμμ)2
j

σ2
+ aj

)

Vj

)

,

which is a GIG distribution with parameters given in Table 1 for the NIG and

GAL cases.

78



4. Parameter estimation

GAL NIG

τ maxτ
τ
k h⊤

(

∑k
i=1 log V (i)

)

−1/2

−∑n
j=1 logΓ(τhj )

ν2 0

(

1⊤h1/2
+

√
(1⊤h1/2)2+2nh⊤V̄−1

√
2h⊤V̄

−1

)2

Table 2: The parameter values that maximizes the function log π(V|τ, ν2) for the

cases of GAL and NIG noise. Here V̄−1 =
1
k

∑k
i=1(V(i))−1.

4.3 The M-step

To find the updating equations for the parameters, QMC should be maximized.

The log-likelihood log π(y,V(i),w(i)|Θ) can be divided into three terms

log π(y|w(i),V(i),Θ) + log π(w(i)|V(i),Θ) + log π(V(i)|Θ). (13)

The first term on the right hand side is a function of Θ only through {β,σε},

the second term only through {γ,μ,σ, κ}, and the third term only through

{τ, ν}, together with that the first term is independent of V(i) enables us to rewrite

equation (13) as

log π(y(i)|w(i),β,σε) + log π(w(i)|V(i),γ,μ,σ, κ) + log π(V(i)|τ, ν). (14)

Thus, the joint maximization of (14) forΘ can be split into three separate steps,

where maximization over {τ, ν}, {β,σε} and {γ,μ,σ, κ} is performed indepen-

dently.

The part of the log-likelihood depending on {τ, ν} is

log π(V|τ, ν2) = c +

{

τh⊤ log V −∑n
i=1 logΓ(τhi) for GAL,

n log(ν) +
√

21⊤h1/2ν− 1
2h⊤V

−1
ν2 for NIG,

where c is a constant. The maxima with respect to these parameters are given in

Table 2. Note that this is the only part of the M step where the estimation for the

NIG and GAL models differ. For the NIG model, the updating equation for ν2

is given analytically whereas one has to do numerical optimization to update τ in

the GAL model.
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To update {β,σε}, one should maximize
∑

i log π(y,w(i)|β,σε), where

log π(y,w|β,σε) =− 1

2σ2
ε

(

y − Aw − Bβ
)⊤ (

y − Aw − Bβ
)

− n log(σε) −
n

2
log(2π).

The function is maximized by β = (B⊤B)−1bx and σ2
ε = (Hx − B⊤β) where

bx =
1

k

k
∑

i=1

(y − Aw(i))⊤B, Hx =
1

k

k
∑

i=1

(y − Aw(i))⊤(y − Aw(i)).

In the third step, we find the maximum of the likelihood for {γ, μ,σ, κ},

which only requires maximization of
∑

i log π(w(i)|V(i),γ,μ,σ, κ). The estima-

tion needs to be done jointly for these parameters, and in general there is no

closed form solution. However, it is possible to split this estimation step into two

conditional maximization steps as described in Bolin (2013). An alternative is

to use the fact that we can calculate the maximum of the function for a fixed κ
by maximizing

∑

i log π(w(i)|V(i),γ,μ,σ, κ) over {γ, μ,σ}. For a fixed κ, this

function is maximized by

[

μ
γ

]

= Q−1
par b, σ

2
=

1

n

(

H − b⊤
[

μ
γ

])

,

where

Qpar =
1

k

k
∑

i=1

[

B⊤
μ I

V(i)Bμ B⊤
μ Bγ

BμB
⊤
γ B⊤

γ I
−1

V(i)Bγ

]

, b =
1

k

k
∑

i=1

[

(Kαw
(i))⊤Bμ

(Kαw
(i))⊤I−1

V(i)Bγ

]

,

H =
1

k

k
∑

i=1

(Kαw
(i))⊤I−1

V(i)Kαw
(i).

Inserting these expressions for {γ,μ,σ} into
∑

i log π(w(i)|V(i),γ,μ,σ, κ) yields

an equation which is maximized numerically with respect to κ to find the new

values for {γ,μ,σ, κ}. For α = 2, this equation is given by

− log(|Kα|) +
n

2
log(H − b⊤Qparb)
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4. Parameter estimation

and similar, though more involved expressions can be found for other even values

of α since Kα can be written as a matrix polynomial in these cases.

A potential problem with the MCEM algorithm is that it could require a lot

of memory if all values of {V(i),w(i)} for i = 1, . . . , k needed to be stored in

order to evaluate the M step. However, as seen above, we only need to store a

number of sufficient statistics in order to evaluate the M step. For α = 2, these

are given by

k
∑

i=1

(Cw(i))⊤I−1
V(i)Cw(i),

k
∑

i=1

(Cw(i))⊤I−1
V(i)Bγ,

k
∑

i=1

(Gw(i))⊤Bμ,

k
∑

i=1

(Cw(i))⊤I−1
V(i)Gw(i),

k
∑

i=1

(Gw(i))⊤I−1
V(i)Bγ,

k
∑

i=1

(Cw(i))⊤Bμ,

k
∑

i=1

(Gw(i))⊤I−1
V(i)Gw(i),

k
∑

i=1

B⊤
γ I

−1

V(i)Bγ,
k
∑

i=1

B⊤
μ I

V(i)Bμ.

Thus, for α = 2, we only need to store nine values to evaluate the M step. As α
increases number of sufficient statistics required for storage will increase, but for

any reasonable value of α the number of sufficient statistics is much smaller than

the number of elements in {V(i),w(i)}.

Remark 2. For the GIG distribution, E(V−1) can be unbounded when |p| is

small and b → 0. This makes the estimation of κ and γ problematic when

min
(

|τh − 1/2|
)

is small for the GAL model. The same problem exists for the

EM algorithm in Bolin (2013), and that work gives some suggestions on how to

improve the estimation in this situation.

4.4 Rao-Blackwellization

For each MC sample in the E-step, a sample w(i), from π(w|y,Θ,V), is required.

Sampling w(i) requires a Cholesky decomposition of Q̂ which in general has a

computational cost of O(n3/2) for the SPDE models on R
2, where n is the num-

ber of elements in w. The Cholesky factorization dominates the total computa-

tional cost of the E-step, which in turn dominates the total computational cost

of the MCEM algorithm. Thus, in order to reduce the computational cost of the

estimation it is crucial to reduce the number of MC simulations in the E-step.

A common trick that can be used to reduce the number of required MC

simulations to achieve a certain variance of the estimator is to note that for any
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function h and any two random variables X and Y , one has that E[E[h(X )|Y ]] =

E[h(X )] and V[E[h(X )|Y ]] ≤ V[h(X )]. When this is used in estimation, it is

usually referred to as Rao-Blackwellization (see Robert & Casella, 2004) due to

its association with the Rao-Blackwell Theorem (see Ferguson, 1967).

To apply Rao-Blackwellization to QMC , we note that Q
(

Θ,Θ (p)
)

can be

written as E
[

E
[

log π(y,V,w|Θ)|⋆
]

|y,Θ (p)
]

, where ⋆ denotes {y,w,Θ (p)}, the

inner expectation is taken over V, and the outer expectation is taken over w.

Viewing the log likelihood in equation (13) as a function of V, one sees that

E[log π(y,V,w|Θ)|⋆] =− 1

2σ2

(

(Kαw − Bγγ)⊤E[IV−1 |⋆](Kαw − Bγγ)

+μ⊤B⊤
μ E[IV|⋆]Bμμ

)

− E[log π(V|τ, ν2)|⋆]

up to an additive constant, as a function of V, where the last term is

E[log π(V|τ, ν2)|⋆] = c +

{

2−1h⊤ν2E[V−1|⋆], for NIG noise,

τh⊤E[log V|⋆], for GAL noise.

We therefore have the option to replace QMC with

QRB(Θ,Θ (p)) =
1

k

k
∑

i=1

E
[

log π(Y,V,w(i)|Θ)|Y,w(i),Θ (p)
]

,

which is a Rao-Blackwelliztion of QMC (Θ,Θ (p)). Here, the expectations E[V|⋆],

E[V−1|⋆], and E[log V|⋆] can be computed numerically using the following for-

mulas for the expectations of a GIG(p, a, b) random variable V

E[V λ] = (b/a)λ/2
Kp+λ

(√
ab
)

Kp

(√
ab
) , λ ∈ R

E[log(V )] = log(
√

a/b) +
∂

∂p
log Kp

(√
ab
)

.

The expectation E[log(V )] can be approximated by approximating

∂

∂p
log Kp

(√
ab
)

≈
(

log Kp+ε

(√
ab
)

− log Kp

(√
ab
))

/ ε

for some small ε > 0.
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5. Prediction

5 Prediction

One of the main problems in spatial statistics is prediction of the latent field at

locations where there are no observations. The two main characteristics that are

reported in such predictions are the mean and variance of the predictive distribu-

tion. In this section, we show how to generate these two quantities for predictions,

using the models described previously, at a set of locations s1, . . . , sp.

Let Ap be a p × n observation matrix, constructed the same way as the obser-

vation matrix in Section 3, for the locations s1, . . . , sp. The desired mean values

and variances are E[Apw|y,Θ] and V[Apw|y,Θ] respectively. Since the density of

w|y is not known, the mean and variance cannot be calculated analytically, and

we therefore utilize MC methods to approximate the mean as E[Apw|y,Θ] ≈
1
k

∑k
i=1 Apw(i) and the variance as V[Apw|y,Θ] ≈ 1

k

∑k
i=1(Apw(i)−E[Apw|y,Θ])2,

where w(i) is generated using the Gibbs-sampler described in Section 4.2.

Rao-Blackwelliztion can again be used to reduce the variance of the MC esti-

mates. For the mean, write

E[Apw|y,Θ] =

∫

w

Apwπ(w|y,Θ) dw

=

∫

w

∫

V

Apwπ(w|V, y,Θ)π(V|y,Θ) dV dw

=

∫

V

Apm̂π(V|y,Θ)dV ≈ 1

k

k
∑

i=1

Apm̂
(i),

which is a Rao-Blackwelliztion of E[Apw|y,Θ] where m̂ is the conditional mean

of w, defined in Section 4.2. Since the Gibbs-sampler uses m̂(i) to simulate w(i),

the Rao-Blackwelliztion can be produced from the MC sampler in the estima-

tion step with no extra cost. The Rao-Blackwellization for the variance of the

prediction is derived similarly as

V[Apw|y,Θ] =

∫

w

Ap (w − ŵ) (w − ŵ)⊤ A⊤
p π(Apw|y,Θ) dw

=

∫

V

ApQ̂
−1

A⊤
p π(V|y,Θ) dV ≈ 1

k

k
∑

i=1

A⊤
p

(

Q̂(i)
)−1

Ap.

(15)
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Figure 2: The figure shows the convergence of the Rao-Blackwellization estimator

(red lines) and the regular Monte-Carlo estimator (blue lines) when estimating

the conditional mean of a field at two distinct locations. For the first location

(left panel), the Rao-Blackwellization improves the convergence, whereas the Rao-

Blackwellization has no noticeable effect for the second location (right panel).

It would seem as one needs to calculate the inverse of Q̂(i), which is computation-

ally expensive, to use Rao-Blackwellization of the variances. However, because of

the structure of Ap, only the elements of the inverse of Q̂(i) that corresponds to

the non-zero elements in Q̂(i) are needed to evaluate (15). Using the methods in

Campbell & Davis (1995), one can compute these elements at a computational

cost of O(n3/2), making Rao-Blackwellization for the variances computationally

feasible.

To illustrate the effect of the Rao-Blackwellization, we examine the conver-

gence of the Monte-Carlo estimator and the Rao-Blackwellization for the estima-

tion of two conditional means at two distinct locations, m1 = E[A1w|y,Θ] and

m2 = E[A2w|y,Θ], of the precipitation data used in Section 6. The results can

be seen in Figure 2, the convergence of the estimation of m1 is seen in the left

panel and the convergence of the estimation of m2 is seen in the right panel. As

seen in the figure, the Rao-Blackwelliztion has a large effect on the convergence

for m1 whereas it has no visible effect on the convergence for m2. The reason for

this difference is that the largest part of variance of the MC method for m1 comes

from w|V whereas the largest part of variance for m2 comes from the variance of

V|w.

6 An application to precipitation modeling

As an example of how the models presented earlier can be used for real data, we

choose a dataset containing precipitation measurement over Parana, Brazil from
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Figure 3: The figures displays the rain measurement for October over Parana,

Brazil. To the left is the maximum daily precipitation of the month and to the

right is monthly average. The two encircled locations are those locations where

the predictive distributions are studied in the Figures 4 and 5; the left location is

denoted s2 and the right s1.

20121. Rainfall data over Parana has been previously been studied in a statistical

framework by Diggle & Ribeiro Jr (2002). We study both the monthly average

and the monthly maximum precipitation, for the month October, see Figure 3.

The reason for choosing these two datasets is that one would suspect that Gaussian

models could fit well for the monthly average, but not for the monthly maximum,

and we want to investigate the difference in distribution for two cases and how

well the the proposed models can fit these distributions.

6.1 Models

We will compare four different models for the data. The first three are models for

the data in the original scale and the fourth is a Gaussian model for square-root

transformed data. For the first three models, we assume that the measurements

are generated as yi = X (si) + εi, where ε is Gaussian measurement noise with

variance σ2
ε and X (s) = [1, s∗]β + ξ(s) is the latent precipitation field. Here ξ

is a mean-zero Matérn field and s∗ denotes longitude and latitude standardized

1Avialble in R-package INLA (http://www.r-inla.org/), see the tutorial available at
http://www.r-inla.org/examples/tutorials/spde-tutorial
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by removing the mean and dividing with standard deviation over the region. We

fix the shape parameter α of the Matérn covariance function at two, but estimate

the other parameters from the data. The three different models are obtained by

choosing the forcing noise in the SPDE (2) as either Gaussian noise, GAL noise,

or NIG noise.

The estimated parameters are presented in Table 3. In general, it is difficult

to interpret all parameters for the non-Gaussian models. However a few things

can be noted: For the maximum case, φ is almost zero for the NIG and GAL

models, indicating that forcing noise is almost Gamma and inverse Gaussian noise

respectively, and the variance of the measurement noise for the NIG and GAL

models is smaller than the measurement noise variance for the Gaussian model.

Also, κ for the non-Gaussian models is larger than for the Gaussian model, which

indicates a shorter dependence range for the non-Gaussian models. Finally, the

estimates for the covariates for the mean, β, are quite different for the different

models.

We choose two of the measurement locations, encircled in Figure 3, where

we investigate the posterior distribution of the latent precipitation field, X, and

the observations, X + ε. The reason for also studying X + ε is that this quan-

tity is what is observed if one removes the measurement at one location and then

predicts the process at that location, as done in cross-validation. The posterior

pdfs are presented in Figures 4 and 5. Note that we do not display X for the

transformed Gaussian model since the latent field has no clear interpretation in

this case. As expected, we observe no large differences in the pdfs for the different

models for the monthly average data. However, the results for the monthly max-

imum data are more interesting. For the location s1, there is no large difference

between the different models, and the reason for this is likely that all measure-

ments near the location s1 are all similar to each other, which indicates a smooth

field that could be well-approximated with a Gaussian field. One the other hand,

the measurements are varying much more near the s2 location. This causes the

non-Gaussian pdfs to be highly skewed, as the prediction at the location s2 will

be more uncertain, but this skewness cannot be captured by the Gaussian model.

Recall that all models have stationary Matérn covariance functions, so this ability

to capture varying smoothness of the latent field is an interesting feature of the

non-Gaussian models.
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Figure 4: The posterior densities for X and X+ε at the locations s1 and s2 for the

monthly maxima data for the Gaussian model (solid), the NIG model (dotted),

the GAL model (dashed), and the transformed Gaussian model (dash-dotted).

