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Summary: 
The Biological Clockwork 

What makes tumour cells tick? Imagine the potential for personalized medicine if only we 
could understand, in detail, how tumours arise and develop. Those days might not be that 
far away... 

The -omics era 

The human body is often compared with machines of varying types with different 
regulatory and control mechanisms, which one can model and try to understand. 
Several branches of modern biomedical research target different levels of this general 
machinery. One such branch is genomics, that is the study of how the genetic code at 
the core of an organism is structured and how it is used, or regulated, over the lifetime 
of the organism in question. The completion of the Human Genome Project (HGP) 
allowed the scientific community to have a blueprint of the molecular building blocks 
of our bodies. The surprising result is that almost our entire genome, that is the protein 
coding regions of our DNA, is shared not only among all living humans, but also an 
overwhelming portion is shared among all mammalians. 

That being the case, the questions arise as to what mechanisms account for all the visible 
and invisible differences between us humans. The answer lies in the next level of 
biological molecules, the proteins. Just because a gene sequence is shared between two 
human beings, it does not mean that they express the same protein, or that the 
particular protein in question is functional to the same extent for these two individuals. 
Proteomics is yet another, somewhat newer, branch of biomedical research which 
focuses on qualitative and quantitative study of the proteome, that is the whole set of 
proteins in a living system such as a cell, a tissue sample or an entire organism. 
Proteomics studies the identity, quantity or function of proteins that exist within the 
studied system. While the genome of an organism is maintained stabile over its life 
span, its proteome is highly dynamic. In other words the proteome is subject to 
significant regulatory activity depending on both “time” and “location”, continuously 
throughout the lifetime of the organism. 

To illustrate this point, consider a nerve cell in your eye and a cell on your skin. They 
look and work completely differently as they express different proteins, yet they have 
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largely the same set of genes. Similarly, different proteins can be found in the same cell 
during different phases of its replication cycle. Another such example is the change in 
protein expression of cells that are exposed to environmental factors such as nutritional 
variations or different kinds of stress such as lack of oxygen or ionizing radiation. 

Role of proteomics in cancer research 

The overarching goal in many proteomics projects is to analyse the changes in the 
proteins between two or more conditions, especially diseases like cancer where large-
scale changes in the proteome occur. A deeper understanding of these changes will 
ultimately help researchers develop better medicine, as well as clinicians tailor more 
effective treatments for the patients. 

The majority of traditional cancer medication is composed of toxic molecules effecting 
mainly dividing cells. Therapeutic approaches are largely based on the assumption that 
malignant cells divide faster and more often than “normal” cells in their surrounding. 
This approach is essentially the medical counterpart to carpet-bombing in a battlefield. 
This rather grim and tragic analogy is mostly due to the collateral damage associated 
with the approach. Systemic cytotoxic medicine causes serious side effects to the 
patient, which has a major impact on quality of life. To make the matters worse, in 
some cases patients benefit relatively little from the treatment, if any at all, due to 
acquired resistance to therapy.  

At the same time, the economic burden of over-treating patients is not negligible. Not 
only does conventional therapy little good to the patient, but it also puts significant 
burden on the health-care systems, due to primary and secondary effects of 
conventional chemotherapy. Many patients have compromised immune systems and 
are susceptible to opportunistic diseases. 

Personalized medicine 

These points are all common arguments for personalized medicine. The concept refers 
to tailoring the treatment of a cancer patient based on the specific form of disease the 
patient has. That way the patient receives the therapy that has the highest chance to 
giving health benefits, systemic cytotoxic agents are used to a minimum and the patient 
hopefully experiences minimal impact on quality of life. However, in order for 
personalized medicine to become a global reality certain conditions need to be met. 
First of all, in order to tailor the treatment to a patient, the mechanisms affected by the 
disease need to be discovered. Pro-oncogenic mutations, that is the changes in the 
genome that promote tumour development or survival need to be identified. Networks 
of interacting proteins, often called pathways, which have been altered in the malignant 
cells, need to be analysed in detail. These are tasks that are far from being trivial. 
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While whole-scale personalised cancer therapy is not here yet, there is significant 
progress towards the end goal. Today in Sweden almost every cancer patient leaves 
samples that are investigated with state-of-the-art technology, revealing many 
important insights at different levels of the mechanisms; key mutations are highlighted, 
pathways are investigated with genome-/proteome-wide discovery studies. In some 
cases significant improvements are observed. 

One such success story is the use of Herceptin in HER2-positive breast cancer patients. 
HER2 is a receptor protein that sits on the cell membrane, and this protein is typically 
involved in signal transduction that is important for cell survival and development in 
the tumours. Herceptin is a molecule that inhibits the signalling process through this 
receptor protein and thereby hinders the development of the cells that express this 
protein highly. Another promising example is the use of small molecules called tyrosine-
kinase inhibitors (TKI), particularly in patients that have a specific type of cancer in 
the abdomen, called gastrointestinal stromal tumours (GIST). 

In both of the cases above, the treatment is aimed at targeting a protein of interest, 
typically a weak-point in a pathway that is susceptible to inhibition. Based on these 
principles, the work presented in this thesis is a collection of studies aimed at improving 
our understanding of the proteomes of different types cancer. In PAPER I, a novel 
computational method for evaluating expression regulation is presented. This method, 
and the software that comes with it, provides preclinical researches the means to identify 
the mechanisms by which tumour cells differ from their normal counterparts.  

The remaining four papers present studies focused more on data analysis and biological 
interpretation in different settings. In papers II and III, clinical samples from soft-tissue 
sarcomas and gastroesophageal tumours are analysed, respectively, and new insights to 
these complex diseases with key proteins and pathways are highlighted. 

The studies presented in papers IV and V are focused on breast cancer biology. In 
PAPER IV, an overall poor correlation in protein expression of immortalized cell lines 
and the tumour subtypes that they are presumed to represent was shown. This finding 
points towards the fact that better care must be taken when transferring knowledge 
gained by studies model systems. In PAPER V, the presented study focuses on the 
therapeutic aspects of ER-positive luminal-type breast cancer, specifically the systemic 
significance of oestrogen signalling pathway, and the therapeutic potential of inhibition 
of this pathway is shown. 

While it would be too optimistic to give a timeframe for curing all forms of cancer, the 
field of cancer therapy will certainly see major improvements in survival rate and patient 
quality of life over the next 15-20 years. As our understanding of these diseases increase 
through systems biology, more sophisticated treatment options that target multiple 
proteins in a pathway, or multiple pathways, will emerge and personalised medicine 
will be more of a reality rather than a concept out of science fiction books. 
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Foreword 

After approximately 20 years and $3bn, one of the most significant research projects in 
human biology, the Human Genome Project (HGP) was completed in 2003 to provide 
a blueprint of the molecular building blocks of our bodies. Arguably the largest 
landmark achievement since the discovery of the double-helix structure of DNA, the 
completion of HGP not only answered many questions but also opened up new 
horizons to explore for researchers within biomedical sciences.  

Research into genomics in the past decade clearly demonstrated that two cells sharing 
a common gene does not imply that both cells express exactly the same gene products 
or that a particular protein product of the gene in question is functional to the same 
extend in these two cells. The number and importance of the questions that could not 
be explained with the insights into the genome alone have no doubt paved the way for 
studies aimed at proteins and regulatory mechanisms involving proteins. The 
mechanisms involved in DNA replication, transcription and translation were shown 
and explained relatively early on following the discovery of the structure of the DNA 
molecule (CRICK 1958). However much like in the classic novel, the rabbit hole was 
subsequently shown to go much deeper than originally thought.  

From protein expression to cancer therapeutics, the research that gave birth to this 
thesis is of cross-disciplinary nature and is built on three main pillars, which cover 
different aspect of data generation, analysis and interpretation of this data in biological 
context. These three subjects are presented in consequential order in the following 
chapters, followed by an appendix containing five papers presenting the research in the 
context of this thesis.  
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Proteomics 

“A few years ago the idea of making proteins or polymers “fly” by electrospray 
ionization (ESI) seemed as improbable as a flying elephant, but today it is a standard 
part of modern mass spectrometers.” 

John B. Fenn, Nobel lecture, 2003 

Definition, origin and history of proteomics 

Proteomics, refers to the qualitative and quantitative study of the proteome, that is the 
entire set of proteins, expressed by a genome at a certain time under specified 
conditions. The term proteome was coined in 1994 by Wilkins during a conference in 
Siena, Italy and started appearing in literature since then (Wasinger et al. 1995; Wilkins 
et al. 1996). 

The motivation to study the proteome stems from the fundamental observation that 
the proteins are the primary actuators both within and outside the cells of a system. 
They function as enzymes in metabolic and signalling events, as structural components 
of the cytoskeleton and of virtually all organelles, as transport molecules as well as 
regulatory elements by which protein and gene expression is controlled (Raven 2005). 
In that sense one could crudely summarize that genomics studies what may happen in 
a cell, whereas proteomics study what actually happens. 

There are several complications associated with the study of proteins in a biological 
system, however. For instance while the genome of an organism is maintained as stable 
as possible, the proteome of an organism is highly dynamic. In other words the 
proteome is subject to significant regulatory activity in both spatial and temporal 
domain, continuously throughout the lifetime of the organism. Considering the 
functional and physiological differences between the wide variety cells, which share 
virtually the same genome, present in the body of an individual, the role of regulatory 
mechanisms involving proteins becomes self-evident. Similarly, the protein expression 
profile, that is which proteins are expressed and to what degree, of a cell in phases of 
the cell cycle differs significantly. Thus any discovery study of the proteome, aiming to 
map out the proteins in the target system, is essentially a snapshot of the proteome at a 
given time and at a specific location. 
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Figure 2: The rise of proteomics in literature; number or articles on PubMed with the term “proteomics” 
in title or abstract as of July 2015. 

Another major challenge in studying the proteome originates from the difference in 
levels of abundance associated with different proteins. Specifically, proteins are 
observed to be expressed between approximately 7 and 10 orders of magnitude in 
cells(Beck et al. 2011) and plasma(N. L. Anderson and Anderson 2002), respectively. 
Operating on such a range requires analytical methods that can cover a wide dynamic 
range, i.e. equally adept at detecting or measuring proteins that are expressed from few 
copies up to billions per cell.  

Proteins abundances span such a large range as a consequence of the many functions 
that proteins fulfil in living organisms. Low abundance proteins are typically 
characterized by high turnover rates, and may have drastic effects on the regular 
functioning of the system. Examples of such proteins could be initiator kinases for 
signalling cascades, where the initial signal is amplified several folds downstream until 
the signal reaches the target(s). Another example could be detector proteins that sense 
stress conditions like hypoxia, or damage to vital components of the cell such as the 
DNA. High abundance proteins, on the other hand, are characterized by specific 
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fundamental functions that are required in high numbers; examples of such are 
cytoskeletal proteins or ribosomal proteins that typically turn over at a slower rate. 

The diversity of proteins occurs not only on the level of abundance (copy number), but 
also on physical properties of these macromolecules. Specifically, proteins show 
tremendous variability with respect to length, and thus molecular weight (MW), 
ranging from a handful of amino acids (Tuftsin, 501 Da) up to well over 30 000 amino 
acids (Titin, over 3.8 MDa), according to the April 2014 release of UniProtKB 
(UniProt Consortium 2015). Historically, a divide and conquer approach has been 
utilized for examination of proteins, where protein(s) of interest are cut into shorter 
chains of amino acids.  

One of the first methods for investigating peptides, called Edman degradation (also 
referred to as Edman sequencing) named after the Swedish chemist Pehr Edman who 
described the procedure in 1950 (Edman 1950), is based on a divide-and-conquer 
approach as well. The procedure, involves repetitive steps of cleaving the N-terminal 
amino acid residues from the peptide backbone, resulting in a single amino acid and a 
peptide sequence that is one shorter than the original. The identity of the single amino 
acid can be determined with an orthogonal method such as chromatography or 
electrophoresis, while the process can be iterated to cleave the next residue on the N-
terminus. This method is slow and laborious, especially on a large scale where for 
instance the proteome of a whole cell lysate is studied. Furthermore, the utility of the 
method is limited to cases where the N-terminal amino acid is accessible and not 
chemically modified, as well as when working with intact proteins. There have been 
variants of sequential sequencing, which allow for C-terminus degradation in a similar 
fashion (Stark 1968), however with the developments in mass spectrometry 
instrumentation and ionization techniques in the later decades of 20th century and 
onwards, this method is practically obsolete for most proteomic studies. 

In the current years, what one could refer as the modern era of proteomics, two 
orthogonal methods have become the norm: affinity proteomics and mass-spectrometry 
proteomics. The studies presented in this thesis will focus exclusively on the latter. 

Mass spectrometry proteomics 

A mass spectrometer (MS) is an analytical instrument that measures the mass over 
charge ratios (m/z) of ionized analytes in gas phase. It is essentially composed of an ion 
source, a mass analyser to measure the m/z values and a detector to count the ion 
intensity (Aebersold and Mann 2003).  

A typical MS-proteomics experiment follows a 4-step workflow, which starts with 
sample preparation, separation of proteins or peptides and acquisition of mass spectra 
and finally data analysis. There are essentially two main approaches in MS-proteomics, 
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often referred to as the top-down and bottom-up mass-spectrometry. In both cases 
analytes are measured, fragmented and measured again, in a process referred to as 
tandem mass-spectrometry, or often in the short form MS/MS. In this context the 
spectra obtained in the first scan is called MS1 while the secondary scan(s) following 
the fragmentation are referred to as MS2. This technique can be extended to include 
further fragmentation, sometimes referred to as multi-stage mass-spectrometry or MSn, 
mainly through the use of an ion-trap instrument. 

Top-down vs. bottom-up MS/MS 

The main difference between these two approaches is in the analytes that are subjected 
to mass spectrometric analysis. In top-down proteomics, intact proteins are analysed, 
whereas in bottom-up proteomics, proteins are digested into peptides prior to injection 
to the spectrometer.  

 

Figure 3: Top-down vs. bottom-up proteomics, reproduced from (Scherl 2015) with permission from 
the publisher. 

The most common approach to a MS-proteomics experiment is the bottom-up 
approach, where the proteins are digested into peptides, often using a protease, during 
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the sample preparation step, thus increasing the sample complexity by approximately 
two orders of magnitude. 

The masses of the intact peptides are measured in MS1, then fragmented often using a 
collision chamber filled with an inert gas, and the resulting fragments are measured in 
MS2. These fragmentation spectra are matched to libraries of mass-spectra, either of 
theoretical mass-spectra created by in silico digest of the target proteome or so-called 
spectral libraries containing experimental MS2 spectra of that particular peptide. This 
approach is sometimes called shotgun proteomics, analogous to shotgun genome 
sequencing. One of the major advantages of bottom-up proteomics is better possibilities 
for peptide separation, in one or more dimensions, prior to mass-spectrometry analysis 
compared to intact proteins, which makes this method better suited for analysis of 
complex samples where proteome coverage is of main concern (Yates, Ruse, and 
Nakorchevsky 2009).  

On the downside, one of the fundamental drawbacks of bottom-up proteomics is the 
breaking of protein-peptide linkage (Figure 4). Once digested, it is impossible to tell 
which protein a particular peptide comes from, unless it is unique to a particular 
protein. This is a rather complicated issue that gives rise to a multitude of problems 
such as the protein identification problem and the protein quantification 
problem(Nesvizhskii and Aebersold 2005; Claassen 2012). Since the bottom-up 
approach relies on identification and quantification on peptide-level, with the protein-
peptide linkage gone, it becomes challenging to figure out which proteins were in the 
sample originally. One method that has been popular, mostly due to its simplicity, is 
the so-called Occam’s razor, where the idea is to explain the evidence with the simplest 
answer. In MS-proteomics context, it translates to describing the observed set of 
peptides with the fewest number of proteins. For unique peptides, the situation is 
simple as there is enough evidence for including the proteins containing these peptides 
in the resultant dataset. The situation is far more complicated however for so-called 
degenerate peptides, i.e. peptides that could originate from multiple different proteins. 
This situation becomes more complex for protein isoforms and splice variants, often 
giving rise to protein groups, rather than distinct proteins. While a wide range of 
different statistical methods are developed to tackle the protein identification, also 
known as the protein inference, problem (Serang and Noble 2012), a dominant design 
is yet to emerge and a considerable amount of groups still use Occam’s razor principle 
in their workflows.  

Another consequence of breaking the protein-peptide linkage is the difficulty in the 
quantification of proteins. In the simplest case, where a protein is identified by two 
unique peptides with intensities I1 and I2, the determination of the abundance of this 
protein becomes a function of these two intensities. This too is a non-trivial task, as 
ionization efficiency and thus signal yield varies significantly between peptides. Similar 
to the protein inference problem, no dominant design has emerged despite numerous 
different methods developed over the recent years. The most commonly used methods 
are often simple alternatives such as taking the mean or median of values from 
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individual peptides, or summing the intensities and taking that sum as a proxy for 
relative protein abundance (Carrillo et al. 2010). The use of stable isotope labelled 
standards spiked in at known concentrations helps in this regard, allowing for better 
comparisons, however the underlying problem of re-constructing the relative protein 
abundance remains one of the major challenges for bottom-up proteomics. 