The location of the points s1, s2 are displayed in Figure 3.

6.2 Model selection using cross-validation

We can conclude that there is a difference between the different model estimates,

and a natural question is therefore which of the models that has the best fit to the

data. We focus the model comparison on the accuracy of the spatial predictions

and their corresponding error estimates.

To compare the different models ability to do spatial prediction, we use cross-

validation. The dataset is divided into ten equally large groups y1, . . . , y10, by

doing a random permutation of the dataset and then choosing the first tenth

of the dataset as y1, the second tenth as y2, etc. For each k = 1, . . . , 10, the

expectations E(yk|y(−k)) and the variances V(yk|y(−k)) are calculated, which are

the spatial predictions and their variances for the locations in group k using all
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Figure 5: The posterior densities for X and X+ε at the locations s1 and s2 for the

monthly mean data for the Gaussian model (solid), the NIG model (dotted), the

GAL model (dashed), and the transformed Gaussian model (dash-dotted). The

location of the points s1, s2 are displayed in Figure 3.

data except the data in that group. By calculating these values for all groups,

predictions are performed at all measurement locations, and by subtracting the

measurements from these predictions we obtain a complete set of cross-validation

residuals r. By dividing each value in r with the predicted kriging variance for that

location, we obtain a set of standardized residuals rs which should have variance

one if the model is correct.

We displays four statistics from the cross-validation predictions: The variance

of the residuals; the variance of the standardised residuals, which should be close

to one; the continuous ranked probability score (CRPS) (Matheson & Winkler,

1976), which probably is the most employed scoring role in probabilistic forecasts;

and the energy score (ES), which is a multivariate extension of the CRPS.
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Define Ŷi, Ŷ (1)
i , Ŷ (2)

i as independent random variables with distribution Fi =

π(yi|y−k(i)) where k(i) is the group that observation i belongs to, the CRPS is then

given by

CRPS = m−1
m
∑

i=1

(

EFi [|yi − Ŷi|] −
1

2
EFi [|Ŷ (1)

i − Ŷ (2)
i |]

)

. (16)

where the expected values are approximated using MC approximation.

The results are presented in Table 4. For the monthly maximum data, the

GAL model fits best, according to all four statistics, and there are no large differ-

ences between the other model, with the possible exception that the transformed

Gaussian model overestimates the prediction variance.

For the monthly mean data, it is clear the transformed model does not fit

the data very well but the other three models perform similarly. However, the

Gaussian model seems to be slightly better than the other models according the

the cross-validation statistics, and since it uses fewer parameter than the other

models it is the best choice for this case.

7 Conclusions

In this work, we have extended the models of Bolin (2013) to a larger class of

non-gaussian models and have shown how to handle missing data, covariates, and

measurement noise, which is crucial for practical applications in geostatistics.

The models and the estimation procedure can be extend and improved in

several directions. For example, as previously mentioned, for models defined on

regular grids the full generalized hyperbolic class could be used and thus give a

very large class of non-Gaussian fields on lattices. Also, the estimation procedure

was derived assuming that the field was observed under Gaussian measurement

error, but it would require only small modification to extend it to Generalised hy-

perbolic measurement noise, and this could improve the results for the presented

application.

It is well-known that the convergence of the EM algorithm is slow, which

often means that a large number of iterations are needed to achieve convergence

of the parameter estimates, and the algorithm in this article is no exception. The

author plans to study other stochastic estimation methods to improve the speed

of the estimation. Changing to other estimation methods could also solve the
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problem that we are currently only able to estimate the parameters when α is an

even integer.

Unlike for Gaussian models, the models described here are not completely

determined by the mean and covariance structures. This allows for interesting

characteristics when applying other PDEs to the G-type processes. For example,

one can create a spatio-temporal model that is not time reversible by considering

a spatio-temporal extension of the models discussed here. This work has been a

fist step in showing how one can use fully parametric non-Gaussian latent models

in geostatistics, and although the results are promising, the main advantages are

likely to occur when models like these are used in spatio-temporal applications.
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7. Conclusions

mean

Gauss tGauss NIG GAL

κ 1.40 1 2.0 2.0

φ 2.75 1 - -

σε 1.3 0.3 1.3 1.3

β





6.0
−0.1
−0.16









2.7
−0.0
0.0









8

−0.36

0.36









11

−0.2
0.5





μ - - -1.8 -1.0

σ - - 8.3 2.3

ν2 - - 0.2 -

τ - - - 15

max

Gauss tGauss NIG GAL

κ 2.6 1.9 5.8 5.9

φ 11.6 2.5 - -

σε 16.3 1.1 14 .4 13.5

β





−79

−3

0.3









7.8
−0.3
0.0









36

−6

−6









28

−5

−3





μ - - 312 74

σ - - 0.0 0.0

ν2 - - 0.7 -

τ - - - 17

Table 3: Parameter estimates for the different models for the precipitation max

and mean data. Note that the tGauss parameters are for transformed data while

Gauss, NIG, and GAL parameters are for raw data and hence should not be

compared directly. This is, for example, the reason for the large differences in

measurement noise variances.
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max mean

Gauss tGauss NIG GAL Gauss tGauss NIG GAL

V(rs) 0.99 0.89 0.99 1.00 0.99 0.67 1.05 1.02

V(r) 327 334 330 295 2.05 2.12 2.12 2.06

ES 301 304 310 287 24.0 24.5 24.2 24.0
CRPS 9.8 9.7 9.7 9.3 0.76 0.79 0.77 0.76

Table 4: Crossvalidation results for the different models. Here, r denotes the

actual model residuals and rs denotes the same residuals standardized by the esti-

mated kriging variances. CRPS denotes the continuous ranked probability score

of r.
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Azaı̈s, J.-M., Déjean, S., León, J. R. & Zwolska, F. (2011). Transformed gaussian

stationary models for ocean waves. Probab. Eng. Mech. 26, 342–349.

Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hy-

perbolae. Scand. J. Statist. 5, 151–157.

Berrocal, V. J., Gelfand, A. E. & Holland, D. M. (2010). A spatio-temporal

downscaler for output from numerical models. J. agr. biol. and environ. statist.
15, 176–197.

Bolin, D. (2013). Spatial Matérn fields driven by non-Gaussian noise (in press).

Scand. J. Statist. .

Bolin, D. & Lindgren, F. (2011). Spatial models generated by nested stochastic

partial differential equations, with an application to global ozone mapping.

Ann. Appl. Statist. 5, 523–550.

Cameletti, M., Lindgren, F., Simpson, D. & Rue, H. (2013). Spatio-temporal

modeling of particulate matter concentration through the spde approach. Ad-
vances in Statistical Analysis 97, 1–23.

Campbell, Y. E. & Davis, T. a. (1995). Computing the sparse inverse subset: an

inverse multifrontal approach. Tech. Rep. TR-95-021, Computer and Infor-

mation Sciences Department, University of Florida.

Cressie, N. (1993). Statistics for spatial data. Wiley series in probability and

mathematical statistics: Applied probability and statistics. J. Wiley.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B Stat. Methodol.
39, 1–38.

Diggle, P. J. & Ribeiro Jr, P. J. (2002). Bayesian inference in gaussian model-based

geostatistics. Geographical and Environmental Modelling 6, 129–146.

Eberlein, E. & von Hammerstein, E. (2004). Generalized hyperbolic and inverse

gaussian distributions: limiting cases and approximation of processes. In Sem-
inar on stochastic analysis, random fields and applications iv, vol. 58. Progress in

Probability, Birkhäuser, pp. 221–264.
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Abstract

A novel class of models is introduced with application ranging from land-use

classification to brain imaging and geostatistics. The model class, denoted latent

Gaussian random filed mixture models (LGFM models), combines the Markov

random field mixture model with latent Gaussian random field models. The

latent model, which is observed under measurement noise, is defined as a mixture

of several, possible multivariate, Gaussian random fields. Which of the fields that

is observed at each location is modeled using a discrete Markov random field.

In order to use the method for massive data sets that arises in many possible

areas of application, such as brain imaging, a computationally efficient parameter

estimation method is required. Such an estimation method, based on a stochastic

gradient algorithm, is developed and the model is tested on a magnetic resonance

imaging application.

Key words: Gaussian mixture; Markov random fields; Random fields; Stochastic

gradients
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1 Introduction

Gaussian mixture models (GMMs) have successfully been used for classification in

several areas of application ranging from video surveillance (Stauffer & Grimson,

1999) to speaker identification (Reynolds & Rose, 1995). Also in geostatistics

and statistical image analysis, classification and image segmentation is often per-

formed using GMMs in combination with the Expectation Maximization (EM)

algorithm (Dempster et al., 1977) for estimation. Let Y1, . . . ,Ym be observations

of some, possibly multivariate, process Y(s) at locations s1, . . . , sm. The classical

GMM can then be formulated as

π(Yi|θ) =

K
∑

k=1

wikπk(Yi|θk), (1)

independently for all i = 1, . . .m, where K is the number of classes, wik de-

notes the prior probability of Yi belonging to class k, and πk(Yi|θk) denotes the

distribution of class k, which is assumed to be Gaussian, N(μk,Σk).

A drawback with classification based on the classical GMM is that any spatial

dependency of the data is ignored. A common strategy to account for spatial

dependency in the data is allow for dependency in the allocation variables (wik),

which can be done in several ways. One way is to model the class probabilities,

wik, using a logistic normal model

wik =
exp(ηik)
∑

j exp ηij
, (2)

where ηk are assumed to be latent Gaussian fields (Fernández & Green, 2002).

Estimation under this model is difficult, and one generally has to resort to compu-

tationally expensive MCMC methods. Furthermore, for classification problems,

the model is not ideal as the spatial model forces the posterior weights to be

smoothly varying, which often can reduce the predictive power of the model.

Another way to allow for dependency in the mixture weights is to note that

in the random variable Yi defined in (1) equals, in distribution,

K
∑

k=1

zikGik, (3)

where Gik ∼ N(μk,Σk) and zik = 1(xi = k) is an indicator function for the event

xi = k, where xi is a multinomial distributed r.v. defined though the probabilities
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P(xi = k) = wik. Using this formulation of the GMM, spatial dependency can

be introduced by assuming that x = {xi} is a discrete MRF (see e.g. Held et al.,
1997, Zhang et al., 2001, Van Leemput et al., 1999). We refer to this model as a

MRF mixture model.

Allowing for spatial dependency in the mixture weights is often reasonable

and improves the classification for spatial problems. However, from a modeling

perspective the MRF mixture models are not ideal since the data within each class

is assumed to be independent observations of the same Gaussian distribution,

while one would also like to allow for spatial dependency of the data within each

class. Consider, for example, land-use classification from satellite images, where

the classes in the mixture are assumed to correspond to distinct land types such

as forest, fields, water, etc. For a given class, say forest, the measured values will

depend on, for example, vegetation density and vegetation composition which

makes the assumption of independent measurements within the class unrealistic.

In geostatistics, the most common approach to model spatially dependent

data is to use latent Gaussian random fields (see e.g. Cressie, 1991, Cressie &

Wikle, 2011). Collecting all measurements {Yi} in a vector Y, a latent Gaussian

model can be written as

Y = Bβ+ Aξ+ ε, (4)

where ξ is a (multivariate) mean-zero Gaussian random field, A is a matrix that

connects the measurements to the latent field, and εi is Gaussian measurement

noise. The matrix B contains covariates for the mean evaluated at the measure-

ment locations, and the latent field evaluated at the measurement locations is

given by X = Bβ+ Aξ. This modeling approach is often preferable if the latent

process is smoothly varying and it is highly useful for noise reduction and spatial

interpolation in cases of partial observations (Stein, 1999). However, the latent

Gaussian random fields are poorly equipped to deal with the discontinuity of both

process and covariance common for data in classification problems.

The aim of this work is twofold. First, we want to provide a new class of

models that extends the MRF mixture models and can be used for spatial model-

ing of data that is usually studied in spatial classification problems. The goal is to

provide a model class that can be used for classification but also for noise reduc-

tion and spatial interpolation. The model class we propose, which we will refer to

as the latent Gaussian random field mixture(LGFM) models, combines the MRF

mixture models and the latent Gaussian models, by assuming that the latent field
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is a MRF mixture of Gaussian random fields. The possible application areas for

this model class is much larger than those for the MRF mixture models and ranges

from geostatistics and land-use classification problems to brain imaging and MRI

modeling and estimation.

The second goal of this work is to provide an efficient estimation method

for the LGFM and MRF mixture models that simplifies their usage for applica-

tions with massive datasets. The main computational bottle neck for estimation,

through likelihood methods, for both the LGFM models and the MRF models

is computing the normalizing constants. For the MRF models there exists sev-

eral ways to handle this issue the two most common method are either gradient

estimation or through pseudo likelihood estimation (Guyon, 1995). Recently,

gradient methods for large scale GRF models have been developed for likelihood

estimation that efficiently deals with the normalizing constants (Anitescu et al.,
2012, Stein et al., 2013). We propose a stochastic version of the EM gradient

method (Lange, 1995) based on pseudo-likelihoods. The method handles the

normalizing constant for both the LGFM and the MRF mixture model.

The structure of this work is as follows. In Section 2, the model class is intro-

duced and connections to other related models are discussed. Section 3 contains

an introduction to a particular choice of the model components which is suitable

for modeling of large datasets. Section 4 introduces an estimation procedure that

is suitable for this model class but also for the standard MRF mixture models and

the latent Gaussian models in cases of large datasets. In Section 5, the model class

is used for noise reduction in magnetic resonance (MR) imaging. Finally, Section

6 contains a discussion of possible extensions and further work.

2 Latent Gaussian random field mixture models

Let Y be the vector of, possibly multivariate, observations. The general structure

of the LGFM models is then

Yi = X(si) + ε,

X(s) =
K
∑

k=1

zk(s)Xk(s),

Xk(s) =
n
∑

j=1

Bkj(s)βkj + ξk(s).

(5)
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2. Latent Gaussian random field mixture models

Here, ε is mean-zero Gaussian measurement noise and X(s) is the latent process.

The latent process is described as a mixture of K Gaussian random field models,

X1, . . . ,XK , and z is an indicator field that determines which class that is present

at each location. Each Gaussian component is modeled using some covariates

Bkj for the mean and a mean-zero Gaussian random field ξk with some covari-

ance structure, which may be different for the different classes. This general class

contains several interesting models, and some examples with K = 2 are shown

in Figure 1. In the examples, Xk are independent stationary Gaussian Matérn

fields. The indicator field z is obtained as z1(s) = IZ (s)>0(s), z2(s) = IZ (s)≤0(s)
where Z (s) is a Gaussian Matérn field, i.e. z1(s) = 1 and z2(s) = 0 for all s where

Z (s) > 0 and z1(s) = 0 and z2(s) = 1 otherwise. In Panels (a) and (b), Z (s) is

independent of Xk. Panel (a) shows an example where X1 and X2 have the same

covariance function but different mean values and Panel (b) shows an example

where X1 and X2 have the same mean values but different correlation ranges. One

can also imagine that z depends on some of the latent fields. Panels (c) and (d)

are the same as Panels (a) and (b) except that Z = X1. Thus, X1 is only observed

if it is positive and otherwise X2 is observed.

There is a connection to the popular linear coregionalization models (LCM)

(Zhang, 2007) in geostatistics. In our notation, an LCM can be written as

Y (si) = μ(si) +

K
∑

k=0

ξk(si),

and this model is thus a special case of the LGFM models when zk(s) = 1 for all

k and s.

For spatial classification problems, the domain for s is often discrete, e.g. pix-

els in satellite images or voxels in MR images. In such situations, the model can

be written more compactly as

Y =

K
∑

k=1

zk ·
(

Bkβk + Aξk

)

+ ε, (6)

where · denotes element-wise multiplication, B is a matrix containing the covari-

ates evaluated at the measurement locations, and A is a measurement matrix that

determines which components in ξk that are observed. The latent field evalu-

ated at the measurement locations is now given by X =
∑K

k=1 zk ·
(

Bβk + Aξk

)

,

which is a spatially correlated mixture of Gaussian random fields. Thus, there

103



D

(a) (b)

(c) (d)

Figure 1: Examples of spatial mixture models with K = 2. The latent fields X1

and X2 are independent stationary Gaussian Matérn fields and z is obtained as

z1(s) = Z (s) > 0, z2(s) = Z (s) < 0 where Z (s) is a Gaussian Matérn field. In

Panel (a), X1 and X2 have the same covariance function but different mean values

and X (s) is independent of Xk. In Panel (b), X1 and X2 have the same mean values

but different correlation ranges and X (s) is independent of Xk. Panels (c) and (d)

are the same as Panels (a) and (b) respectively, except that Z = X1.
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is a clear connection between this model and the MRF mixture models; a MRF

mixture model with spatially dependent components is obtained by choosing z as

the indicator field of a discrete MRF.

For practical applications of the model one is typically interested in estimates

of the latent field X given the data. For spatial prediction and noise reduction,

E(X|Y,Ψ), where Ψ is an estimate of the model parameters, is used as a point-

estimate of the latent field and V(X|Y,Ψ) is used as a measure of the uncertainty

in that prediction. To calculate these, we note that

E(X|Y,Ψ) = E[E(X|Y, z,Ψ)|Ψ,Y],

V(X|Y,Ψ) = E[V(X|Y, z,Ψ)|Ψ,Y] + V[E(X|Y, z,Ψ)|Ψ,Y].

Here, E(X|Y, z,Ψ) and V(X|Y, z,Ψ) can be calculated analytically since these

are posterior means and covariances for Gaussian distributions. The outer expec-

tation and variances, taken over z, are typically not known analytically but can

be estimated using Monte Carlo integration by sampling from π(z|Y,Ψ). While

sampling z, E(z|Y,Ψ) can be estimated and used to classify the data.

Since the model class is mainly targeted at applications on discrete domains,

we choose to study the discrete model in more detail and leave the practical de-

tails of the continuous models for further research. In the following section, we

outline a reasonable choice for the different components in the model that makes

the model applicable to large spatial problems. And in Section 4, an estimation

procedure for this particular model is presented.

3 Model components

In this section, we present a particular choice for the model components in (6)

which is suitable for modeling of massive multivariate spatial datasets. To increase

the computational efficiency of the model, Markov properties are used both for

the indicator process s and for the latent fields ξk.

3.1 A discrete MRF model for z

A suitable model for the indicator field, z, determining the class belongings for

each pixel, is a discrete MRF. We let x be a discrete MRF taking values in {1, . . . ,K }
and define zik = 1(xi = k). The joint distribution of x can be formulated using

the Gibbs distribution p(x) = Z−1 exp(−W (x)) where W (x) =
∑

C VC(x) is the
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◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ⋆ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

(a)

◦ • ◦ • ◦
• ◦ • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
◦ • ◦ • ◦

(b)

Figure 2: A fist order neighborhood structure (a) and corresponding sets of con-

ditionally independent pixels (b).

sum of the potential for all cliques generated by the neighborhood structure and

Z =
∑

ω exp(−W (ω)).

There are many potential choices for the neighborhood structure, but we use

a simple first-order neighborhood N⋆, which on a regular lattice in R
2 consists of

the four closest nodes, in euclidean distance, and in R
3 consists of the six closest

nodes. In R
2, this neighborhood structure is illustrated in Figure 2 (a) where •

denotes the neighbors of the pixel ⋆. For this neighborhood structure, there are

only first and second-order cliques, and we use the potentials V{u}(x) = αk when

xu = k, and V{u,v}(x) = βk when xu = k and xv = k.

Hence, the model has parameters α = {αk} and β = {βk} where α deter-

mines the prior probabilities for each class k and β are interaction parameters that

governs the strength of the spatial dependency. Since only the difference between

the αs effect the model, we fix α1 to zero. Simplified models are obtained by either

fixing αs to zero or by assuming that all βk are equal to some common parameter

β .

3.2 A Gaussian random field model for ξ

We assume that ξk ∼ N(0,Q−1
k ) is a multivariate spatial Gaussian random field

with a covariance structure that is separable with respect to space the dimension

of the data. This means that Qk can be written as Qk = Qkd ⊗ Qks, where Qks

is determined by a spatial covariance model and Qkd is the multivariate part. The

motivation behind this particular choice is that if there is no spatial dependence
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in the data, one can choose Qks as the identity matrix and the model reduces to a

standard MRF mixture model. Since the precision matrix Qdk corresponds to the

covariance matricesΣk in the MRF mixture model, we do not assume any special

structure of this matrix. It is therefore parametrized as Qdk = R⊤
dkRdk where

Rdk =













exp(η1) η2 η4 · · · ηx

0 exp(η3) η5 · · · ...

0 0
. . .

0 0 0 0 exp(ηd (d+1)/2)













(7)

is the unique Choesky factor of Qdk with d (d + 1)/2 parameters ηk.

In general, there are no restrictions on the spatial structure of the process,

specified through Qs. However, since we want to use the method for large prob-

lems we choose a model so that Qs is sparse. For a discrete domain, we can then

choose any type of GMRF model, e.g. the popular CAR models (Besag, 1974).

The particular choice we use is a CAR model that corresponds to a Gaussian

Matérn field. Constructing the spatial precision matrix using the SPDE connec-

tion (Lindgren et al., 2011) between the discrete CAR models and the continuous

Matérn fields allows us to use separate discretizations for z and ξ, which is desir-

able if the data is such that the process ξ is smoothly varying compared to the

resolution for z. The basic idea is to use a basis expansion ξ(s) =
∑n

i=1 φi(s)wi,

where {φi} are known compactly supported piecewise linear basis functions and

w = {wi} is a zero mean multivariate normal distribution with precision matrix

Qs = cKC−1K, where K = (G + κ2C) with Gij =
〈

∇φi, ∇φj

〉

, Cii = 〈φi, 1〉
and c as a positive scaling constant. The number of basis functions, n, can be cho-

sen smaller than the number of locations in the domain for z in order to increase

the computational efficiency of the model.

This particular choice of Qs corresponds to a Matérn field with shape param-

eter α = 2, which for models in R
3 results in the exponential covariance function.

Since the parameter κ2 needs to be positive, we parametrize it as κ2 = exp(κ0).

The constant c, in the precision matrix, is chosen so that the spatial part have

variance one, which achieved for c = Γ(2 − D/2)(4π)−D/2κD−4, where D de-

notes the dimension of the spatial domain. This way, Qs determined the spatial

correlation and Qd controls the variances.

The particular choice of covariance structure presented here is a so called pro-

portional correlation model (Chiles & Delfiner, 1999) as the resulting stationary
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covariance function for ξ can be written as C (h) = Q−1
d ρ(h),h ∈ R

d . There are

several fully parametric alternatives to this model, such multivariate Matérn fields

(Hu et al., 2013).

3.3 The measurement noise ε

We assume that the measurement noise ε is mean-zero Gaussian white noise with

a spatially constant variance. One can either assume that the noise is the same

for each dimension of the data, Σε = σ2Ind , or one can allow for a separate

variance for each dimension of the data, Σε = diag(σ2
1, . . . ,σ

2
d ) ⊗ In. Here, Im

denotes an m × m identity matrix. Since the variance parameters σi are positive,

we parametrize them as σi = exp(σi0)

4 Parameter estimation

Parameter estimation for MRF mixture models is difficult, and allowing for spatial

dependency within each class introduces further complications. Furthermore, we

want these models to be useful for massive multivariate problems in R
3, which

are common in MR imaging, and this makes computational efficiency of the

estimation procedure paramount.

The MRF mixture models are typically either estimated with some modified

version of the EM algorithm or through Monte Carlo (MC) methods. Both of

these procedures are too computationally demanding to be useful for the LGFM

models. Instead, we base our estimation on the EM gradient (EMG) algorithm.

The main idea behind this method is that if one can easily calculate the gradi-

ent ∇ log L(Ψ; z,Y) of the augmented likelihood, then knowing the posterior

π(z|y,Ψ) one can compute the exact gradient of the log likelihood log L(Ψ; Y) as

∇ log L(Ψ; Y) =∇ log π(Y|Ψ) =
1

π(Y|Ψ)
∇
∫

π(Y, z|Ψ) dz

=

∫

π(Y, z|Ψ)

π(Y|Ψ)
∇ log π(Y, z|Ψ) dz

=

∫

π(z|Y,Ψ)∇ log π(Y, z|Ψ) dz =

Ez

[

∇ log π(Y, z|Ψ)|Y,Ψ
]

.
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The idea is then to use the exact gradient in a gradient descent method. At step p
in the ECG algorithm, the gradient of the likelihood is calculated and a step

Ψ(p+1)
=Ψ(p)

+ S∇ log L(Ψ; Y)

where S is a matrix determining the step size. Taking S = γI where I is the

identity matrix, we obtain an ordinary gradient descent method which has linear

convergence. Ideally, we would like to take S as the inverse of the Hessian matrix

H to obtain a Newton method with quadratic convergence. Often, one cannot

compute the true Hessian matrix of the log-likelihood, and Lange (1995) instead

proposed using

S = Ez(Δ log π(Y, z|Ψ)|Y,Ψ). (8)

The motivation behind this choice of scaling matrix is that from dealing with

spatial data we have experienced that the two first conditional moments often are

little affected by changes in the parameters, which would indicate that S is a good

approximation of the true hessian with the advantage of being readily available in

most situations.

In the MRF mixture models, we cannot evaluate the gradient of the likelihood

analytically, and one can then use MC sampling to estimate the gradient as

∇ log L(Ψ; Y) = Ez

[

∇ log π(Y, z|Ψ)|Y,Ψ
]

≈ 1

T

T
∑

t=1

∇ log π(Y, z(t)|Ψ),

where z(t) are draws from π(z|Y,Ψ). In a similar fashion, one can use MC sam-

pling to evaluate the approximate Hessian that is used to determine the step size

S ≈ 1

T

T
∑

t=1

Δ log π(Y, z(t)|Ψ).

We refer to this estimation procedure as the MCEMG algorithm.

To simplify the presentation, we split this section in three parts. In the first

part, we go through the details of the estimation for the MRF mixture model, pre-

senting a version of the method based on pseudo-likelihoods. In the second part

we cover estimation for the latent Gaussian model, and one should note here that

the estimation method is an attractive alternative for estimation of latent Gaussian
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models for massive datasets since it avoids all calculations of log-determinants,

which is usually the computational bottleneck in maximum-likelihood estima-

tion procedures for such problems. Finally, we combine the results for the MRF

mixture models and the latent Gaussian models to and estimation procedure for

the full LGFM model.

4.1 Estimation of the MRF mixture model

As a first step towards an estimation method for the LGFM models, we in this

section discuss parameter estimation of the MRF mixture models. To make the

results of this section more easily applicable to the LGFM model, we parametrize

the Gaussian distributions using the mean and cholesky factor of the precision

matrix. Let θk = {μk,Qk} where Qdk = Σ−1
k is parametrized as Qdk = R⊤

dkRdk

and Rdk has the form (7). Thus, the model parameters that need to be estimated

are Ψ = {α,β,θ}, where θ = {θ1, . . . ,θK } contains all parameters for the

Gaussian distributions, θk = {μk,ηk}.

Maximum likelihood estimation for this model is difficult since there is no

simple form for the data likelihood. However, if we augment the data with the

hidden class belongings, the augmented likelihood has a simpler form, L(Ψ; z,Y) =

π(z|α,β)π(Y|z,θ). This suggest that we could use an EM algorithm (Dempster

et al., 1977) where one would iterate calculating the function

Q
(

Ψ,Ψ(p)
)

= E
[

log L(Ψ; z,Y)|Y,Ψ(p)
]

, (9)

whereΨ(p) denotes the current estimate ofΨ at the pth iteration of the algorithm

and then maximize Q
(

Ψ,Ψ(p)
)

with respect to Ψ in order to obtain the next

estimate of the parameter vector.

Unfortunately, the normalizing constant Z for the MRF distribution de-

pends on the parameters and is intractable for large problems. Thus, we can-

not evaluate π(z|α,β). A solution to this problem is to replace π(z|α,β) with

a pseudo-likelihood, πp(z|α,β), which is a product of the full conditionals of x.

Let fik =
∑

j∈Ni
zjk denote the sum of the neighboring pixels to zik, the condi-

tional class probability of a pixel i can then be written as P(xi = k|fik,α,β) =

E(zik|fik,α,β) ∝ exp
(

αk + βkfik
)

, and the pseudo-likelihood is

πp(z|α,β) =
∏

i

π(xi|xj , j ∈ Ni,α,β)
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=

∏

i

exp(
∑

k αkzik +
∑

k βkzikfik)
∑

k exp(αk + βkfik)
.

To avoid bias due to this procedure, only conditionally independent pixels are

included in the product simultaneously, and the coding method (Besag, 1974) is

used to combine the estimates based on different combinations of conditionally

independent sets of pixels. Since the neighborhood structure in Figure 2 (a) is

used, two sets of conditionally independent pixels are obtained using the checker-

board pattern shown in Figure 2 (b), where the black nodes are conditionally

independent given the white nodes and vice versa.

The function we need to calculate the expectation of to obtain Q
(

θ,θ(p)
)

is

log PL(Ψ; z,Y) = log π(Y|z,θ) +
∑

k,i

αkzik +

∑

k,i

βkzikfjk (10)

−
∑

i

log

(

∑

k

exp(αk + βkfik)

)

.

Using the pseudo likelihood for the MRF part of Q, the function can be written

as

Q(Ψ,Ψ(p)) =E(log(πp(z|α,β)) +
∑

i

∑

k

E(zik|Y,θ(p)) log π(Yi|θk).

We cannot evalute the expectation of the pseudo likelihood analytically, thus

we replace it with an Monte Carlo approximation. The MC approximation re-

quires sampling from the posterior distribution. using Bayes formula and the

independence assumption, one has

E
(

zik | fik,Y,Ψ
)

∝ p
(

yi | θk

)

exp
(

αk + βkfik
)

= exp
(

α̃ik + βkfik
)

with α̃ik = αk + log π(Yi|θk). Thus, the posterior distribution is simply a non-

stationary extension of the original MRF model. We therefore can use Gibbs

sampling to simulate samples z(t), t = 1, . . . ,T , from the posterior. Divid-

ing the nodes using the checkerboard pattern in Figure 2 (b), and denoting the

black nodes zb and the white nodes zw, Gibbs sampling of the joint z is per-

formed by iterating sampling z(i)
w from π(zw|z(i−1)

b ,Y,Ψ) and sampling z(i)
b from

π(zb|z(i)
w ,Y,Ψ).
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Now, this is about as far as one gets with the EM algorithm since the M

step is highly problematic. Versions of the MRF mixture model has been used

several times in tissue classification of magnetic resonance images (Held et al.,
1997, Zhang et al., 2001, Van Leemput et al., 1999), and in these situations the

model is usually fitted to data using an EM estimator for the Gaussian parameters

together with an iterated conditional modes (ICM) estimator for the MRF pa-

rameters. Convergence of this mixed estimation procedure is not easy to motivate

theoretically, and the method can be computationally demanding.