 

Figure 4: Protein-peptide linkage issue in bottom-up proteomics. A majority of tryptic peptides will not 
be unique to a single protein, which raises questions as to how to identify which proteins were in the 
sample originally, and in what abundance. Here peptide 2 is a degenerate peptide, in other words, 
whether it originates from protein A or protein B cannot be determined certainly. This fact not only 
jeopardizes the identification of protein B, but also casts doubt upon the quantification of protein A and 
B. In this case, the identification and inclusion of protein B is entirely dependent on the strategy 
employed for identification procedure, also called as the protein assembly problem.  
Protein quantification is also non-trivial for bottom-up proteomics; here protein C has two unique 
peptides, 3 and 4, thus the abundance of protein C needs to be determined as a function of the 
abundances of these two peptides. Finally since the complexity of the sample is increased approximate by 
two orders of magnitude by protein digestion, it is likely that a number of peptides will not be identified 
at all, and in the grossly simplified case above, protein D will be neither identified nor quantified in the 
sample. 
Another complication that occurs in this scheme is management of the so-called chimeric spectra, which 
contain fragmentation patterns of multiple co-eluting peptides within the same isolation window 
(denoted with the red dashed arrow). Based on the acquisition method these spectra may not be matched 
to any theoretical spectra during the identification of peptides.  
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In comparison, the top-down proteomics approach relies on the measurement of intact 
proteins and their fragments, usually created by electron capture dissociation (ECD) 
(Zubarev et al. 2000) or electron transfer dissociation (ETD) (Syka et al. 2004). The 
direct advantages of the top-down approach are the higher sequence coverage of the 
analysed proteins as well as better characterization of post-translational modifications 
that may otherwise be lost in the process (Kelleher et al. 1999). The top-down approach 
also avoids inference problems that arise with breaking of the protein-peptide linkage. 
In practical terms this means both the identification and quantification at protein level 
can be done with much higher accuracy.  

Despite the advantages, top-down proteomics have not been standard approach for 
proteomics experiments due to difficulties associated with front-end separation of 
proteins. This is issue becomes even more challenging when separating post-
translationally modified copies of proteins from the unmodified ones. A range of 
separation techniques, both off-line and on-line, exist for intact proteins(Capriotti et 
al. 2011; Catherman, Skinner, and Kelleher 2014), each with their own potential 
advantages and drawbacks. For instance, while off-line separation techniques might 
result in better separation, they increase sample handling and the throughput decreases, 
rendering large-scale experiments impractical.  

A secondary issue is the identification of the analytes observed in the mass-
spectrometer. Bottom-up analysis often relies on matching of MS2 spectra to theoretical 
spectra for peptides resulting from in silico protein digestion. However fragmentation 
of intact proteins is much more complex and computational methods for identifying 
proteins in top-down experiments are rather limited in comparison (Calligaris, Villard, 
and Lafitte 2011; Catherman, Skinner, and Kelleher 2014). 

The choice between top-down and bottom-up approaches boils down to a compromise 
between sequence coverage and proteome coverage, as well as sample complexity. Both 
approaches have specific advantages and shortcomings, and thus will likely co-exist and 
evolve side-by-side in the foreseeable future. Since proteome coverage has been the 
priority for the works presented in this thesis, all five papers included in this thesis have 
adopted bottom-up approach. 

Post-translational modifications and implications 

Post-HGP studies have shown that the complexity of the proteome vastly supersedes 
that of the genome. In humans, a genome of approximately 20 000 genes, is estimated 
to give rise to over 1 million distinct proteins (Jensen 2004), thanks to a series of pre- 
and post-translational processes. Mechanisms such as genomic recombination, 
differential transcription initiation (at alternative promoters) and termination and 
alternative splicing generate different mRNA transcripts from a single gene, altogether 
adding approximately an order of magnitude to the complexity (Pan et al. 2008). An 
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additional order of magnitude is attributed to processes that proteins undergo after they 
have been synthesized, commonly referred as post-translational modifications (PTMs).  

While the exact number and function of all possible PTMs are up for debate and 
beyond the scope of this thesis, more than 200 modifications have been shown in the 
literature (Walsh 2006). It is clear that they play a critical role in cellular machinery as 
they often alter the structure and thus the function of the modified protein. To further 
complicate things, many PTMs are highly dynamic and are subjected to change due to 
stimuli. A particular type of modification may occur at various different positions on a 
single protein in a non-exclusive manner and different modifications may occur in 
tandem on the same protein and some modifications on a specific residue may take 
shape in many different ways, e.g. glycosylation.  

Given the importance of the PTMs, many groups have spent decades studying different 
types of modifications. However as discussed earlier, the shotgun (bottom-up) 
approach to proteomics have some limitations with respect to studying these 
modifications. One of the most studied PTMs (Khoury, Baliban, and Floudas 2011), 
phosphorylation, typically require high-level of enrichment of the modified peptides 
prior to shotgun LC-MS/MS analysis. Not only does enrichment procedure imply 
more labour in sample preparation and increased risk of sample handling variability but 
also the separation of modified peptides from the unmodified ones obscure information 
regarding site occupancy. While it’s possible to carry out two LC-MS/MS runs, one for 
the phospho-enriched sample and one for the flow-through direct comparison of 
quantification is still far from trivial due to losses in connection with enrichment 
procedure. 

The focus on post-translational modifications, in particular phosphorylation, in the 
recent years have resulted in hundreds of thousands of reported phospho-sites, however 
only a few of these have been manually validated by orthogonal methods, and yet even 
fewer have been characterized functionally, thus giving rise to what can be referred to 
as the phosphoproteome interpretation gap.  

Sample preparation and labelling 

The exact steps taken during the sample separation are tightly connected with the 
chosen experimental workflow. Labelling strategies, protein digestion (for bottom-up 
approaches) and separation steps are typical procedures prior to MS analysis.  

While different proteases can be used for this purpose, trypsin has been the most 
common choice due to its specificity, optimal working conditions as well as the product 
peptide lengths. Trypsin normally cleaves on the C-side of the peptide backbone after 
arginine (R) or lysine (K), thus having two advantages: i) based on the relative 
occurrence of these amino acids, tryptic peptides are often between 10 and 20 amino 
acids long, which is ideal for fragmentation inside the mass spectrometer, and ii) since 



31 

both these residues are basic they tend to pick up charge relatively easy and thus “fly 
well” in the magnetic/electric fields inside a mass-spectrometer. 

Labelling strategies 
Labelling of samples allows for multiplexing of runs and helps control experimental 
variability. Essentially sample labelling comes in two flavours, metabolic and chemical 
labelling.  

Metabolic labelling is based on introduction of stable-isotope labels into the cells as 
they grow and replicate. The general idea is that while the chemical properties of stable-
isotope labelled peptides or proteins do not differ significantly from the natural 
counterparts, the instruments will detect a mass shift for the labelled analytes. The most 
commonly used form of metabolic labelling is stable-isotope labelling with amino acids 
in cell culture (SILAC) (Ong et al. 2002), which is based on the incorporation of 
isotopically labelled versions of amino acids. Arginine and lysine with heavier nitrogen 
and/or carbon isotopes that are 10Da and 6Da, heavier than their natural counterparts 
respectively are often used.  

Another type of metabolic labelling is based on incorporation of heavy nitrogen (15N) 
instead of 14N into the growth medium. This approach can be used to label single-
celled microorganisms, and even higher organisms, while SILAC approach is primarily 
used for cultured cells (Gouw, Krijgsveld, and Heck 2010). The SILAC approach 
however has a fundamental advantage in that the amount of labels per analyte is known 
a priori, since trypsin cleaves after a lysine or arginine. Furthermore, SILAC labelling 
has been utilized in several different approaches over the years. One such approach is 
the pulsed-SILAC (pSILAC) strategy whereby effects of any treatments can be observed 
in protein turnover rates (Schwanhäusser et al. 2009) or the use of a heavy-labelled 
internal standard for comparison of multiple SILAC experiments, where the samples of 
interest are unlabelled, an approach called Super-SILAC (Geiger et al. 2010). 

SILAC approach has been utilized in several of the papers in this thesis. In Paper IV, 
we have used SILAC labelling for one of the cell lines, which was subsequently used as 
an internal standard across multiple comparisons with other cell lines. In Paper V, the 
same setup was utilized for as an internal standard comparing tumour samples. 
Additionally, one of the datasets from the Super-SILAC study by Geiger et al. has been 
used as a stress test for the algorithm in Paper I. 
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Figure 5: Different workflows used in quantiative proteomics with respect to sample preparation and 
labeling; colored boxes represent different conditions, horizontal lines depict the stage at which the 
samples are combined. Steps marked with dashed lines are susceptible for experimental variability. 
Metabolic labeling (A) is the best alternative in minimizing experimental variability, while chemical 
labeling (B) and spike-in standards (C) at protein or peptide level still provide some means for control of 
variability. In label-free analysis (D) samples are run individually and are thus susceptible to variability, 
or errors, during the whole workflow. Quality control mechanisms are only possible once in silico, once 
the results are collected and combined during the data analysis step. (Adapted from (Bantscheff et al. 
2012)) 

Metabolic labelling is an effective method to minimize experimental variability and 
quantification errors, especially since it can be introduced at the beginning of the 
workflow. However, as the name suggests, this approach requires labels to be 
introduced to the samples metabolically, which prevents the use of these methods in 
human samples in vivo due to both ethical and practical reasons.  

Chemical labelling of proteins, or peptides, after their extraction circumvents this 
problem and allows its application for human samples. Isotope-based chemical labelling 
was introduced by Gygi et al. with the ICAT approach, which is based on deuterium 
tagging of cysteine residues (Gygi et al. 1999). In the following years chemical labelling 
gained momentum with the introduction of isobaric labels. The concept of isobaric 
labelling is to covalently bind the target peptides, or proteins, with reagent molecules 
that have the same mass. After fragmentation, the reagents leave residues of differential 
masses, called reporter ions, which are then used for quantification. The two most 
popular flavours of isobaric labelling reagents are iTRAQ(Ross et al. 2004) and TMT 
(Thompson et al. 2003), the former providing 4- or 8-plex, and the latter providing up 
to 10-plex throughput (Werner et al. 2014). 
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Figure 6: Conceptual representation of TMT labeling used in papers II and III. A number of tags that 
have the same total mass but different chemical structures are attached to peptides of interest (upper 
panel). Since the precursor ion mass is equal for all peptides, they are selected for fragmentation together. 
After the fragmentation, the relative abundance information is acquired by comparing the reporter ions 
(from the HCD chamber) while the identification information is read-out from the remaining portion of 
MS2. 

In a label-free approach, the samples are run individually and results are combined and 
compared in silico after the experiment. This approach has the advantage of being fastest 
and cheapest, as it entails minimal sample preparation and no expensive reagents for 
used for labelling. However, this approach is also susceptible to the highest amount of 
variability as the samples are handled individually, as well as due to the stochastic nature 
of the sampling in the mass spectrometer. It is thus imperative to have the necessary 
quality assurance mechanisms in place for reliable data analysis (addressed in detail by 
colleagues at our department (Sandin et al. 2014; Chawade et al. 2015)). Since most 
experiments aim at comparing protein expression levels in a number of samples, the 
lack of overlap due to under-sampling becomes an important issue that needs to be 
tackled. There are several reasons why a protein might be identified in one run and not 
in another, and in fact, it is a rather complicated problem (Aebersold 2009). One study 
estimates that about 16% of the peptide features were targeted for MS/MS and only 
half of those eventually identified (Michalski, Cox, and Mann 2011). One common 
strategy to mitigate this problem is by matching features that is peaks corresponding to 
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a single peptide ion, between different label-free runs. This way if a feature is selected 
for MS/MS and a peptide-spectrum match (PSM) is found, then this identification can 
be “propagated” across other samples where there is a matching feature, but no 
identification.  

It should be noted that these workflows can be combined to utilize the advantages and 
to avoid the drawbacks of each specific approach. In fact, with the exception of paper 
I, in which an algorithm is presented, studies presented in this thesis all feature multiple 
workflows combined into one big investigative narrative. Specifically, in papers II and 
III, where we have set out to investigate the proteomes of soft-tissue sarcomas and 
gastroesophageal tumours, respectively, the investigation starts with two dimensional, 
differential in-gel electrophoresis (2D-DIGE). Following this exploratory analysis, 
samples were analysed using 6-plex TMT labelling, with one of the six channels 
dedicated for a internal standard obtained from pooling all samples. Based on the 
findings from TMT-studies we have re-formulated our question(s) and carried out 
label-free analysis of individual tumours where we got the best proteome coverage.  

 

Figure 7: Conceptual representation of 2D-DIGE analysis. Two samples of interest are labeled together 
with a standard, with three fluorescent dyes and mixed. Analytes are separated in two orthogonal 
dimensions (often mW and pI) and analyzed in an optical scanner for differential expression patterns.  
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Different types of MS instruments 

As mentioned earlier mass spectrometers have three main components; an ion source, 
one or more mass analysers and an ion detector. Different types of components have 
certain advantages and drawbacks, and thus are fit for different types of analyses 
(Aebersold and Mann 2003; Domon and Aebersold 2006; Yates, Ruse, and 
Nakorchevsky 2009). 

Mass spectrometers measure the m/z ratio of ions, and thus high-throughput analysis 
of proteomes require efficient ionization techniques, which had been a challenge until 
the emergency of two so called soft-ionization methods; matrix-assisted laser desorption 
ionization (MALDI) (Tanaka et al. 1988; Karas et al. 1987) and electrospray injection 
(ESI) (Fenn et al. 1989). While the former is based on a pulsed laser and has the 
potential to give insights into the spatial distribution of proteins in tissue slices (Thiele 
et al. 2014), ESI has become popular in MS-proteomics due to its continuous nature 
and for the possibility for coupling to a chromatography outlet, as well as production 
of multiply charged ions (Aebersold and Mann 2003; Domon and Aebersold 2006).  

Mass analysers come in many different flavours, however it is possible to cluster them 
into two broad categories; scanning analysers and trapping analysers (Yates, Ruse, and 
Nakorchevsky 2009). A time-of-flight (TOF) analyser calculates the m/z values for the 
ions based on their flight time, while a quadrupole (Q) instrument uses oscillating radio 
frequencies to selectively permit the passage of ions of a specific m/z value. These two 
types of devices can be used in tandem to create hybrid MS/MS setups, such as Q-
TOF, TOF-TOF and QQQ (also called triple stage quadrupole TSQ) (Aebersold and 
Mann 2003; Domon and Aebersold 2006). Mass analysers that are based on the idea 
of trapping ions include the ion trap (IT), Fourier transform ion cyclotron resonance 
(FT-ICR) and Orbitrap spectrometers. These too, can be run in parallel, typically with 
a quadrupole device, one of which is the hybrid LTQ-Orbitrap instrument (Makarov, 
Denisov, Lange, et al. 2006; Makarov, Denisov, Kholomeev, et al. 2006) (Figure 8) 
which provides the advantages of both devices. The high-resolution and mass accuracy 
from the Orbitrap is typically utilized for MS1, while the speed and sensitivity of the 
linear trap quadrupole (LTQ) is used for MS2 acquisition per precursor ion (Yates, 
Ruse, and Nakorchevsky 2009; Eliuk and Makarov 2015).  

The mass-spectrometric analyses carried out for the studies included this thesis were 
done using an ESI-LTQ-Orbitrap XL instrument interfaced with an Eksigent nanoLC+ 
HPLC system.  
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Figure 8: Schematics of the LTQ-Orbitrap instrument (a) and cross-sectional schematic of the Orbitrap 
analyzer (b), reproduced from (Yates, Ruse, and Nakorchevsky 2009) with permission from the 
publisher. 

Acquisition methods 

Proteomics is a field with lots of different workflows and data acquisition strategies 
during tandem mass-spectrometry analysis are no exception. There are three main 
strategies used in the field (Figure 9), which differ from each other based on the choice 
of precursor ions for fragmentation and detection.  

In data-dependent acquisition (DDA), also referred to as shotgun proteomics, the 
instrument is set to select ions detected in MS1 for fragmentation, and subsequent MS2 
acquisition, during which time the first mass analyser is occupied with the next survey 
scan in an Orbitrap instrument. The exact number of ions that can be selected for 
fragmentation is dependent on the instrument used. This strategy requires no prior 
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knowledge regarding the analytes in the sample. The quantitation could be done using 
the MS1 or MS2 spectra, depending partially on the labelling approach. For instance, 
for isobaric labelling the quantitation is carried out in MS2, using the reporter ions. In 
SILAC experiments, however, the quantitation is carried out by extracting the precursor 
ion chromatograms (XIC) and integrating the area under the curve. For label-free 
experiments, both MS1 and MS2 could be used and there are many different approaches 
described in the literature (Bantscheff et al. 2012; Schulze and Usadel 2010).  