However, the EM gradient method is straight-forward to implement. The

derivatives need to evaluate the gradient are presented in Appendix A. At step

p in the EM gradient algorithm, we run the Gibbs sampler to approximate the

gradient and the scaling S and then take a stepΦ(p+1)
= Φ(p)

+S∇ log PL(Ψ; Y).

Thus, there is no need for numerical optimization or Taylor approximations to

calculate the parameter updates, as is needed if an EM algorithm is used. Note

that ∇ log PL(Ψ′; Y) = ∇Q(Ψ,Ψ′)|Ψ=Ψ′ , thus the function maximized in the

gradient algorithm is the same function maximized in the EM-algorithm.

4.2 Estimation of the latent Gaussian model

As a second step towards the estimation procedure for the full LGFM models, we

in this section discuss the estimation of the latent Gaussian model (4) where ξ is

given introduced in Section 3.2 and ε is introduced in Section 3.3. To simplify

the presentation, we assume that the measurement noise has a common variance

for all dimensions of the data, and the extension to separate noise variances is

trivial.

Let Ψ = {μ,η,σ, κ} be the vector containing all model parameters. Since

the model is Gaussian, likelihood estimation of all parameters can be performed

by numerical optimization of log π(Ψ|Y), which has a closed form (see e.g. Bolin

& Lindgren, 2011). Even though this procedure is commonly used and theoreti-

cally straight-forward, it is computationally demanding. The problem is that one

needs to calculate the determinant of Q̂ = Q +
1
σ2 A⊤A and solve the quadratic

form Y⊤AQ̂
−1

A⊤Y each time the optimizer evaluates the likelihood. This is

most efficiently done using sparse Cholesky factorization and backsubstitution;

however, even though one has a separable covariance structure, this does not help

when calculating the Cholesky factor, which makes the evaluation of the likeli-

hood highly computationally demanding for large multivariate spatial problems.

The need to calculate the determinant of Q̂ is avoided if the EMG method
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is used. Hence, the likelihood is augmented with the latent variable ξ and we

calculate the gradient and the scaling matrix S by the procedure described above.

The augmented log-likelihood is

l = log π(Y,ξ|Ψ) =− mσ0 −
1

2e2σ0
(Y − Bβ− Aξ)⊤(Y − Bβ− Aξ)+

(11)

+
1

2
log |Q| − 1

2
ξ⊤Qξ, (12)

and the derivatives needed to evaluate the gradient of the log-likelihood L(Ψ; Y)

are presented in Appendix B.

The gradient method replaces computing |Q̂| with computing various traces

and there are two computational issues that have to be solved for the method to be

applicable to large data sets. The first is to solve ξ̂ = Q̂
−1

b for a vector b, which

can be done using sparse cholesky factorizations and backsubstitution. However,

in order to reduce the computationally complexity we instead use the precon-

ditioned conjugate gradient method (PCG) with a robust incomplete Cholesky

preconditioner (Ajiz & Jennings, 1984) to solve the equation.

The second issue is to solve the various traces of inverse matrices present in

the expressions for the gradients. Recent work in spatial statistics (Anitescu et al.,
2012, Stein et al., 2013) has proposed solving this issue using stochastic pro-

gramming. The basic idea is to note that E[u⊤Qu] = tr(Q) for any vector u

of independent random variables ui with mean zero and variance one (Hutchin-

son, 1990). Thus, we can rewrite all the traces in the gradient ∇l as expecta-

tions, which can ben be approximated using Monte Carlo integration. For exam-

ple tr
(

Q−1
s

∂ Qs
∂ φj

)

= E
[

u⊤ ∂ Qs
∂ φj

Q−1
s u
]

is replaced with k−1
∑k

i=1 u⊤
i

∂ Qs
∂ φj

Q−1
s ui.

The standard choice for ui is to use mean-zero Bernoulli random variables but

for spatial problems the variance of the estimator can be reduced by for example

using the probing vectors proposed by Aune et al. (2012). The PCG method is

used to efficiently calculate Q−1
s ui.

The resulting approximation, ∇lk, of the gradient ∇l is a random function

with E [∇lk] = ∇l . Shapiro et al. (2009) shows that, under mild conditions, the

local minimum of ∇lk converges to a local minimum of ∇l with probability one

as k → ∞. Using the iterative methods in combination with the EM gradient

method results in a highly computationally efficient method for estimating latent

Gaussian models.
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4.3 Estimation of the LGFM model

With the estimators for the MRF mixture model and the latent Gaussian model

derived, it is now simply a matter of combining these two for making the esti-

mator for the LGFM model. We augment the data-likelihood by both the MRF

z and the GRFs ξ = {ξ1, . . . ,ξk}, and let l = log π(Y, z,ξ|Ψ) where Ψ now

denotes all model parameters. To calculate the required gradient, we note that

∇ log L(Ψ; Y) =

∫

π(z,ξ|Y,Ψ)∇ log π(Y, z,ξ|Ψ) dz dξ

=

∫

π(z|Y,Ψ)

∫

π(ξ|z,Y,Ψ)∇ log π(Y, z,ξ|Ψ) dξ dz

=Ez

(

Eξ
(

∇ log π(Y, z,ξ|Ψ) | z,Y,Ψ
)

| Y,Ψ
)

=Ez

(

∇ log π(z|α,β)+

+Eξ
(

∇ log π(Y,ξ|z,σ) | z,Y,Ψ
)

| Y,Ψ
)

.

As in previous section, the expectation with respect to z must be approximated

using MC sampling. However, since the expectation with respect to ξ is known

analytically, see Appendix B, we can use Rao-Blackwellization to calculate gradient

as

∇ log L(Ψ; Y) =
1

T

T
∑

t=1

(

∇ log π(z(t)|α,β)+

+ Eξ
(

∇ log π(Y,ξ|z(t),σ) | z(t),Y,Ψ
))

.

Thus we can use the gradients calculated in the previous sections with two minor

changes.

The first difference is that the Gaussian likelihood (11) for each, independent,

field ξk is replaced with

log π(Y,ξk|z(ti),Ψ) =− (Y(i) − B(t)
k β− A(i)

k ξk)⊤(Y(i) − B(i)
k β− A(i)

k ξk)

2e2σ0

+
1

2
log |Qk| −

1

2
ξ⊤k Qkξk − m(i)

k σ0

where m(t)
k = d

∑

j zkj and Y(t), A(t)
k and B(t)

k are constructed by taking Y, A, and B

and only keeping the rows that corresponds to the pixels with z(i)
k = 1. Thus, m,
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5. An application to magnetic resonance imaging

A and B are replaced with m(t)
k , A(t)

k and B(t)
k respectively in the Gaussian gradients

presented in Appendix B.

The second difference is how z(t) is simulated. Unlike for the regular MRF

mixture model, Y|θk is not a vector independent variables and the sampling

method for z in the MRF mixture model therefore has to be modified. To sim-

ulate z(i), we introduce an extra step in the Gibbs sampler for the MRF mixture

model as follows

1. Sample the Gaussian fields {ξk}(i) from their respective distributions

π(ξk|Y, z(i−1),Ψ).

2. Sample z(i)
w from π(zw|z(i−1)

b ,Y, {ξk}(i),Ψ).

3. Sample z(i)
b from π(zb|z(i)

w ,Y, {ξk}(i)},Ψ).

Since Y|{ξk}(i),Ψ is a vector of independent variables, the second and third step

of the Gibbs sampler are performed in the same way as for the MRF mixture

model. It should also be noted that the sampled fields {ξk}(i) are not used in the

optimization other than to generate z(i).

The simulation from π(ξk|Y, z(i−1),Ψ) is typically solved using Cholesky fac-

torisation of Q̂k = Qk +
1
σ2 (A(i)

k )⊤A(i)
k ; however, this is not possible for large data

sets. We instead use the following method, from (Papandreou & Yuille, 2011),

which avoids the calculation of Cholesky factors entirely,

1. Generate x =

(

(KC−1/2) ⊗ Rdk

)

x1 +
1
σ

(A(i)
k )⊤x2 where x1 and x2 are

vectors of independent N (0, 1) random variables.

2. Solve Q̂kξk = x + 1
σ2 (A(i)

k )⊤(Y(i) − B(i)
k β).

Also here, the PCG method with a robust incomplete Cholesky preconditioner is

used to solve the linear equation in the second step.

5 An application to magnetic resonance imaging

There are a number of possible applications to brain imaging that could be con-

sidered for this model class. However, in this section we only present a simple

application to noise reduction. The MR image we analyze is a subset of data that

previously has been used for CT substitute generation and is described in detail
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Figure 3: A noisy MR image of size 166 × 124 pixels.

in Johansson et al. (2011). The image is taken with a radial UTE sequence with a

10 degree flip angle, a repetition time of 6 ms, and an echo time of 0.07 ms. The

UTE images were reconstructed to a matrix with 192 × 192 × 192 voxels with

isotropic resolution and a voxel size of 1.33 mm. For simplicity, we analyse only

one slice of this data, which is of size 192 × 192 pixels. After removing parts of

the slice that only contains areas outside the head, we obtain the image shown in

Figure 3 which is of size 166 × 124 pixels.

As seen in the figure, the data is somewhat noisy and the goal is therefore use

statistical techniques to reduce the noise in the image. As a first method, we use a

standard latent Gaussian model, which can be described as the LGFM model in

Section 3 with K = 1. The resulting estimate, X̂ , is shown in Figure 4 (a) and

the kriging residuals, X̂ − Y , are shown in Figure 4 (b). If the model was correct,

there should be no spatial structure in the residuals. However, we clearly see the

contour of the head in the residuals, which means that this simple latent Gaussian

model likely is insufficient for doing noise reduction of this image.

As an alternative to the latent Gaussian model, we fit a LGFM model with

three mixture components. The reason for choosing three components is to keep

the model simple while being able to separate the air outside the head and the

bone from the other tissue types, as these two classes clearly stands out in the

image. In order to keep the model simple, the MRF parameters αk are fixed to
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5. An application to magnetic resonance imaging

LGM LGFM1 LGFM2 LGFM3

κ2 0.0256 0.0550 0.0132 0.0005

σ2 0.0396 0.0303 0.0303 0.0303

τ 2.8437 4.1980 194.14 0.0081

μ 1.3568 1.5297 0.3857 3.2251

Table 1: Parameter estimates for the latent Gaussian model (LGM) and the three

mixture components of the LGFM model. The spatial dependency parameter β
for MRF in the LGFM model was assumed to be the same for all classes, and was

estimated to 2.73, and the prior parameters αk were fixed to zero. The estimation

was done on data standardized to have variance one.

zero and a common β parameter is assumed for all classes. Estimates of the other

parameters are shown in Table 1, which also shows the parameter estimates for

the latent Gaussian model as a reference.

Starting values for the LGFM estimation are obtained by first doing a classifi-

cation of the data using a standard Gaussian mixture model and then estimating

a latent Gaussian model for each class in the estimated mixture. The classification

using the LGFM model is shown in Figure 5, Panel (a) and the corresponding

classification is show in Panel (b). One should note that this classification is un-

supervised and obtained as a byproduct while fitting the LGFM model, and it

clearly finds the desired regions in the image. Panel (c) shows the difference be-

tween the LGFM estimate and the LGM estimate in Figure 4 (a), and one sees

that the difference is quite large, especially near the tissue boundaries. Finally,

Panel (d) shows the kriging residuals of the LGFM model in the same color scale

as the residuals of the latent Gaussian model in Figure 4 (b), and although there

is still some structure in the residuals, the result is much better.

Thus, the LGFM model performs much better than the latent Gaussian

model, and one of the reasons for this is that the model parameters are allowed

to very between the classes. This behavior could also be obtained by using a

non-stationary latent Gaussian model, where the parameters are allowed to vary

with space. However, the second important reason for the better behavior of

the LGFM model, which is much harder to obtain using a non-stationary latent

Gaussian model or an adaptive smoother is that the estimate for each class only

uses data that is classified as beloning to that class. This allows for much sharper

changes in the resulting estimate, and such behavior cannot be obtained in any
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Figure 4: Estimated MR image using a latent Gaussian model (a) and the kriging

residuals (b).

simple way using an ordinary latent Gaussian model.

In this example, the main purpose was noise reduction and using the LGFM

model we obtained a classification of the image as a byproduct. If the main objec-

tive was segmentation, a method worth mentioning is the popular adaptive seg-

mentation method by Wells III et al. (1996). It is worth noting that this method

fits into the general LGFM framework. In our notation, their model that is used

for classification can be written as

log(Yi) = ξi +

K
∑

k=1

zikGik (13)

where the field ξ is denoted a bias field and the second part is a standard gaussian

mixture model (z is not a MRF in this model). This model can be reformulated

as a transformed LGFM model, without measurement noise and with dependent

mixture fields ξki = ξi+Gki. An important difference that should be noted is that

Wells III et al. (1996) assumes that the covariance matrix for ξ is a known band

matrix and makes no attempts at estimating it, while we estimate the covariance

function for each class.
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Figure 5: Estimated MR image using a LGFM model with three classes (a) and

the corresponding classification (b). Panel (c) shows the difference between this

estimate and the estimate using a latent Gaussian model, the color scale has been

truncated to the middle 98% of the values to improve the visibility, which means

that the largest differences are truncated in the color scale. Panel (d) shows the

kriging residuals for the LGFM model, which shows much less spatial structure

than the corresponding residuals for the latent Gaussian model. The color scale

in Panel (d) has been set to match the color scale in Figure 4 (b).
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6 Discussion

This work has introduced the class of LGFM models as well as a computationally

efficient stochastic gradient parameter estimation method for the model class.

There are a number of directions in which this work can be extended. The

methods were tested on a simple noise reduction application in brain imaging

and we are working on more applications, such as substitute CT generation and

land-use classification. We focused on a particular model here that is suitable for

modeling of massive data sets on regular grids, but it would also be interesting

to test the model for more typical geostatistical problems in continuous space.

This would not require much work though the particular MRF model for the

allocation process would have to be modified.

The proposed estimation method is not only useful for the LGFM models but

also for regular MRF mixture models and latent Gaussian models. We have not

shown any theoretical properties of the estimator here and to the authors knowl-

edge, there are no applicable results available to show consistency of the estimator

for the proposed model class. Comets & Gidas (1992) showed consistency for

the maximum likelihood estimator for the MRF mixture models, but the consis-

tency of the maximum likelihood estimator for the LGFM models, the pseudo

likelihood estimators for the MRF mixture models, and the pseudo likelihood

estimators for the LGFM models are to the authors knowledge unknown, and

certainly something for further research.

Finally, the basic estimation method is straightforward to implement. How-

ever, we used several sophisticated techniques to reduce the computational cost

of the estimation, which increases the complexity of the implementation. We are

therefore working on a software package that implements these methods that will

simplify the practical usage of the methods.

Acknowledgements

The authors are grateful to Adam Johansson for providing the MR data used in

Section 5.

120



References

References

Ajiz, M. & Jennings, A. (1984). A robust incomplete choleski-conjugate gradient

algorithm. International Journal for Numerical Methods in Engineering 20, 949–

966.

Anitescu, M., Chen, J. & Wang, L. (2012). A matrix-free approach for solving

the parametric gaussian process maximum likelihood problem. SIAM Journal
on Scientific Computing 34, A240–A262.

Aune, E., Simpson, D. P. & Eidsvik, J. (2012). Parameter estimation in high

dimensional gaussian distributions. Statistics and Computing , 1–17.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems

(with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol. 36, 192–225.

Bolin, D. & Lindgren, F. (2011). Spatial models generated by nested stochastic

partial differential equations, with an application to global ozone mapping.

Ann. Appl. Statist. 5, 523–550.