 

Figure 9: Simplified representation of different acquisition modes in tandem mass-spectrometry. In data-
dependent acquisition (DDA), the instrument selects the top N most intense ions for fragmentation; 
fragments ions are measured in the second mass analyzer. Selected reaction monitoring (SRM) approach, 
the instrument is set to pick ions that match a specific m/z value at a given retention time in MS1, and 
measure only specific fragment ions in MS2. Data-independent acquisition (DIA) is based on the idea to 
decouple the selection of ions for fragmentation from the MS1 intensities, occurring either in sequential 
or multiplexed random mass windows.  

Shotgun proteomics can be likened to taking a snapshot of the proteome at a given 
time-point for all cells in the sample. The prevailing assumption in the field is that 
while individual cells might have differing proteomes at a particular time point, 
averaging over the whole sample will even out the outliers and yield a meaningful 
average. One potential pitfall with this approach is that those outliers might indeed be 
the most important ones biologically. Especially considering the stochastic selection of 
ions for fragmentation the DDA approach has significant drawbacks in terms of 
reproducibility and dynamic range. 
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An alternative approach, called single reaction monitoring (SRM), addresses these 
drawbacks by only selecting certain ions with a specific m/z value at a given time. Often 
referred to as targeted proteomics, an analyte can be very accurately and reproducibly 
measured given a retention time window, precursor ion m/z and daughter ion m/z 
values. These three pieces of information is often called an assay and is specified prior 
to the analysis. While there are many quantification strategies, this approach generally 
provides the most reliable quantification and the lowest limit-of-detection amongst the 
mass spectrometric methods (Picotti and Aebersold 2012). There are however several 
shortcomings of this approach such as the limitations with respect to the number of 
proteins that can be measured in a single run, the necessity of a priori information for 
assays and the quality thereof. The SRM approach has been reported to yield robust 
quantification of proteins given high quality assays (reviewed in (Hüttenhain et al. 
2009; Picotti and Aebersold 2012; Bantscheff et al. 2012)) however this method, by 
definition, will not yield any information besides the targeted proteins, thus leading to 
no new insights regarding protein composition of the sample. It is also limited by the 
availability of unique peptides for a protein that was discussed earlier with the Occam’s 
razor approach to bottom-up proteomics. 

Recent improvements in instrumentation technology have given rise to a third 
alternative data-independent acquisition (DIA). While the proof-of-principle DIA 
concept has been described over a decade ago (Purvine et al. 2003; Venable et al. 2004), 
the practical application and broader adoption of DIA approach is relatively new. While 
the precise implementations vary, the basic idea of DIA is to allow a number of 
precursors go in to fragmentation simultaneously, regardless of their MS1 intensity, 
usually based on wider isolation windows (see (Chapman, Goodlett, and Masselon 
2014; Bilbao et al. 2015) for in-depth reviews). The DIA approach provides a 
compromise alternative between the DDA and SRM approaches, aiming to retain the 
discovery aspects while avoiding the under-sampling problem. These advantages come 
at the cost of complexity however, as the MS2 spectra from DIA experiments are 
significantly larger and more complex than those originating from DDA experiments. 
This problem presents an important challenge in terms of data analysis in proteomics 
workflows. 

The studies presented in this thesis are of discovery nature, aiming at characterizing the 
proteomic changes in several different conditions, and thus have adopted a DDA 
approach. As our experimental designs often included consolidation and comparison 
of multiple runs, especially in papers II and III, the prevalence of missing values for 
proteins, due to either stochastic sampling or false identifications, across the whole 
dataset has been a concern. We alleviated this problem using in silico chromatographic 
alignment and subsequent propagation of peptide identifications on peptide level, as 
well as a well-known imputation algorithm at the protein level (in Paper III).  

While this approach is sufficient to yield some insights into the proteomes of the 
samples of interest, more robust and accurate comparisons of proteins require SRM-
based experiments, given a set of interesting target proteins can be identified. For 
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discovery proteomics, two different paths of development exist. The first relies on 
technical advances related to mass-spectrometers resulting in increased sampling rates. 
While this is a likely development, considering the evolution of DDA datasets it is 
unlikely that the technical advances will dramatically improve the detection of low-
abundance proteins in complex samples. The second path of development is associated 
with improvement of data analysis routines associated with the DIA approach. In an 
ideal scenario, we should be able to get full proteome coverage if all co-fragmenting 
peptides can be efficiently de-convoluted and identified. It is likely that both DDA and 
DIA methods will co-exist and co-evolve in the coming years.  

Regardless of the choice of acquisition the results will ultimately depend on a series of 
data processing steps from spectra to biological interpretation, which will be explained 
in the following chapter. 
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Bioinformatics approaches 

“Essentially, all models are wrong, but some are useful.” 
George E. P. Box, Empirical Model Building and Response Surfaces, 1987. 

“Far better an approximate answer to the right question, which is often vague, than 
an exact answer to the wrong question, which can always be made precise.” 

John Tukey, The Future of Data Analysis, 1962. 

The overall scope of the studies presented in this thesis, as well as the work done by the 
author is in the cross-disciplinary domain between biology, mathematics, statistics and 
computer science, often referred to as bioinformatics.  

Bioinformatics as a field aims to develop tools to further the understanding of biological 
data. The term bioinformatics has been overused, however, becoming a roof under 
which all and any non-wet-lab biology fits, and the bioinformatician then becomes 
anyone who predominantly works in silico. 

Proteomics, much like its older sibling genomics, aims at and relies on high-
throughput, large-scale datasets. Analysis of such datasets pose a series of challenges, 
from the redundant and efficient storage of data to inferential data mining; all of which 
falls within the scope of bioinformatics. As mentioned earlier, the works in this thesis 
are based on MS-proteomics and analysis of shotgun MS-data, and thus this chapter 
will cover the aspects related to better and more efficient analysis of MS-data, 
specifically on a functional level. 

Steps from the instrument to an answer 

A typical experiment follows the relatively simple workflow (Figure 10), originating 
from a question of interest. Given the question, an experimental design is devised, the 
laboratory work for sample preparation is done and the samples are made ready for 
injection into the instrument. While the alternative approaches in sample preparation 
and instrumentation are numerous, time-consuming and labour-intensive, these steps 
are still often straightforward and typically follow well-documented methods.  

The steps following data acquisition are neither as well documented nor are the options 
as clear. The data typically goes through a pipeline of software tools used for 
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identification, quantification, identity propagation, quality assurance measures and 
normalization. At every step along this pipeline, some level of statistical inference is 
done and a level of uncertainty is introduced. The overall goal however is to gain some 
new insight and find an answer to the original question. In an ideal scenario, once a 
new insight or a new piece of the puzzle is found, new questions arise, closing the 
feedback loop in the workflow. In MS-proteomics these last steps in data analysis 
typically correspond to some form of functional analysis; that is inference regarding the 
implications of the observed information on the proteome. Paper I presents a novel 
method that is designed to facilitate functional analysis of shotgun LC-MS/MS data, 
by extrapolating the notion of expression regulation from protein level to pathway level 
and evaluating pathways based on this regulation model. 

 

Figure 10: The typical workflow employed in MS-proteomics experiments. The scope of the work 
presented in this thesis, and the focus of the author, falls within the last steps of data analysis, and the 
feedback loop to experiment design through hypothesis generation. 

Data processing 

Once the data is collected by the mass spectrometer, it typically goes through a series 
of data analysis steps, which have a significant impact on the final results of the 
experiment. Some of the most common steps in typical MS data analysis pipelines 
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include: spectrum matching and peptide identification, peptide quantification, protein 
assembly/inference, protein quantification and normalization. 

Unless an SRM approach is adopted, where target proteins are predetermined, the 
identities of the proteins in the sample need to be determined. This is usually 
accomplished by identification of fragmentation spectra of the peptides in the sample 
and in silico assembly of protein composition, the latter earlier discussed within the 
comparison of bottom-up and top-down proteomics approaches. Identification of 
peptides from mass spectra can be accomplished in two ways: de novo sequencing (Ma 
et al. 2003) or matching fragmentation spectra to a spectral database (Eng, 
McCormack, and Yates 1994).  

Spectral databases typically contain in silico digestion and the fragmentation of the 
target proteome, based on heuristics approaches. There are numerous different search 
algorithms (Deutsch 2011) each with its own set of parameters, which leads to 
emergence of local best practices and further complicates reproducibility of results 
across labs. Furthermore it has been shown that it is possible to combine results from 
multiple search engines, increasing the number of identifications given a false-discovery 
threshold (Shteynberg et al. 2013). An alternative approach to database searching is to 
match experimental MS/MS spectra to a library of empirical spectra, ideally from the 
same type of instrument. As of July 2015, The National Institute of Standards and 
Technology (NIST) peptide tandem mass spectra library, one of the largest spectral 
libraries, contains over 3.8 million spectra of more than 1.2 million entities.  

Following database searching and spectral matching protein assembly and 
quantification are often the next steps in the pipeline. Problems associated with 
identification and quantification of proteins were introduced and discussed in the 
previous chapter. While normally independent from each other, there are promising 
approaches to address both problems together (Forshed et al. 2011; Webb-Robertson 
et al. 2014). Furthermore, normalisation of quantitative values is often needed to 
correct for experimentally introduced differences. A novel tool, called Normalyzer, was 
developed at our lab to evaluate different normalization algorithms for omics data 
(Chawade, Alexandersson, and Levander 2014).  

The end product of the above mentioned pipeline is typically a list of proteins measured 
in one or more conditions. Especially in discovery phase shotgun experiments, this long 
list of proteins with associated intensities, or ratios in case of SILAC or isobaric 
labelling, rarely answers the original biological questions, but rather the goal is often to 
do some inference on biology based on the protein expression data. Statistical methods 
such as principal component analysis (PCA) and hierarchical clustering are often used 
methods in this context for investigation of any underlying patterns in the data.  

We have used these methods in studies explained in Papers II – IV. In Paper II, we 
identify differential expression patterns among tumour samples we had in the 
experiment, and based on the difference we propose the existence of different subtypes 
among these tumours. In Paper III, we investigate whether or not protein expression 
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patterns differ between two closely related groups of tumours. Lastly, in Paper IV 
hierarchical clustering is used as a measure of similarity across different types of cell 
lines. It should be noted however, that these methods are sensitive to missing values in 
the data, which may be solved by either by excluding proteins that have not been 
measured in many samples, or by imputing the missing values. An imputation 
algorithm called k-nearest neighbours (kNN) is used for clustering in the study 
described in Paper III.  

While these statistical methods may help reveal underlying patterns in the expression 
data, it is often desirable to continue the analysis process by investigating the functional 
implications of the observed results. 

Statistical enrichment analysis 

Much like in genomics, the end product of MS-proteomics is a long list of analytes 
measured under one or more conditions. Given the ultimate goal to extract new 
knowledge out of experiments, the common approach is to group the genes/proteins in 
the dataset into functional sets such as Gene Ontology (GO) terms, interaction 
networks, pathways etc. The main appeal of this approach is that identification of active 
networks or regulated pathways between different conditions have more explanatory 
power than a long list of proteins with corresponding expression values (Glazko and 
Emmert-Streib 2009). The explanatory power of higher-level functional sets has been 
demonstrated by Mootha and colleagues in a study where, after multiple-hypothesis 
correction, no single gene was found to be differentially expressed between type II 
diabetes positive and negative individuals. However when looking for sets of genes, the 
researchers could identify a set of genes associated with oxidative phosphorylation that 
were differentially regulated in human diabetic muscle (Mootha et al. 2003). 

An overwhelming majority of the enrichment methods that have been developed in the 
past decade consider these functional sets as bags of genes, and thus can trivially be 
generalized to proteins. These methods can be divided into two categories: tools that 
carry out over-representation analysis (ORA) and what Pavlidis and colleagues refer to 
as functional class scoring (FCS) methods(Pavlidis et al. 2004). ORA-based methods 
calculate the probability of observing a certain number of genes from a functional set, 
given a list of genes of interest and a background dataset. In practical terms, this type 
of analysis aims to answer questions of the type: “What’s the probability that out of 100 
genes in our target list, 25 are a member of GO term GO:0006412 by pure chance?” There 
are two main consequences to ORA methodology: first, the definition of the “target 
list” will play a major role on the results of the analysis, and second, even though the 
target list may be defined as genes that are differentially regulated above a certain 
threshold the ORA-based methods do not use the expression values at all but rather 
tests functional sets for over-representation, often using a hyper-geometric distribution. 
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FCS approach aims at using the experimental information better, specifically by 
ranking the genes in dataset according to a function that uses the available experimental 
information. As a second step, an enrichment score for each functional set is calculated 
based on the ranked list of genes and lastly the enrichment score of each functional set 
is tested for significance. FCS-based methods differ from each other in the specific 
implementation of ranking of genes, the set-level statistic and assessment of 
significance. Specifics and performance of the FCS-based methods have been reviewed 
extensively over the years (Khatri, Sirota, and Butte 2012; Maciejewski 2014; Laukens, 
Naulaerts, and Berghe 2015; Nam and Kim 2008; Fridley, Jenkins, and Biernacka 
2010; Emmert-Streib and Glazko 2011). Specifically the type of significance testing in 
this context, competitive or self-contained (Goeman and Buhlmann 2007), has been 
debated at length (Nam and Kim 2008; Khatri, Sirota, and Butte 2012; Maciejewski 
2014), however it has been pointed out that these two types of tests are not objectively 
comparable in terms of statistical power and that they test different aspects of the data 
(Emmert-Streib and Glazko 2011). This issue has been discussed in Paper I in the 
context of pathway analysis. 

Pathway analysis and enrichment modelling: The FEvER 
model 

Given MS-based proteomics data, the task of identifying pathways and networks that 
have been subject to systemic regulation have several conceptual and practical 
challenges that need to be tackled.  

One such challenge is completeness of datasets; in comparison to transcriptomics 
experiments, datasets in MS-based proteomics are still rather incomplete since only a 
portion of the proteome can be quantitatively measured. This is partially due to the 
dynamic range problem associated with stochastic sampling, as mentioned previously. 
Furthermore, while the sampling process is biased toward highly abundant proteins, it 
has been shown that each replicate analysis will not necessarily sample the same portion 
of the proteome and thus complicates the further analysis of the results (Picotti, 
Aebersold, and Domon 2007; Wolf-Yadlin et al. 2007; Gstaiger and Aebersold 2009; 
Picotti et al. 2009; Tabb et al. 2010). However, due to temporal and local dynamics of 
the proteome, it is rather difficult to estimate how large of a portion of the proteome is 
accessible through mass-spectrometry proteomics. In other words, given the disparity 
between approximately 5000 proteins in a hypothetical dataset and 20500 annotated 
genes in the human genome, it is not trivial to estimate the portion of the “true 
proteome” that has been quantified. This is due to the fact that not all genes are 
transcribed in all cells, at all times. The true size of the proteome in a complex sample, 
like human tissue samples, will likely be a matter of debates for several years to come. 
Additionally, having adopted a bottom-up approach distinctive quantification of 
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proteins from detected peptides is often not possible. Instead measured intensities are 
typically associated with groups of proteins that cannot be distinguished from one 
another given the observed peptides. Due to these properties of MS-based proteomics 
data, methods devised within the transcriptomics field are not necessarily suitable for 
MS-based proteomics data out-of-the-box. Besides the technical challenges there are 
conceptual challenges that stem from the complicated relationship between proteins 
and pathways.  

To address these challenges, we have developed a model for evaluation of functional 
regulation, based on expression data. This model relies on three fundamental 
assumptions/heuristics and a concept, which we refer to as region of interest (ROI). ROI 
is defined as a portion of the dataset that is considered to be statistically and biologically 
significant enough to be considered more than random fluctuations, and is set by the 
scientist running the experiment. The assumptions/heuristics are described as follows: 

ROI presence: It is statistically unlikely that a high number of proteins in a pathway are 
significantly regulated by pure chance. This follows from fundamental combinatorics; 
given a set of elements where a few of the elements are different (in this context, 
different translated to regulated significantly) the probability of finding a certain number 
of these in a subset follows hyper-geometric distribution, which can in turn be 
approximated with binomial distribution, given that the set size is much larger than 
number of significant elements.  

As discussed earlier in this thesis, data coming from mass-spectrometry proteomics is 
rather incomplete and not all proteins in the sample are identified and quantified. 
Considering that fact, the probability of observing “one more significant protein" for a 
particular pathway decreases rapidly for each significant protein in a pathway. In other 
words, with each additional significantly regulated protein, the significance of 
regulatory activity on the pathway is higher.  

Functional specificity: Pathways identified with proteins that do not have many pathway 
associations have less ambiguity, and thus are more significant biologically. Proteins 
typically have many different functions and majority of the proteins that have pathway 
annotations are associated with multiple pathways. This leads to what can be referred 
to as an ambiguity in pathway inference, similar to the protein inference problem 
discussed earlier. Since the goal is to do inference on pathway level expression 
regulation, given a protein p, the certainty of inference decreases as the number of 
pathways which p is a part of increases. 