Chiles, J.-P. & Delfiner, P. (1999). Geostatistics, modeling spatial uncertainty. Wiley

Series in Probability and statistics.

Comets, F. & Gidas, B. (1992). Parameter estimation for gibbs distributions from

partially observed data. The Annals of Applied Probability 2, 142–170.

Cressie, N. (1991). Statistics for spatial data. John Wiley & Sons Ltd, New York,

NY, USA.

Cressie, N. & Wikle, C. (2011). Statistics for spatio-temporal data. Wiley Series in

Probability and Statistics. Wiley, Hoboken, New Jersey.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B Stat. Methodol.
39, 1–38.

Fernández, C. & Green, P. J. (2002). Modelling spatially correlated data via

mixtures: a bayesian approach. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 64, 805–826.

121



D

Guyon, X. (1995). Random fields on a network: Modeling, statistics, and applica-
tions. Graduate Texts in Mathematics. Springer.

Held, K., Kops, E. R., Krause, B. J., Wells III, W. M., Kikinis, R. & Muller-

Gartner, H.-W. (1997). Markov random field segmentation of brain mr im-

ages. Medical Imaging, IEEE Transactions on 16, 878–886.

Hu, X., Lindgren, D. S., Rue, H. et al. (2013). Multivariate gaussian random

fields using systems of stochastic partial differential equations. arXiv preprint
arXiv:1307.1379 .

Hutchinson, M. (1990). A stochastic estimator of the trace of the influence matrix

for laplacian smoothing splines. Communications in Statistics-Simulation and
Computation 19, 433–450.

Johansson, A., Karlsson, M. & Nyholm, T. (2011). Ct substitute derived from

mri sequences with ultrashort echo time. Medical Physics 38, 2708.

Lange, K. (1995). A gradient algorithm locally equivalent to the em algorithm.

Journal of the Royal Statistical Society. Series B (Methodological) , 425–437.

Lindgren, F., Rue, H. & Lindström, J. (2011). An explicit link between Gaussian

fields and Gaussian Markov random fields: the stochastic partial differential

equation approach (with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol.
73, 423–498.

Papandreou, G. & Yuille, A. L. (2011). Efficient variational inference in large-

scale bayesian compressed sensing. In Computer vision workshops (iccv work-
shops), 2011 ieee international conference on. IEEE, pp. 1332–1339.

Reynolds, D. A. & Rose, R. C. (1995). Robust text-independent speaker iden-

tification using gaussian mixture speaker models. Speech and Audio Processing,
IEEE Transactions on 3, 72–83.
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A MRF gradients

Let l = log (PL(Ψ; z,Y)), where PL is the pseudo likelihood of the MRF mixture

model (10), the derivatives in the gradient are then given by

∂ l

∂ αk
=

∑

i

zik −
∑

i

exp(αk + βkfik)
∑

l exp(αl + βl fil )

∂ l

∂ βk
=

∑

i

zikfik −
∑

i

exp(αk + βkfik)fik
∑

l exp(αl + βl fil )

∇μk
l =

∑

i

zikQdk(Yi − μk)

∂ l

∂ ηkj
=

∑

i

zik

(

Idiag −
1

2

(

Yi − μk

)⊤ ∂ Qdk

∂ ηkj

(

Yi − μk

)

)

.

Here Idiag is one if ηkj is an element on the main diagonal of Rdk and zero other-

wise. We have

∂ Qdk

∂ ηkj
=

∂ R⊤
dk

∂ ηki
Rdk + R⊤

dk
∂ Rdk

∂ ηki
(14)

where the derivative ∂ Rdk
∂ ηki

is a matrix with all elements zero except the element

that corresponds to ηki. These expressions can be obtained with almost no extra

cost while running the Gibbs sampler to sample z. The derivatives needed to

evaluate the scaling matrix S are

∂2 l

∂ αk1
∂ αk2

=

∑

i

(

−Ik1=k2

exp(αk1
+ βkfik1

)
∑

l exp(αl + βl fil )

+
exp(αk1

+ βk1
fik1

) exp(αk2
+ βk2

fik2
)

(
∑

l exp(αl + βl fil ))2

)

∂2 l

∂ βk1
∂ βk2

=

∑

i

(

−Ik1=k2

exp(αk1
+ βkfik1

)f 2
ik1

∑

l exp(αl + βl fil )

+
exp(αk1

+ βk1
fik1

) exp(αk2
+ βk2

fik2
)fik1

fik2

(
∑

l exp(αl + βl fil ))2

)

∂2 l

∂ αk1
∂ βk2

=

∑

i

(

−Ik1=k2

exp(αk1
+ βkfik1

)fik1
∑

l exp(αl + βl fil )
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+
exp(αk1

+ βk1
fik1

) exp(αk2
+ βk2

fik2
)fik1

(
∑

l exp(αl + βl fil ))2

)

where Ik1=k2
controls that that factor is only included when k1 = k2. We also need

the the derivatives of the parameters for the independent Gaussian distributions:

Δμk
l = −

∑

i

zikQdk

∂2 l

∂ ηkj1 ∂ ηkj2

= −1

2

∑

i

zik

(

Yi − μk

)⊤ ∂2 Qdk

∂ ηjj1 ∂ ηkj2

(

Yi − μk

)

∂

∂ ηkj
∇μk

l =
∑

i

zik
∂ Qdk

∂ ηkj
(Yi − μk)

where

∂2 Qdk

∂ ηjj1 ∂ ηkj2

= Ij1=j2Idiag
∂ Qdk

∂ ηkj
+

∂ R⊤
dk

∂ ηkj1

∂ Rdk

∂ ηkj2

+
∂ R⊤

dk

∂ ηkj2

∂ Rdk

∂ ηkj2

(15)

Except for the derivatives with respect to μk, all these derivatives are also need for

the estimation of the LGFM model.

B Gaussian gradients

Let l = log π(Y,ξ|Ψ), the expectation of the derivatives then needed to evaluate

the gradients of the Gaussian likelihood
(

log π(Y|Ψ)
)

are

E

[

∂ l

∂ κ0
|Y,Ψ

]

=nd (D/4 − 1) + deκ0 tr
(

K−1C
)

+ ξ̂
⊤

Qd ⊗ Q̃sξ̂

+ tr
(

Qd ⊗ Q̃sQ̂
−1
)

,

E

[

∂ l

∂ ηj
|Y,Ψ

]

=Idiag −
1

2
ξ̂
⊤∂ Qd

∂ ηj
⊗ Qsξ̂

− 1

2
tr

(

∂ Qd

∂ ηj
⊗ QsQ̂

−1
)

,

E

[

∂

∂ β
l |Y,Ψ

]

= e−2σ0B⊤
(

Y − Bβ− Aξ̂
)

,
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∂
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− m.

Here,
∂ Qd
∂ ηj

is given by (14), ξ̂ is the expected value of ξ given the current param-

eter estimates, ξ̂ = Q̂
−1 1
σ2 A⊤(Y − Bβ), and Q̃s = (1 − D/4)Qs − ceκ0 K. For

the scaling S, we also need expectation of the second derivatives:
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∂ ηi ∂ ηj

is given by (15) and

∂ Q̃s
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8
Qs + c(3 − D)eκ0 K − ce2κ0C.
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Abstract

In analysis of extreme behavior of a time series or a stochastic process the Rice

formula is often used to obtain the distribution of the process at the instants of

high level crossings. For the purpose of simulation or analysis it is convenient

to have a Slepian model corresponding to the behavior of the original process

sampled at the level crossings. Here a Slepian model is understood as any explicitly

defined stochastic process that is distributed according to the crossing level biased

sampling distribution. The original Slepian model developed for a stationary

Gaussian process is very helpful in analyzing behavior of the process at extreme

levels. Here, Slepian models are derived describing the distributional form of a

moving average driven by a non-Gaussian noise as observed at level crossings. Our

leading non-Gaussian examples are moving averages driven by a Laplace noise.

A method of sampling from the corresponding biased sampling distribution of

the underlying gamma process is obtained. This is used for efficient simulation

of the behavior of a non-Gaussian process at the extreme level crossing. It is

observed that the asymptotic behavior of the process at high level crossings that is

fundamentally different from that in the Gaussian case.

Key words: Rice formula, level crossings, generalized Laplace distribution,

moving average process, extreme episodes, biased sampling distribution.
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1 Introduction

In the physical world, a random function is often described as a sequence of local

maxima or minima, constituting a series of random waves. In fact, not only the

visual impression of the process but also many technologically important impli-

cations in such fields as metal fatigue caused by random vibrations, failure caused

by excess load on a construction, etc., depend on the character of the process rep-

resented in such a random wave form. The basic objects in this theory are level

crossings and local extremes, see Podgórski et al. (2000) for computation of var-

ious crossing distributions, Baxevani et al. (2003) for spatial wave characteristics,

and Ditlevsen (1985) for an overview of other engineering applications.

A Slepian model is a random function representation of the conditional be-

havior of a stochastic process after events defined by level or curve crossings. In

general, a Slepian model contains one regression term with random coefficients

which describe the dependence on initial conditions such as the slope at the cross-

ing, the value of the process at a predetermined point, etc, and one residual term,

which describes the deviations from the path set out by the initial conditions. In

its classical form, such a model was first introduced in Slepian (1963) to describe

the behavior of a stationary Gaussian process after a zero crossing.

The model found applications in more theoretical studies of various asymp-

totic sample path properties of a Gaussian random process, or a function of a

vector valued Gaussian process, see Kac & Slepian (1959), Aronowich & Adler

(1988), or Lindgren (1989). Considerable work has been done on studying sam-

ple properties of Gaussian or related fields around high local maximum or level

set, see Wilson & Adler (1982) and, for more recent work, Azaı̈s & Wschebor

(2009).

Typically, the Slepian model is defined for ergodic processes when the dis-

tribution of the model coincides with the long-run empirical distribution of the

stochastic model. However, the Slepian model was also defined for a non-stationary

Gaussian process to study properties of the process under conditioning that local

maximum occurs at time zero, see Gadrich & Adler (1993) and Grigoriu (1989)

for an engineering application. It is worth to mention here that in the approach

presented in this paper, we analyze non-Gaussian models obtained by a random

distortion of the Brownian motion through conditioning on the distortion which

leads to (conditionally) non-stationary Gaussian process and through this our

work connects with Gadrich & Adler (1993).

In many practical situations, the assumption of Gaussianity is not supported
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by empirical data and therefore derivation of a Slepian model for non-Gaussian

processes is desirable. This need has driven growing interest in studying level

crossing distributions for non-Gaussian models, for example, see Adler et al.
(2013) for results on the high level crossings and van de Lindt & Niedzwecki

(2005) for an example of practical context in which a Slepian model for data

exhibiting non-Gaussian features is of interest. In this paper, we present an ap-

proach to obtain an effective Slepian models for a class of non-Gaussian models

driven by a Laplace motion, i.e. a non-Gaussian Lévy motion obtained by sub-

ordination of Brownian motion by a gamma process. This class has proven to be

sufficiently flexible to account for most non-Gaussian features observed in practi-

cal applications and some work has been done on the level crossing distributions

derived from a generalized Rice formula applied to these processes, see Åberg &

Podgórski (2010), Åberg et al. (2009), Galtier (2011).

The focus of this work is two-fold, firstly, we propose derivation general

Slepian models by obtaining Slepian models of the noise that is driving the con-

sidered models, secondly, we show how conditioning on a variable or process can

help in derivation of a convenient Slepian model for a non-Gaussian model. The

novelity of the approach is its focus on the Slepian models of the noise. An al-

ternative approach to building a Slepian model would be through a hierarichical

approach to which one could employ a non-stationary Slepian models as discussed

in Gadrich & Adler (1993). We prefer to consider a Slepian model of noise for

which we found a convenient simulation method through a Gibbs sampler. One

advantage of having a Slepian noise is a possibility of simultaneous studies of

various random functionals of such a noise without necessity of constructing a

separate Slepian model for each of the functionals. These benefits are illustrated

by examples and numerical studies. Our interest in simulations of Slepian mod-

els is paralleling applied engineering papers on this subject. They are useful, in

particular, to study non-linear dynamical systems where such Slepian models can

be considered as input to the system to study their responses at particular crossing

events. For such application our approach is more direct than the one presented

in Adler et al. (2013).

2 Preliminaries

We consider a stationary random process X having a.s. absolutely continuous

samples and such that the joint probability distribution function (pdf ) fX ,Ẋ of
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X (0), Ẋ (0) exists. For u ∈ R, the u-level upcrossing set within interval [0, 1] is

defined as

C(u) = {s ∈ [0, 1] : X (s) = u, Ẋ (s) > u}.

Let N (u) be the number of elements in C(u). For a properly defined statement A
on trajectories of another stationary stochastic process Y , define N (A|u) to be the

number of s ∈ C(u) such that Y (s + ·) ∈ A. The generalized Rice’s formula yields

E[N (u)] =

∫

+∞

0

zfẊ ,X (z, u) dz,

where X denotes X (0) and Ẋ denotes Ẋ (0). Equivalently

E[N (u)] =

∫ ∫

+∞

0

zfẊ ,X |K (z, u|k)fK (k) dz dk,

where conditioning on the random variable or vector K is used to simplify evalu-

ation of the integral. Here and in what follows whenever the limits of integration

are not shown in the notation they are understood to be over the entire set of

possible values of the corresponding variable. The focus of this paper is on the

Laplace moving average (LMA) processes for which K is a certain, possibly vector

valued, functional of the gamma process that serves as the subordinator in the

representation of the Laplace motion as a subordinated Brownian motion, Kotz

et al. (2001).

Similarly, one can consider

E[N (A|u)] =

∫

+∞

0

P(Y ∈ A|Ẋ = z,X = u) · zfẊ ,X (z, u) dz =

=

∫ ∫

+∞

0

P(Y ∈ A|Ẋ = z,X = u,K = k)·zfẊ ,X |K (z, u|k)fK (k) dz dk

and use this to evaluate the u-level upcrossing distribution Pu of Y , see, for ex-

ample, Zähle (1984) for derivation of this formula for a general class of stochastic

processes. The upcrossing distribution Pu is defined as the ratio of the average

number of the u-upcrossings at which a trajectory event occurs to the average

number of all u-uppcrosings, i.e. for a trajectory event A we consider

Pu(A) =
E[N (A|u)]

E[N (u)]
. (1)
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Consequently, one has the following representation of u-level upcrossing distri-

butions involving the conditioning on K :

Pu(A) =
∫ ∫

+∞

0

P(Y ∈ A|Ẋ = z,X = u,K = k) · zfẊ ,X |K (z, u|k)fK (k) dz dk
∫ ∫

+∞

0

zfẊ ,X |K (z, u|k)fK (k) dz dk

=

=

∫ ∫

+∞

0

P(Y ∈ A|Ẋ = z,X = u,K = k) · zfẊ |K ,X (z|k, u)fK |X (k|u) dz dk
∫ ∫

+∞

0

zfẊ |K ,X (z|k, u)fK |X (k|u) dz dk

. (2)

A stochastic process Yu such that its finite dimensional distributions corre-

spond to these given by the upcrossing distribution is referred to as a Slepian

model of Y at the u-up-crossings, i.e. for each measurable A in the space of tra-

jectories, Yu satisfies

P(Yu ∈ A) = Pu(A).

If the Slepian model can be expressed in an explicit form, it can be used for deriv-

ing approximations for probabilities of interest as well as simulating trajectories

interpreted as sample of the original process observed at instants of the u-level up-

crossings. It can also help to analyze asymptotic behavior of the process crossing

high level and thus providing an insight into behavior of the process at extremal

episodes.

Example 1. One can take Y = X and then a Slepian process Xu describes behav-

ior of X at its own up-crossings of u.