Co-regulation: Systemic regulation of a pathway is correlated with the cumulative 
expression regulation of individual proteins in that pathway. Regulation of activity 
through a particular pathway is a complex matter that has multiple components, such 
as modification or compartmentalization of proteins, or changes in abundances of non-
organic analytes such as metallic ions. However, it is rather straightforward to postulate 
that cumulative expression regulation of proteins in a pathway will be contributing 
factor of regulatory activity on that pathway.  
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We have developed and tested functions to evaluate pathways based on these three 
heuristics and calculate an enrichment score (ES) as a weighed linear combination, such 
that for each pathway 

S1 = f (proportion of proteins in ROI) 

S2 = -log (normalized specificity in ROI) 

S3 = normalized cumulative exp. reg. 

ES = α1S1 + α2S2 + α3S3 

where f refers to a function approximating the factorial function. While the details of 
the functions have evolved over time, the principal ideas of the model have remained 
the same. 

This experimental enrichment score is tested for significance using mock data based on 
the same dataset, in a Monte Carlo manner. The underlying idea is that in a biologically 
meaningful dataset, regulatory activity is not randomly distributed to genes or proteins 
and there will be co-variation patterns, which should not exist in a mock dataset. Thus 
the significance of observed enrichment score of a particular pathway is estimated by 
calculating the proportion of mock dataset with which the same pathway scores as high, 
or higher given the enrichment model.  

Randomization 

The creation of mock data, or randomization, can be done in several ways, however 
since no new identifications can be made, the mock datasets should contain the 
identical set of proteins as the real experimental dataset. In Paper I, we discuss three 
different approaches to randomization in this context; permutation of ratios, sampling 
from a lognormal distribution and sampling from an estimate empirical distribution.  

Permutation is a commonly used, non-parametric method for randomization of values 
or labels. However, given there are several thousand entities in a typical dataset, the 
number of possible permutations is astronomic. To illustrate this point, the whole set 
of permutations for a dataset consisting of 2000 proteins is approximately 3.3 x 105735, 
which is beyond comparison with anything earthly. In this context it is unclear how 
many permutations would be necessary in order to get a representative figure, or if it 
would be feasible to implement that many permutations in practice. Another issue with 
permutation is based on the fact that the same values will be used in all mock datasets, 
which multiplies the effect of the outliers.  

One alternative to permutation is to take random samples from the underlying 
distribution, in this case that of the expression values for proteins in the dataset. 
However, the precise underlying distribution is unknown and thus needs to be 
estimated. Biological values are often considered to be normally distributed, owing to 
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the central limit theorem (McDonaldUniversity of Delaware 2009). Given ratios of 
intensities for proteins in two different conditions, logarithms of the ratios typically 
show normal-like distribution. Thus one option for generation of mock values could 
be achieved by sampling from a lognormal distribution with appropriate parameters 
such as µ = 0 and standard deviation approximated with that of the experimental data.  

The assumption of normality (of log ratios) is not necessarily supported, and should be 
investigated explicitly for each dataset. There are various ways for testing normality 
however it is not trivial to implement a fully automated test to incorporate into a 
computational workflow. Furthermore, the choice of distribution parameters is likely 
to play a role in the sampling process. The proposed solution to this issue is to avoid 
having assumptions about the underlying distribution but instead model the 
distribution empirically. This is done by a method called the variable kernel method 
with Gaussian smoothing (Silverman 1986), as implemented in Apache Commons 
Math library.  

Implementation 

The original implementation of the method was developed using Java 6 SE programing 
language, allowing for cross-platform, multi-threaded execution. The tool assumes a 
rather straight-forward workflow (Figure 11): the user submits the data, the data is 
parsed and the necessary canonical information is queried using HTTP requests to 
Pathway Commons (Cerami et al. 2011) online tool. This particular resource is a 
collection point of multiple different pathway information databases.  
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Figure 11: Workflow diagram of the FEvER software 

For comparative reasons a non-parametric enrichment model based on the popular 
GSEA method (Subramanian et al. 2005), with modifications to the significance 
calculation based on the dynamic programming approach described by Keller et al. in 
GeneTrail (Keller, Backes, and Lenhof 2007; Backes et al. 2007) was implemented. 
This approach uses a running sum test statistic as the enrichment score and takes the 
maximum deviation from 0 as the maximum enrichment score (MES). The exact 
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probability of observing that particular MESobs is then calculated by considering all 
possible paths the run-sum statistic could have taken, with corresponding MES values 
(Figure 12). 

 

 

Figure 12: Schematic visualization of the running sum statistic. All possible running sum statistics for an 
ordered list of 8 genes of which 4 belong to a functional group (i.e. pathway) are shown. The procedure 
iterates over the ordered list and the statistic is increased, or decreased based on whether or not current 
gene is a part of the pathway under evaluation. The red labeled running sum statistic has a MES value of 
12 and the corresponding p-value is 1−54/70=0.229. The numbers on the x-axis refer to the index and 
the number of possible running sum values in the current step (Reproduced from (Keller, Backes, and 
Lenhof 2007) with permission from the publisher). 

The two enrichment models then get combined and presented back to the user in a 
series of HTML-based reports. While having two different scores for each pathway 
might be unconventional or counter-intuitive initially, the complementary statistical 
approaches and the strengths of the different methods makes multi-model evaluation 
worthwhile. A consensus between different models indicates significance of estimated 
expression regulation for a particular pathway, regardless of the statistical model used. 
The two enrichment models have different tendencies in identifying likely regulated 
pathways. Contradicting significance scores typically indicate a small pathway with a 
couple of highly regulated proteins (high parametric, low non-parametric score) or a 
widespread low-level differential expression over a larger pathway (low parametric, high 
nonparametric score). The latter case could be a symptom of a too-strict ROI for the 
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data set, but could also indicate a systematic bias between the samples compared, for 
instance if slightly fewer cells or sub-optimal digestion in one sample compared to the 
other one.  

Nevertheless, a consensus score was implemented as a combination of the significance 
scores reported from the two models. This consensus score, called the META score, is 
implemented as follows  

ܵொ்஺ ൌ ቆ logଵ଴ሺܴܲܣሻ
logଵ଴ሺܴܲܣ௠௔௫ሻ

ቇ
௖భ
⋅ ቆ logଵ଴ሺܴܰܲܣሻ
logଵ଴ሺܴܰܲܣ௠௔௫ሻ

ቇ
௖మ
⋅ 100 

and ranges between from 0 to 100 for increasing significance, where a META score of 
100 means that the pathway is flagged as extremely interesting by both models. The 
META score is used for quick comparison and sorting of pathways. 

Model validation and stability analysis 

The validation of functional analysis results is a non-trivial task as pathways are abstract 
constructs that cannot be measured and physically observed. Furthermore, the 
cumulative knowledgebase on pathway regulation is still relatively rudimentary and 
thus it is difficult to talk about false positives and false negatives. A “false discovery” 
could very well be a yet unknown discovery or effects of a poorly understood cross talk. 
For that reason the final validation of any pathway analysis result should be a biological 
test of hypothesis developed based on the results. 

One alternative is to look for true positives, i.e. regulatory activity on well-studied 
pathway, in relatively simple experimental setups. In paper I, we analysed at proteomes 
of yeast grown in glucose or ethanol rich medium, looking for metabolic processes that 
would reflect the regulatory differences in the two samples. As expected, we observed 
extremely high scores from TCA cycle, aerobic respiration, electron chain transport and 
glyoxylate cycle pathways, with both enrichment models. This finding is in well 
agreement with previous results from similar studies (Kolkman et al. 2005; Futcher et 
al. 1999). Furthermore, the parametric model we developed highlighted gluconeogenesis 
pathway, which has not gotten a significant score (1.176 x 10-1) from the non-
parametric model. Given the rechanneling of carbons in the ethanol-rich medium 
through reverse glycolysis (Futcher et al. 1999), this pathway is indeed relevant in the 
comparison of the two yeast populations. 

We presented two more analyses in paper I, where we have investigated the functional 
changes given a dataset of proteomic changes in ductal versus lobular breast cancer 
samples (Geiger et al. 2010) as well as a scalability test based on a transcriptomics study 
of a human cell line (MUTZ-3) resembling dendritic cells exposed to a sensitizing 
chemical 1-chloro- 2,4-dinitrobenzene (DNCB), taken from a larger study carried out 
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in our lab (H. Johansson et al. 2011). In both cases, the method has proven useful and 
identified relevant and interest pathways that warrant in-depth studies. 