Example 2. Another case is to take Y = K for which a Slepian model Ku has

distribution given by the density

fKu(k) ∝
∫

+∞

0

zfẊ |K ,X (z|k, u)fK |X (k|u) dz.

Example 3. A joint Slepian model for Ẋ and K is a random vector with the

distribution given by

fKu,Ẋu
(k, z) ∝ zfẊ |K ,X (z|k, u)fK |X (k|u).

We observe that the distribution of Ku given Ẋu = z is the same as the distribution

of K given Ẋ = z and X = u.
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Generalizing Example 3 one can conveniently write a scheme for obtaining a

Slepian model for a process Y . Namely, let a process Y (·|k, z, u) has distribution

equal to that of Y conditionally on K = k, Ẋ = z and X = u. Then

Yu(·) = Y (·|Ku, Ẋu(0), u). (3)

In this note we discuss a Slepian model for the Laplace moving average (LMA)

X (t) =

∫

g(s − t) dL(s)

obtained by conditioning on the random time change process K (t) (subordina-

tor) in the representation of the Laplace motion L(t) = B(K (t)), where B is the

Brownian motion and K is a gamma process, see Kotz et al. (2001). As explained

above the key to deriving such a Slepian model is obtaining the biased sample dis-

tribution of Ku, i.e. that of the gamma process observed at the u level up-crossings

of the moving average process X . Our approach provides an alternative to com-

puting crossing level distributions as compared to the results presented in Galtier

(2011), Åberg & Podgórski (2010), Åberg et al. (2009), where the approximation

to the joint distribution of the process and derivative at zero were used for the

purpose. The benefits of considering Slepian models is that they provide a unified

frame for handling level crossing distributions for a variety of the variables and

functionals of stochastic processes.

To achieve this, we proceed as follows. Firstly, we consider a representation

X (t|k, z, u) of X (t) conditionally that K (·) = k(·), X (0) = u and Ẋ (0) = z. Here

k(·) stands for a realization of the process K (t), t ∈ R. Secondly, we obtain an

effective way of sampling from Ku(t) and Ẋu(0). Then finally, we obtain a Slepian

model through Xu(t) = X (t|Ku(·), Ẋu, u).

Practically and for simulation purposes, the actual conditioning will be with

respect to a vector valued K having iid Gamma coordinates, which serves as a dis-

cretized version of the subordinator K . A Gibbs sampler will be applied to obtain

distributions from the so structured Slepian model. This main contribution is

presented in Section 5.2. First however, in the next section, we study level cross-

ing distributions of a simpler although related non-Gaussian process obtained by

random scaling of a Gaussian process. This can be viewed also as the moving

average process with respect to a random time model B(K · t) =
√

K B(t), where

K is a numerical random variable independent of B. In the concluding section of

the paper we study the behavior of the Laplace moving average process at the high
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level crossings, while the appendix contains all technical details of the presented

results.

3 Random scaling model

Here, we discuss the Slepian model for a non-ergodic and non-Gaussian station-

ary process. Recall that for a stationary Gaussian process Z with variance one and

variance of its derivative also equal to one the Slepian model process Zu around

u-upcrossing of Z is given by

Zu(t) = u r(t) − Rṙ(t) +Δ(t) = u r(t) − Żu(0) ṙ(t) +Δ(t), t ∈ R, (4)

where r be the covariance function of Z , R is a standard Rayleigh variable inde-

pendent from a non-stationary Gaussian process Δ having covariance

r(t, s) = r(t − s) − r(t)r(s) − r′(t)r′(s).

See Leadbetter et al. (1983) for further details.

The above model can be viewed as the one obtained from (3). Namely, it

is easy to verify that the process Z (t|z, u) = u r(t) + z ṙ(t) + Δ(t) has the same

distribution as Z (t) conditionally on Z (0) = u and Ż (0) = z. Moreover, for the

Gaussian case Żu has the Rayleigh distribution thus following (3), i.e. considering

Z (t|Żu, u) yields the right hand side of (4).

Let us consider first a non-random scaling of Z , i.e. a process X (t) =
√

k Z (t),
t ∈ R, where k > 0 is a deterministic constant. For X at its own up-crossings of

u the following process clearly defines a Slepian model

Xu(t) = u r(t) −
√

kRr′(t) +
√

kΔ(t) = u r(t) − Ẋu(0)r′(t) +
√

kΔ(t).

When the non-random scaling
√

k is replaced by a random one and we con-

sider the process

X (t) =
√

K Z (t), (5)

where random K is independent of a process X , a simple analogy would suggest

that the following process defines a Slepian model for X :

Xu(t) = u r(t) −
√

K R ṙ(t) +
√

KΔ(t). (6)
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However this is not the case because X (t) conditionally on (K = k, Ẋ = z,X =

u) is represented by u r(t)−z ṙ(t)+
√

kΔ(t) and in this (k, z) has to be replaced by

the Slepian model (Ku, Ẋu). We note that Ẋu
d
=

√
KuR, where R is a Rayleigh ran-

dom variable independent of everything else, and a random variable Ku is ‘biased’

to account for the fact that the behavior observed at u up-crossings for specific

u makes certain scalings more likely than other – the phenomenon frequently

referred to as ‘sampling bias’.

As shown in the Appendix A, a Slepian model for the pair of variables (K , Ẋ )

is given by (Ku, Ẋu) = (Ku,
√

KuR), where R is having the Rayleigh distribution

and is independent of Ku with the distribution given by

fKu(k) = cu · e−
u2

2k fK (k).

The distribution of Ku represents the biased sampling distribution of the original

random scaling K when the sampling is at the up-crossing of the level u.

Following (3), a Slepian model for Xu is given by

Xu(t) = u r(t)−
√

KuR ṙ(t)+
√

KuΔ(t) = u r(t)− Ẋu(0) ṙ(t)+
√

KuΔ(t), (7)

where Δ(t) is the non-stationary Gaussian process described above independent

of Ku and R. Thus the Slepian model given in (7) corresponds to the application

of the conditioning in the Rice formula as presented in (2).

If for the scaling K we assume a gamma distribution, with the shape and scale

parameters p and 2/a, respectively, then its biased sampling distribution is given

by

fKu(k) =
ap/2

2upKp(
√

au)
· kp−1 exp

(

−ak + u2/k

2

)

,

where the modified Bessel function of the third kind (sometimes also referred to

as the second kind) with index p is defined as

Kp(u) =
1

2

(u

2

)p
∫ ∞

0

t−p−1 exp

(

−t − u2

4t

)

dt, u > 0.

This means that it belongs to the class of the generalized inverse Gaussian (GIG)

distributions, see the Appendix B for basic properties and notation. More gen-

erally, the GIG distributions have a convenient invariance property: if we con-

sider the scaling K that is GIG(p, a, b), then its biased sampling distribution is

GIG(p, a, b + u2).
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4. Non-ergodicity effect

Finally, the distribution of Ku given Ẋu = z is GIG(p, a, b + u2 + z2) and the

distribution of Ẋu is

fẊu
(z) ∝ z

(
√

b + u2 + z2
)p

Kp

(

√

a(b + u2 + z2)
)

, z > 0. (8)

Consequently, we can write an alternative form of the Slepian model

Xu(t) = u r(t) − Ẋu(0) ṙ(t) +

√

K̃uΔ(t), (9)

where Ẋu has the distribution given by (8) and K̃u is sampled from GIG(p, a, b +

u2 + Ẋ 2
u ), i.e. K̃u is a variable sampled from the distribution of Ku given that

Ẋu(0) = z.

4 Non-ergodicity effect

The random scaling process (5) is not ergodic and thus the derived Slepian model

Xu(t) does not represent the distribution of the process as observed at the level

up-crossings based on an individual trajectory. This due to the fact that the long

sampling distribution for a non-ergodic case is random, i.e. it varies randomly

from trajectory to trajectory. Nevertheless, the Slepian model distribution Pu

given in (2) still represents the ratio of two expected values to which the following

interpretation can be attached.

Consider S independent trajectories of X and let NT ,i(A|u) stands for the

number of upcrossings in [0,T ] marked by the property A for the i-th trajectory

while NT ,i(u) denotes the total number of upcrossings in [0,T ] for this trajectory.

With this notation, the proportion of u-upcrossings with property A in interval

[0,T ] among all u-upcrossings is given by

P̂T ,S(A|u) =

∑S
i=1 NT ,i(A|u)/NT ,i(u)

S
.

By the pointwise ergodic theorem, which is valid as long as the underlying process

is stationary, for each i, NT ,i(A|u) and NT ,i(u) converge when T increases without

bound almost surely to some random variables N̄i(A|u) and N̄i(u), respectively.

These variables for different i’s are independent identically distributed and satisfy

E(N̄i(A|u)) = E(N (A|u)),
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E(N̄i(u)) = E(N (u)),

while, in general,

E

(

N̄i(A|u)

N̄i(u)

)

6= E(N (A|u))

E(N (u))
.

By the Law of Large Numbers

lim
S→∞

lim
T→∞

P̂T ,S(A|u) = E

(

N̄1(A|u)

N̄1(u)

)

(10)

and

lim
T→∞

lim
S→∞

P̂T ,S(A|u) =
E
(

N (A|u)
)

E (N (u))
. (11)

Due to the lack of ergodicity, the two limits are not the same while the crossing

level distribution Pu(A) is defined as the latter one. Thus the Slepian model

approximates the proportion of the corresponding number of crossings if they

are looked for many independent trajectories over a long but fixed time interval

[0,T ], where T is chosen the same for all trajectories.

On the other hand, it should be remembered that, except for the ergodic case,

the Slepian model that represents Pu(A) can not be interpreted as the averaged in-

dividual trajectory up-crossings distributions because this would be rather equal to

E
(

N̄1(A|u)/N̄1(u)
)

. The latter is in fact the averaged values of crossing distribu-

tions as presented by the model given in (6). In this interpretation and using (10),

the model (6) provides the distribution at level crossings observed at independent

and complete, i.e. not restricted to a finite interval, sample trajectories.

The moving average model that is discussed in the next section is ergodic and

thus these issues with Slepian model interpretation do not longer apply. In fact,

in the moving average case, N̄i(A|u) and N̄i(u) are non-random and equal to their

respective expected values, i.e. N̄i(A|u) = E(N (A|u)) and N̄i(u) = E(N (u)) so

that the limits in (10) and (11) becomes the same.

5 Slepian model for the noise

5.1 Slepian noise model for Gaussian moving average

A moving average process is a convolution of a kernel function g , say, with a

infinitesimal “white noise” process having variance equal to the discretization step,
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5. Slepian model for the noise

say ds. Throughout the paper we assume normalization of the process in its value

and its argument so that the variances of the process and of its derivative are equal

to one or, equivalently,
∫

g2 =
∫

ġ2 = 1. Here and in what follows,
∫

f stands

for the Lebesgue integral of f , i.e.
∫

f =
∫

f (t) dt
The Gaussian moving average (GMA) is given by

X (t) =

∫ ∞

−∞
g(s − t) dB(s) (12)

and its derivative Ẋ is given as the moving average with ġ as the kernel. Consider

a fixed level u ∈ R and the probability distribution Pu on events A in the space of

real continuous functions on R given in (1). For a stationary Gaussian process, a

Slepian model is presented in (4). However for the purposes of this presentation

we derive another while equivalent Slepian model that explicitly use the moving

average form of the underlying process.

We first ask for a Slepian model dBu(x) for the noise dB(x) at the crossing

levels u of X . As argued in the Appendix A.2, the biased sampling distribution of

dB(x) is represented by the distribution of the following stochastic process Bu(t),
t ∈ R:

Bu(t) = u

∫ t

0

g+R

∫ t

0

ġ−
∫ t

0

g ·
∫

g dB−
∫ t

0

ġ ·
∫

ġ dB+B(t), t ∈ R, (13)

where random variable R has the Rayleigh distribution and is independent of

dB(t), while Bu(t) is understood as a random measure of [0, t], (if t < 0 the

measure is understood as the minus measure of [t, 0]). From this representation

we can clearly distinguish three component of the Slepian model for the noise:

the level and kernel dependent non-random component

Fu,g (t) = u

∫ t

0

g,

the kernel only dependent random component

Gg (t) =

(

R −
∫

ġ dB

)

·
∫ t

0

ġ −
∫

g dB ·
∫ t

0

g,

and purely random noise represented by Brownian motion B(t). We note that Gg

and B are stochastically dependent and Gg conditionally on B is a linear combina-

tion of non-random functions with one random coefficient distributed according

to a Rayleigh distribution.
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Example 4 (Gaussian kernel). Let us consider the (normalized) kernel g(t) =√
2e−t2

/(2π)1/4, t ∈ R. Direct calculations lead to the following form of the

Slepian model

Bu(t) = Fu,g(t) + Gg(t) + B(t),

where

Fu,g(t) = 4
√

2π u Φ0

(√
2t
)

,

Gg(t) =

(

4

√

2

π
R +

√

8

π

∫

se−s2 dB(u)

)

· sgn(t)·
(

e−t2 − 1
)

−
√

2

∫

e−s2 dB(s) · Φ0

(√
2t
)

,

where Φ0(s) = (2π)−1/2
∫ s

0 e−u2/2 du.

In Figure 1, we show simulations of samples from this Slepian model for

the motion for different levels u and compare them with corresponding samples

from a regular Brownian motion. From them we observe that the behavior of

Bu(t) depends on the value of a level u. In particular, for a high level u the main

contribution to Bu comes from the deterministic part.

There are several benefits of looking at the level crossing distributions through

the Slepian model of the noise. Having this biased sampling representation of the

noise, the Slepian model for any process that can be obtained as a functional of

the Brownian motion B is simply given by replacing B with Bu. Decomposition

into three components: level depending, kernel depending, and noise, allows

separate studies of different aspect of process behavior at the crossing levels. This

is particularly beneficiary if the process under consideration is a linear functional

of the noise. More precisely, consider a vector of stochastic processes Y(t) =

(Y1(t), . . . ,Yn(t)), t ∈ R such that they arise as a result of some functionals

acting on increments dB of a Brownian motion:

Yi(t) = Hi(t, dB), i = 1, . . . , n,

then the joint Slepian model Yu(t) for Y(t) at the instants when the moving aver-

age process X (t) up-crosses level u is obtained by considering

Yu,i(t) = Hi(t, dBu), i = 1, . . . , n.
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Figure 1: Top-Left: Six samples from a regular Brownian motion that were used

in computing samples from the Slepian model of Bu(t). Bottom-Left: Ten Gg (t)’s
computed for each of the six Brownian motion samples using ten randomly sam-

pled values R from Rayleigh distributions (the same R’s has been used for all six

plots). Middle-Top: Level dependent deterministic part of the Slepian model ob-

tained for for four levels: u = 0.5, 1, 3, 5. Middle-Bottom: Samples from the

Slepian model for the level u = 5, a single path of Brownian motion, and ten dif-

ferent values of the Rayleigh variable. Right: Six samples of the Slepian model for

Bu corresponding to the samples of Brownian motion. Crossing levels: u = 0.5
(top) and u = 5 (bottom). A single value for Rayleigh variable is used for all

samples.
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Figure 2: Left: Six samples from (X ,Y ): the Gaussian moving average X – (top)
and corresponding samples form the Laplace moving average Y – (bottom). Sam-

ples are based on five samples of the Brownian motion and a single sample of

the gamma process that is used for samples related to Y process. Middle: Sam-

ples from the joint Slepian model at the crossings of X at level: u = 0.5. Right:
Analogous samples at the crossings of level u = 5.

In particular, if functionals Hi(t,B) are linear in B, we obtain joint decomposition

Yi,u(t) = u · Hi(t, g dt) +

(

R −
∫

ġdB

)

· Hi(t, ġ dt)+ (14)

−
∫

gdB · Hi(t, g dt) + Yi(t), i = 1, . . . , n.

Example 5. To illustrate the convenience of the approach to level up-crossing dis-

tributions through the Slepian model of the underlying noise process, we consider

a pair of linear functionals of dB, Y = (Y1,Y2), defined as follows.

The first component Y1(t), t ∈ R, is the filtered original process X (t) by
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5. Slepian model for the noise

means of a filter h(t), so that

Y1(t) =

∫

h(s − t) dX (s) =

∫

h ∗ g(s − t) dB(s).

The second process arises from linear scheme that alter Gaussian distribution of

the moving average process. Namely, we consider the moving average driven by

a Lévy motion build upon the Laplace distribution – the Laplace motion. The

Laplace motion can be obtained through subordination of the Brownian motion

by the gamma motion. For a kernel f and the Lévy process K such that K (1) has

the gamma distribution with shape τ and scale 1/τ (for negative t, the process

−K (t) is an independent copy of K (t), t ≥ 0), we define the Laplace moving

average

Y2(t) =

∫

f (s − t) dB ◦ K (s).

The direct approach to the joint distribution of (Y1,Y2) at up-crossings of

X would require analysis of the joint distribution of (Y1,Y2) together with the

distribution of X (0) and Ẋ (0). This is not straightforward due to non-Gaussianity

of Y2. However, our approach through the Slepian model of dB as given in (14)

yields

Y1u(t) =u · h ∗ r(t) +

(

R −
∫

ġdB

)

· h ∗ g ∗ ˜̇g(t)+

−
∫

gdB · h ∗ r(t) + Y1(t),

Y2u(t) =u ·
∫

f (s − t) dG ◦ K (s)+

+

(

R −
∫

ġdB

)

·
∫

f (s − t) dg ◦ K (s)+

−
∫

gdB ·
∫

f (s − t) dG ◦ K (s) + Y2(t),

where G(t) =
∫ t

0 g , ˜̇g(t) = ġ(−t), and r = g ∗ g̃ is the covariance of X . The ob-

tained decomposition clearly reveal more complex dependence structure between

processes.
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Figure 3: The joint Slepian model for Gaussian (top) and Laplace (bottom) moving

averages. The Laplace case have random dependence on the underlying gamma

motion K – here only single sample from this process has been taken for all

graphs. Left: Level dependent components in the Slepian model, u = 0.5, 1, 3, 5.

Middle: The kernel dependent component for ten randomly chosen values of the

Rayleigh variable R). Right: Effect of Rayleigh variable on a single sample from

the joint Slepian model at level u = 5 – randomly sampled ten values of R.

For illustration, we take X as in Example 4 and consider Y1 = X , while

Y2 = Y , where

Y (t) =

∫

g(s − t) dB ◦ K (s), (15)

which could be viewed as a modified X by random distortion of time through the

gamma process K . We have the following formulas

Xu(t) =u · e−t2/2 −
(

R + 2

(

2

π

)1/4 ∫

se−s2dB(s)

)

· te−t2/2
+
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−
(

2

π

)1/4 ∫

e−s2dB(s) · e−t2/2
+ X (t),

Yu(t) =2 u ·
∫

e−(s−t)2
dΦ0

(√
2K (s)

)

+

+

√

2

π

(

R + 2

(

2

π

)1/4 ∫

se−s2dB(s)

)

·
∫

e−(s−t)2
de−K 2(s)

− 2

(

2

π

)1/4 ∫

e−s2 dB(s) ·
∫

e−(s−t)2
dΦ0

(√
2K (s)

)

+ Y (t),

Using the above relation, we illustrate particular components of the Slepian model

for the joint up-crossing distribution of (Y1,Y2). We have chosen τ = 0.5 for the

shape parameter of the gamma process. The samples of underlying Brownian

motion are the same as those in Figure 1.

In Figure 2 (Top), we observe samples simulated from bivariate process (X (t),
Y (t)) (to facilitate better visual comparison we have used the same sample of the

underlying gamma process for all six samples of the Laplace moving average).

They reveal complex dependence between processes and leptokurtic behavior of

Y , which shows much larger extreme values than X . In the middle and right

columns we see sample from the Slepian model at level u = 0.5 and u = 5,

respectively. The level crossing occurs at t = 0 as seen at the top middle/right

graphs. We observe in the bottom graphs that the random time change introduced

by the gamma motion is adding to variability of Y at the crossing instants of X .

For large level u the variability relatively to the level is reduced however the process

Y still significantly overshoots the crossing value u = 5.

Our approach allows for investigating the role of particular components in

the model that is illustrated in Figure 3, where the level dependent and the

Rayleigh/kernel depend components are presented. We observe that the influence

of Rayleigh variable for large level u is not significant and that major contribution

to the Slepian model comes from the level dependent component.

5.2 Slepian noise model at crossings of a non-Gaussian moving av-
erages

We have discussed Slepian models for the noise at crossings of a stationary Gaus-

sian moving averages. Our interest will turn now to the case of crossings by a
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moving average driven by a non-Gaussian noise dL(s):

X (t) =

∫

g(s − t) dL(s) =

∫

g(s − t) dB ◦ K (s), (16)

where K (t) is a gamma process with shape τ and scale 1/τ, i.e. K (1) has the

gamma distribution with these parameters. The choice of a gamma process as a

subordinator is dictated by convenience of a simple parameterization, but in gen-

eral one can consider other classes of non-negative second order Lévy processes.

In Section 3, we have considered a simple example of random transformation

of time given through dB(Kt) =
√

K dB(t) and we have seen that the Slepian

model Ku for K was giving a general way of describing arbitrary Slepian models

in that case. The case considered now is more complex and the key to deriving

the Slepian model is obtaining the biased sample distribution of Ku(t), i.e. of the

gamma process observed at the u level up-crossings of the moving average process

(16).

Let us consider an arbitrary process Y and a process Y (·|k, z, u) with the

distribution equal to conditional distribution of Y given K = k, where k is a

trajectory of gamma process K , Ẋ (0) = z, and X (0) = u. Then, as it was

previously observed, if one have a joint Slepian model (Ku, Ẋu) for (K , Ẋ ), then a

Slepian model for Y can be obtained through

Yu(t) = Y (t|Ku, Ẋu, u),

where for shortness Ẋu = Ẋu(0). This approach splits finding a Slepian model

for Y into two separate tasks: firstly, finding Y (·|k, z, u), then, secondly finding

a Slepian model (Ku, Ẋu). While finding Y (·|k, z, u) is specific for a given process

Y and need to be addressed in each case individually, while obtaining a Slepian

model (Ku, Ẋu) is universal and is considered next.

It is easier to consider an extended model (Lu,Ku, Ẋu) and express a Slepian

model for sampling from the crossing level distribution of this vector by a conve-

nient Gibbs sampler. Namely, the model will based on alternate Gibbs samples

from Ku conditionally on dLu, Ẋu and dLu, Ẋu conditionally on Ku. As shown in

Appendix A.4, these two conditional distributions are given by

fKu|dLu,Ẋu
(k|l , z) ∼ fdLu|dKu,Ẋu

(l |k, z)fẊu|dKu
(z|k)

fdLu,Ẋu|Ku
(l , z|k) ∼ fdLu|dKu,Ẋu

(l |k, z)fẊu|dKu
(z|k)
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It follows directly by the above conditional arguments and properties stated

in Appendix A.3, (19) and Appendix A.4, (20) and (21) that a Slepian model of

L at the u-crossings of Y can be written in the form

Lu(t) =
GKu(t) − rKuĠKu(t)

1 − r2
Ku

u
√

∫

g2dKu

+

+
ĠKu(t) − rKuGKu(t)

1 − r2
Ku

Ẋu
√

∫

ġ2dKu

+

+
GKu(t)

1 − r2
Ku

∫

rKu ġKu − gKu dB ◦ Ku+

+
ĠKu (t)

1 − r2
Ku

∫

rKu gKu − ġKu dB ◦ Ku + B ◦ Ku(t), (17)

where, for k = Ku, rk =
∫

gġdk/
√

∫

ġ2dk
∫

g2dk, gk = g/
√

∫

g2dk, ġk =

ġ/
√

∫

ġ2dk, Gk(t) =
∫ t

0 gkdk, Ġk(t) =
∫ t

0 ġkdk.

Although the structure of the Slepian model is more complex as compared

with the Gaussian case, one can still identify analogous components of the model.

More precisely, we have the level and Ku depending component

Fu,g,Ku (t) =
GKu(t) − rKu ĠKu(t)

1 − r2
Ku

u
√

∫

g2dKu

,

linear combination of functions depending only on Ku, where the coefficients are

random variables

Gg,Ku,B(t) =
ĠKu (t) − rKuGKu (t)

1 − r2
Ku

Ẋu −
∫

ġ dB ◦ Ku
√

∫

ġ2dKu

+

+
rKuĠKu(t) − GKu(t)

1 − r2
Ku

∫

g dB ◦ Ku
√

∫

g2dKu

,

and, finally, time distorted random noise

B ◦ Ku(t).
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Using this notation, we can write

Lu = Fu,g,Ku + Gg,Ku,B + B ◦ Ku. (18)

We observe that in this decomposition, in contrast to the stationary Gaussian

case, all terms are dependent on the level u. However, the dependence of the

second and third term is only through Ku. The second term is a linear combina-

tion of two functions of time t that become deterministic if conditioned on Ku,

while the random coefficients of this combination are no longer independent as

they were in the Gaussian case. Finally, we observe that our Gibbs sampler simu-

lates at the same time (Ẋu,Ku,Lu) and thus allows for evaluation each of the three

components in (18).

6 Asymptotics for Slepian models for large level cross-

ings

The behavior of the process at large level crossings is often of interest for risk

assessments at extreme events. Here we show how the derived Slepian models can

be utilized to investigate such behavior.

6.1 Behavior at extreme values for the random scaling case

The obtained Slepian model allows for a discussion of asymptotic behavior at a

high level crossing of the process. Recall that for a stationary Gaussian process

with continuously differentiable trajectories and covariance satisfying r(t) = 1 −
t2/2 + o(t2) we have the following result, see Leadbetter et al. (1983). For each

τ > 0, with probability one

lim
u→∞

sup
0≤t≤τ

∣

∣u
(

Xu(t/u) − u
)

+ t2/2 − R t
∣

∣ = 0.

The obtained Slepian models will be used to extend this result to a more general

classes of stochastic processes.

Example 6 (continued). For illustration, let us again consider the Slepian model

for X (t) given by (5). In order to obtain the asymptotic behavior in (7) for large

u, we need to investigate the asymptotic distribution of Ku. It is verified in Ap-

pendix B.2 that the following normalization

Ku − u/
√

a√
u/a3/4
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yields asymptotic mean zero and variance one while in probability the so stan-

dardized variable converges to zero. The same holds for

√
Ku −

√
u/ 4
√

a
√

2p+1
a

4
√

u

This asymptotics for Ku leads to the following behavior after high level cross-

ing for the Slepian model given in (7):

lim
u→∞

sup
0≤t≤τ

∣

∣Xu(t/
√

u) − u + t2/2 − R t
∣

∣ = 0.

To see this let us first note that

sup
t≤τ

∣

∣Δ(t/
√

u)
∣

∣ ≤ τ/√u sup
0≤t≤τ

∣

∣Δ′(t/
√

u)
∣

∣ .

By assumed regularity of the underlying Gaussian process, Δ′(0) = 0 and Δ′ is

continuous with probability one, thus Mu = supt≤τ |Δ′(t/
√

u)| converges almost

surely to zero, when u increases without bound.

Thus

∣

∣Xu(t/
√

u) − u + t2/2 − R t
∣

∣ ≤
≤
∣

∣

∣

(

u
(

r(t/
√

u) − 1
)

−
√

KuR ṙ(t/
√

u)
)

+ t2/2 − R t
∣

∣

∣+

+
√

Ku sup
t≤τ

∣

∣Δ(t/
√

u)
∣

∣

≤
(

τ2

2
+ τR

)

sup
t<τ

∣

∣1 + r̈(t/
√

u)
∣

∣+

+ τ

√

2p+1
a

4
√

u

∣

∣

∣

∣

∣

∣

√
Ku −

√
u

4
√

a
√

2p+1
a

4
√

u

∣

∣

∣

∣

∣

∣

(

R sup
t<τ

∣

∣r̈(t/
√

u)
∣

∣+ Mu

)

and the right hand side converges to zero because r̈(t) is continuous at zero and

r̈(0) = −1,

149



E

6.2 Gaussian noise at high level crossings

Here we use the Slepian model given in (1) to obtain an asymptotic result about

the noise behavior at high level crossings. Let us define the process

ξu(t) = u

(

Bu

( t

u

)

− B
( t

u

)

−
∫ t/u

0 g

t/u
t

)

and assume that both g and ġ are continuous at zero. Then

sup
0≤t≤τ

∣

∣

∣

∣

ξu(t) − ġ(0)

(

R −
∫

ġ dB

)

· t − g(0)

∫

g dB · t

∣

∣

∣

∣

≤

≤ τ
(

∫ τ/u
0 |g(s) − g(0)| ds

τ/u

∣

∣

∣

∣

∫

g dB

∣

∣

∣

∣

+

+

∫ τ/u
0 |ġ(s) − ġ(0)| ds

τ/u

∣

∣

∣

∣

R −
∫

ġ dB

∣

∣

∣

∣

)

.

By continuity of g and ġ the right hand side converges to zero when u increases

without bound, i.e.

lim
u→∞

sup
0≤t≤τ

∣

∣

∣

∣

ξu(t) − ġ(0)

(

R −
∫

ġ dB

)

· t − g(0)

∫

g dB · t

∣

∣

∣

∣

= 0.

By adding some conditions on the smoothness of g and ġ around zero (for

example if g satisfies a Lipschitz condition), this asymptotic result can be made

more exact. We will not discuss it here but we point, for a high level u, at a crude

approximation of Bu(t) in the neighborhood of 0:

Bu(t) ≈ g(0)u · t + B(t).
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A Slepian models – proofs

A.1 Slepian model for random scaling

We derive a Slepian model for the simple case discussed in Example 3. Invoking

the generalized Rice formula for the process Y (t) =
√

K X (t) yields

Pu(A) =
E
(√

K Ẋ+(0){
√

K X (·) ∈ A}|
√

K X (0) = u
)

E
(√

K Ẋ+(0)|
√

K X (0) = u
)

=

∫ ∞

0

∫ ∞

0

√
kz · P(A|z, k, u) · f

Ẋ |K ,
√

K X

(

z|k, u
)

fK |
√

K X (k|u) dz dk
∫ ∞

0

∫ ∞

0

√
kz · f

Ẋ |K ,
√

K X

(

z|k, u
)

fK |
√

K X (k|u) dz dk
,

where P(A|z, k, u) = P
(√

kX (·) ∈ A|Ẋ (0) = z,K = k,
√

kX (0) = u
)

.

We note that Ẋ = Ẋ (0) is independent of (K ,
√

K X (0)) and

f
K |√K X

(k|u) = cu · fK (k) · fX (u/
√

k)/
√

k = cue−
u2

2k fK (k)/
√

k.

This yields

Pu(A) =

∫ ∞

0

∫ ∞

0

P
(√

kX (·) ∈ A|
√

kX (0) = u, Ẋ (0) = z,K = k
)

zez2/2e−
u2

2k fK (k) dz dk
∫ ∞

0

ze−z2/2 dz

∫ ∞

0

e−
u2

2k fK (k) dk

= cu ·
∫∞

0

∫∞
0 P

(

ur(·) −
√

kzr′(·) +
√

kΔ(·) ∈ A
)

ze−z2/2e−
u2

2k fK (k) dz dk,

where c−1
u =

∫∞
0 e−

u2

2k fK (k) dk and the Gaussian process Δ(t) is as described in

Introduction. This leads to the Slepian model

Zu(t) = ur(t) −
√

KuRr′(t) +
√

KuΔ(t),

where Ku, R, and Δ(t) are mutually independent and distributed as follows: the

distribution of Ku is given by the density fKu(k) = cue−
u2

2k fK (k), R is having the

Rayleigh distribution.
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A.2 Slepian model for homogeneous Gaussian noise

Here we derive a Slepian model for the homogeneous Gaussian noise that is driv-

ing a moving average process. Such a noise can be viewed as a stochastic measure

defined through a Brownian motion B(t), t ∈ R, obtained from a regular Brow-

nian motion by reflecting it independently at t = 0, so that B(t) represents the

measure of [0, t] for t > 0 (for negative t it equals to the minus measure of [t, 0]).

This identification of the measures and processes is kept throughout the paper.

The biased sampling distribution for the finite dimensional distributions of the

Gaussian process B at the u-level up-crossings of X (t) =
∫

g(s − t) dB(s) are ob-

tained below by considering the conditional distribution of B(t),B(s), for some

fixed t and s, |t| ≥ |s|, given X (0) = u and Ẋ (0) = z.

The covariance matrix of the normally distributed vector (B(t),B(s),X (0), Ẋ (0))

is given by

Σ =









|t| a G(t) g(t) − g(0)

a |s| G(s) g(s) − g(0)

G(t) G(s) 1 0

g(t) − g(0) g(s) − g(0) 0 1









,

where a = |s| if s and t have the same sign and zero otherwise, while G(t) =
∫ t

0 g .

The ‘ones’ on the diagonal are the consequence of the assumption:
∫

|g|2 =
∫

|ġ|2 = 1. Direct verification of the covariances leads to the following represen-

tation of the Gaussian noise B given X (0) = u, Ẋ (0) = z:

B(t|u, z) = u ·G(t)+ z · (g(t)− g(0))−G(t)

∫

gdB− (g(t)− g(0))

∫

ġdB+B(t).

From the Rice formula it follows that this is a Slepian process for B at the

up-crossing level distribution given give that the derivative Ẋu at the up-crossings

is equal to z. Taking into account that the Rayleigh distribution is representing

the biased sampling distribution of the derivative and using (3), a Slepian model

for the noise is given by

Bu(t) =u · G(t) + R · (g(t) − g(0)) − G(t)

∫

gdB − (g(t) − g(0))

∫

ġdB

+ B(t),

where random variable R has the Rayleigh distribution and is independent of B.
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A.3 Conditional Slepian model of noise given subordinator, and deriva-
tive

An extension of the representation of the noise from the previous section to a non-

homogeneous Gaussian noise is important for derivation of the Slepian model

when a moving average with respect to the Laplace noise is crossing a level u. For-

mally, we are interested in the conditional Slepian model Lu of the non-Gaussian

noise L given that Ku = k and Ẋu = z, where Ku and Ẋu are some Slepian mod-

els for the subordinator K and the derivative Ẋ (0). Here, the crossing levels are

marked by the non-Gaussian moving average given in (16).

As presented in (3), this conditional distribution is equivalent to that of L
given K = k, Ẋ = z, and X = u. This in turn can be presented through

conditioning a non-stationary Gaussian moving average process

Xk(t) =

∫

g(s − t) dB(k(s)),

where k(s) is a non-decreasing function, i.e. we consider a moving-average integral

with respect to stochastic measure Bk defined on intervals as

Bk(s, s + ds] = B(k(s), k(s + ds)]

and as before we use the same notation to denote the corresponding independent

increment process Bk. In what follows, we use
∫

fdk for
∫

f (t)dk(t).
The joint distribution of (Bk(t),Bk(s), Ẋ (0),X (0)) has the covariance matrix

Σk =









|k(t)| a
∫ t

0 gdk
∫ t

0 ġdk
a |k(s)|

∫ s
0 gdk

∫ s
0 ġdk

∫ t
0 gdk

∫ s
0 gdk

∫

g2dk
∫

gġdk
∫ t

0 ġdk
∫ s

0 ġdk
∫

gġdk
∫

ġ2dk









,

where a = |k(s)| if the signs of k(t) and k(s) are the same and zero otherwise.

For compactness of the presentation, let set rk =
∫

gġdk/
√

∫

ġ2dk
∫

g2dk, gk =

g/
√

∫

g2dk, ġk = ġ/
√

∫

ġ2dk, Gk(t) =
∫ t

0 gkdk, Ġk(t) =
∫ t

0 ġkdk.

Direct verification of the covariances proves the following conditional Slepian

model for the non-homogenous noise Lu conditionally on Ẋu = z,Ku = k from

which samples can be taken for the Gibbs sampler scheme can be written in the

form
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Bk(t|u, z) =
Gk(t) − rkĠk(t)

1 − r2
k

u
√

∫

g2dk
+

Ġk(t) − rkGk(t)

1 − r2
k

z
√

∫

ġ2dk
+

+
Gk(t)

1 − r2
k

∫

rk ġk − gk dBk +
Ġk(t)

1 − r2
k

∫

rkgk − ġk dBk + Bk(t). (19)

A.4 Slepian model of noise, subordinator, and derivative based on
Gibbs sampler

Here, we discuss a Slepian model (Lu,Ku, Ẋu) that is based on a Gibbs sampler.

Let us consider the gamma process K , i.e. the Lévy process such that K (1) has the

gamma distribution with shape τ and scale 1/τ (for negative t, the process −K (t)
is an independent copy of K (t), t ≥ 0). For the computational and practical

reasons it is more convenient to consider a discretized version of the problem. We

consider a uniformly spaced grid dt (for compactness of the notation, we use dt
both for the grid and for its diameter) and assume that the stochastic measures are

approximated by the Lebesgue measure multiplied by the random increment of

a considered stochastic measure over an individual cell of the grid. In particular,

dL is a vector of values of the noise increments over this grid, K are random

gamma variances distributed with shape τdt and scale 1/τ while Z is a vector of

independent standard normal random variables so that dL =
√

K Z , where the

multiplication is coordinate-wise. We also use Ku and dLu as notation for Slepian

models of K and dL, respectively.

Further if g is a function, then
∫

g is a vector of values of the Lebesgue inte-

grals of g over the cells of the grid dt. With the assumed discretization and a slight

abuse of the notation, we write
∫

g dL =
∫

g · dL, where · stands for the inner

product of the two vectors. Consequently, we write X =
∫

fdL =
∫

f
√

K Z and

Ẋ =
∫

ḟ dL =
∫

ḟ
√

K Z .

We first notice that (Ku|dLu = dl , Ẋu = z)
d
= (K |dL = dl , Ẋ = z,X = u),

where each of the sides denotes a conditional distribution. Since, both Ẋ and X
are deterministic functions of dL thus we can assume from now on that

∫

ḟ dl = z
and

∫

fdl = u. The Bayes formula yields

fKu|dLu,Ẋu
(k|dl , z) ∝ fdL|K (dl |k)fK (k) ∝

(

N
∏

i=1

k
τdt−3/2
i e−(2ki/τ−dl2

i /ki)/2

)

,

(20)
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which corresponds to the distributed of a vector of independent variables dis-

tributed as GIG(τdt − 1/2, 2/τ, dl2
i ).

The Gibbs sampler from the Slepian model (Lu,Ku, Ẋu) will be based on al-

ternate samples from the conditional distributions:

k(j) ∼ (Ku|dLu = dl (j−1), Ẋu = z(j−1))
(

dl (j), z(j)
)

∼ (dLu, Ẋu|Ku = k(j)).

As we have seen above, the first sampling is reduced to sampling from independent

GIG distributions for which there exists a uniformly bounded rejection algorithm,

see Hörmann & Leydold (2013). Let us next discuss how to sample from dLu, Ẋu

given that Ku = k. We note that it is equivalent to sampling z from Ẋu given that

Ku = k and then l from dLu given that Ẋu = z,Ku = k which is the same as

sampling from dL given that Ẋ = z,K = k,X = u, which was discussed in the

previous section, see (19).

Further extending our notation for the discretized model, for any integrable

function g we write
∫

g dk as the inner product between the vector of the Lebesgue

integrals of g over the grid cells and the vector of values of the gamma vector

K = k. Using this convention we define r =
∫

gġdk/
√

∫

ġ2dk
∫

g2dk and for a

function g we write Gk(A) =
∫

A g dk =
∫

1Ag dk and Gk(t,A) =
∫

A gt dk, where

gt(s) = g(s − t).

It follows directly from the Rice formula that the distribution of (Ẋu|Ku = k)

is given by the density

fẊu
(z) ∼ z · exp

(

− (z − a)2

b

)

, (21)

where

a = u · r ·
√

∫

ġ2 dk/

√

∫

g2 dk,

b = 2(1 − r2)

∫

ġ2 dk.

Sampling from this density can be done through a accept reject algorithm.
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A.5 Generation of Slepian noise distribution

The purpose of this section is to approximate the integral for the palm equation

(2) by MC approximation for the case when X (t) is the Laplace motion. In general

when dealing with the non Gaussian case the evaluation of (2) the distribution

fX ,Ẋ is not known and thus evaluating the integral directly is not possible. For

models driven by Laplace moving average it is possible to approximate the process

with a piecewise constant process; that is we approximate

X (t) =

∫

g(t − s)dL(s)

with

X (t) =
N
∑

i=1

I(t < ti)g(ti − ti−1/2) (dL(ti) − dL(ti−1)) ,

where ti is assumed to be evenly spaced time points in the interval of interest.

split the time into intervals and let the process be constant on each interval. Then

define K as constant on each interval and taking the value of a Gamma random

variable. Now one can in theory evaluate the integrals numerically. But, in general

the number of intervals used to discretion of the time will make the numerical

integration infeasible.

An natural approach is then to replace the numerical integration with a MC-

integration, that is sample gamma r.v and evaluate
∫

+∞
0 P(Y ∈ A|Ẋ = z,X =

u,K = k) · zfẊ ,X |K (z, u|k) dz and
∫

+∞
0 zfẊ ,X |K (z, u|k) dz numerically. However,

if u is large then this method will be ineffective as the mass of (2) is where K
is large. Instead we sample from a distribution proportional to fX |K (u|k)fK (k).

This avoids the problem of sampling from the regular Gamma distribution. The

samples from fX |K (u|k)fK (k) is generated through the Gibbs sampler described

below.

The ith iteration of the Gibbs sampler consists of two steps

dl (i) ∼ fdL|X ,K (·|u, k(i−1))

k(i) ∼ fK |dL(·|dl (i))

where dL is the Laplace noise driving the process. Both distributions are explicit

namely multivariate normal for dl and Generalised inverse Gaussian for k. We

describe both steps in greater detail below
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B Generalized inverse Gaussian distribution

B.1 Definition and basic properties

The generalized inverse Gaussian distribution with parameters p ∈ R, a ≥ 0, and

b ≥ 0, for shortness GIG(p, a, b), is given by the pdf

f (x) =

(

a/b
)p/2

2Kp

(√
ab
)xp−1e−

ax+b/x
2 .

The parameters satisfy

a > 0 , b ≥ 0 , if p > 0,

a > 0 , b > 0 , if p = 0,

a ≥ 0 , b > 0 , if p < 0.

The moment generating function of a GIG distribution is given by

M(t) =

(

a

a − 2t

)p/2 Kp

(√
b(a − 2t)

)

Kp(
√

ab)
, t < a/2. (22)

The following formulas for the expectations of a GIG(p, a, b) random variable

X hold

E[X λ] = (b/a)λ/2
Kp+λ

(√
ab
)

Kp

(√
ab
) , λ ∈ R

E[log(X )] = log(
√

a/b) +
∂ log Kp

∂p

(√
ab
)

,

(23)

where ∂ log Kp/∂p(x) is the derivative of the Bessel function Kp(x) with respect of

its order p and evaluated at value (p, x), cf. Jørgensen (1982). Consequently, by

setting Rp(x) = Kp+1(x)/Kp(x) we obtain

E[X ] =

√

b

a
· Rp

(√
ab
)

,

E[X−1] =

√

a

b
· 1

Rp−1

(√
ab
) .

(24)
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This together with the following recurrence relation

Rp(x) = 2p/x + 1/Rp−1(x),

see Jørgensen (1982), yields

E[X−1] =
a

b
·
(

E[X ] − 2p/a
)

. (25)

The special case of p =
1
2 corresponds to the reciprocal inverse Gaussian and the

following simple forms of expectations hold

E[X ] =

√

b

a

(

1 +
1√
ab

)

E[X−1] =

√

a

b
,

B.2 Asymptotic behavior when b is increasing without bound

In our considerations of high level crossings, we need the asymptotic behavior

of GIG(p, a, b) when b is increasing without bound. For this we will use the

following property of Bessel function Kp as its arguments increases without bound

lim
x→∞

x2

(

√

2x

π
exKp(x) −

(

1 +
ap

x

)

)

= bp,

where ap = (4p2−1)/8 and bp = (4p2−1)(4p2−9)/128, see Olver et al. (2010).

We note first that the following behavior of the expected values

E(X ) −
√

b

a
=

√

b

a





Kp+1

(√
ab
)

Kp

(√
ab
) − 1





∼ 1

a

√
ab

√

2
√

ab

π
e
√

ab
(

Kp+1

(√
ab
)

− Kp

(√
ab
))

∼ ap+1 − ap

a
=

2p + 1

a
, (26)
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E(
√

X ) − 4

√

b

a
=

4

√

b

a





Kp+ 1
2

(√
ab
)

Kp

(√
ab
) − 1



 ∼ 4p + 1

8
4
√

a3b
, (27)

where the relation ∼ means that the ratio of the two expressions converges to one

when b converges to infinity.

Similarly, we analyze the variance of X :

V (X ) =
b

a





Kp+2

(√
ab
)

Kp

(√
ab
) −

K 2
p+1

(√
ab
)

K 2
p

(√
ab
)





=
b

a
Rp(

√
ab)
(

Rp+1

(√
ab
)

− Rp

(√
ab
))

∼ b

a

(

Rp+1

(√
ab
)

− Rp

(√
ab
))

.

It remains to investigate the behavior of Rp+1(x) − Rp(x) for x increasing without

bound.

Consequently,

Rp+1(x) − Rp(x) ∼
(

1 +
ap+2

x
+ O(x−2)

)(

1 +
ap+1

x
+ O(x−2)

)

+

−
(

1 +
ap+1

x
+ O(x−2)

)2

∼ 1

x
(ap+2 + ap − 2ap+1) =

1

x
.

This gives the following asymptotics for the variance (when b increases without

bound):

V (X ) ∼
√

b

a3/2
.

By examining the moment generating function, it can be verified that the

standardized variable (X − E(X ))/
√

V (X ) converges in probability to zero. Con-

sequently, in probability,

lim
b→∞

X −
√

b
a

4

√

b
a3

= 0,

while the mean and variance of the so standardized variable converge to zero and

one, respectively.
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E

Similarly for
√

X , due to (26) and (27), we have

lim
b→∞

V (
√

X )
4
√

b
= lim

b→∞

(

E(X ) −
√

b

a
+

+
2
4
√

a

(

E(
√

X ) − 4

√

b

a

)

−

(

E(
√

X ) − 4

√

b
a

)2

√
b











∼2p + 1

a
.

Thus the variable √
X − 4

√

b
a

√

2p+1
a

8
√

b

has the asymptotic mean and variance equal to zero and one, respectively, while it

is converging to zero in probability.
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