As described in the Proteomics chapter, data originating from MS proteomics 
experiments are susceptible to variability in both identification and quantification. In 
order to investigate how robust the method is to variation in experimental data, we 
have introduced perturbations to a dataset at varying levels and measured Pearson’s 
correlation between reported pathway scores from the perturbed dataset and the 
original version of the dataset. Two different stability tests were carried out, to address 
variability in quantification and identification respectively (explained in supplementary 
material to Paper I).  

To test for stability against variability in quantification of proteins, we have introduced 
noise in the form of a standard Gaussian random variable added to the log2-ratios in 
the dataset. The second test was devised to investigate the effect of missing values on 
the dataset. Missing values were introduced to the dataset by randomly removing 
quantification values for 1, 5 and 10% of the proteins in the dataset. As a quantitative 
tool FEvER excludes proteins without quantification values from the analysis and treats 
these proteins as if they have not been identified. 
Table 1: Correlation between scores from perturbed and original datasets, with varying levels of 
perturbation. Pearson’s R2 values are given in the table. 

Level of 
perturbation 

Noise Test Missing value test 

PAR NPAR PAR NPAR 
1% of data 0.956 0.998 0.970 0.986 
5% of data 0.838 0.866 0.919 0.946 
10% of data 0.748 0.808 0.954 0.880 

Better use of PTM information  

In terms of pathways, PTM status of some well-studied proteins is starting to become 
available, however the information is used primarily to differentiate the modified 
proteins from their unmodified counterparts. At the current stage this information is 
not sufficient to map experimentally observed changes for example in phosphorylation 
patterns to biological functions and regulatory activity, since phosphorylation of 
proteins is not entirely an on/off switch, rather what can be seen as a continuous 
gradient of occupancy. Furthermore, it has been shown in the literature that 
phosphorylation at different locations on a protein may alter its function or interaction 
partners. Thus it is inadequate to merely differentiate phosphorylated and 
dephosphorylated versions of a protein in a pathway. The goal in that regard should be 
to devise a computer-readable annotation method for phosphorylation events and their 
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implications. Only with such a knowledgebase and infrastructure in place, can the 
quantitative phosphoproteomics fully utilize its potential. 

Quantitative phosphorylation information could be better utilized in proteomics 
experiments. An in silico digestion of known human proteome yields approximately 1.7 
million theoretical tryptic peptide-protein associations, within the observable mass 
range. Approximately 3800 degenerate peptides are annotated with differential 
phospho-states, thus discriminate between different proteins. In terms of functional 
analysis, changes in phosphosite occupancy could be a useful clue in determining 
regulatory activity that does not alter protein abundance.  

  

Figure 13: Site occupancy (upper panel) is an important parameter for some post-translational 
modifications such as phosphorylation. Changes in occupancy occur due to signaling events and is thus 
an alternative mechanism of regulation that does not involve changes in protein abundance. 
Phosphorylation status could also be interesting in handling the protein inference problem; several 
thousand degenerate (non-unique) peptides have differential phosphorylation evidence, which can be 
obtained from UniProtKB. Two different proteins (lower panel) containing the same tryptic peptide can 
be differentiated from each other (with a certain statistical bias) if the phosphorylated peptide has been 
observed in the sampe. Note that this procedure does not work the other way around; observing the non-
modified peptide does not discriminate between the proteins. 

Data visualization problem 

Useful models of enrichment or efficient and robust computation of enrichment scores 
are not the only challenges in pathway analysis of expression data. Pathway analysis 
tools aim to identify pathways that have likely undergone regulatory activity, based on 
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inference from expression data. However, in almost all cases the results of pathway 
analysis should be seen as directions for further analysis, requiring human intervention.  

Given this setting, the visualization of expression data, as well as pathways constitutes 
a challenge that needs to be addressed. A significant amount of time and work during 
this thesis has been invested in pursuit of effective and intuitive visual display of data. 

Visualizing pathways  

Biochemical pathways are abstract concepts that are defined by various different 
curators and collected in many different databases, represented in various different 
formats such as SBML (Hucka et al. 2003) and BioPAX (Demir et al. 2010), to name 
a few.  

Visualization of pathways is a challenging task on two different levels: to visually and 
intuitively display the reactions within a pathway, as well as to display the complex 
inherent hierarchy of pathways when attempting to display results following a pathway 
analysis. While the former is a well-studied problem with several solutions available 
such as Cytoscape (Shannon et al. 2003) or ChiBE (Babur et al. 2010), the latter 
problem have not been addressed adequately, to our best knowledge. Large biological 
networks, such as the human kinome or interactome, from complex networks that are 
usually referred to as a hairball (Lander 2010), or the somewhat whimsical term a 
ridiculogram, a term attributed to University of Michigan scientist Mark Newman. 
Newman defines the term as graphs that are visually stunning, scientifically worthless, 
and published in Science or Nature.  

Pathways are a series of biochemical reactions that occur in connection with one 
another, fulfilling a particular function in the studied system. Larger, more complex 
functions such as gene expression or DNA repair can typically be divided into smaller 
pathways with more specific functions, and those sub-pathways can in turn be further 
divided, or branched into even more, giving rise to a hierarchical structure where 
pathways could be entirely or partly overlapping with each other with respect to the 
proteins they include. This hierarchical structure could be a source for useful insights 
when coupled with results of pathway analysis tools. In Paper I, we demonstrate this 
idea with visualization, developed as a Java applet, which combines the hierarchical 
structure of pathway data with the multi-model pathway analysis. In this visualization 
each unique set of proteins is a node in the graph, with directed edges connecting super-
pathways to their children. Nodes are coloured with a two-dimensional colouring 
scheme to indicate the significance scores from respective model (Figure 14).  
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Figure 14: Representation of the colour scheme used to display multi-model scoring scheme. Use of two 
different models and subsequent scores make it difficult to intuitively display enrichment information on 
hierarchical graphs. Using linear blending among primary colors provides an intuitive display of the 
available information: red indicates pathways that are highly significant according to both models, yellow 
and magenta with a single model. Nodes that lack colour (white) are insignificant with both models.  

While this approach circumvents the necessity of identical nodes (i.e. pathways that 
have the same set of proteins) it also implies that some nodes contain more than one 
pathway, and that a node might have more than one parent. The resultant graph is 
formally a hypergraph and not a standard hierarchy. Nevertheless, the visualization has 
been useful in identifying regulatory activity as shown in Figure 4 in Paper I. Analysis 
of the ductal-lobular dataset (Paper I, p. 2961) reveals highest significance on the 
Transcripton pathway, however by investigating the results using the hierarchical 
visualization, it is possible to identify RNA polymerase II activity as the likely target of 
regulation. Since every protein in a pathway exists in the parent pathway as well, a 
cluster of highly regulated proteins would give rise to better enrichment scores not only 
in that pathway but also for the parent pathways, making the hierarchical overview tool 
a valuable asset in pinpointing spots of functional expression regulation. 

Visualizing datasets 

Given a dataset consisting of several thousand proteins, what is the optimal way of 
displaying all that data in an intuitive way? Datasets can contain several important 
artefacts that might not be noticeable when displayed as a large table. Such artefacts 
could be an unexpectedly large number of missing values, unbalanced up/down-
regulated proteins, unexpectedly many proteins with outlying expression ratios, just to 
name a few. 

Artefacts like these might indicate a systemic bias, possibly originating from the sample 
preparation step. For instance in a standard comparative expression analysis, the 
expectation would be to have median ratio close to 1, that is approximately as many 
proteins would be up-regulated as down-regulated between the samples, given that 
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equal amount of proteins were taken from each sample. If the majority of the ratios 
have shifted to either direction one might question whether or not there were equal 
amount of material in each condition. Similarly distribution of ratios and p-values in 
the dataset might indicate potential bias introduced by erroneous steps in prior data 
analysis. 

Furthermore, since many proteins are active in a number of different pathways, by 
utilizing the protein-pathway associations it could be possible to provide visual 
overview of potential clusters with high, or low, expression regulation. For this purpose, 
we set out to develop a visualization method to provide an overview of the dataset using 
d3.js JavaScript library.  

The first approach was to use a hexagonal grid layout with the goal to encode three key 
pieces of information for each protein in a visual manner; with each protein displayed 
as a node, the ratio displayed as colour, the ratio significance (calculated from replicates) 
as colour intensity and functional proximity (defined as the number of pathway 
associations shared) as the distance between the nodes such that proteins that 
commonly occur together in pathways would be closer to each other (Figure 15).  

The layout algorithm for placement of the nodes on the grid was formulated as a spiral 
layout, placing the first node in the centre hexagon and continuing in a growing spiral. 
In connection with the layout we define the optimization problem where the goal is to 
minimize the objective function, defined as: 

 
ܧ ൌ ෍ 	݊௫,௬ 	 ∙ ݀௫,௬ଶ

∀௫,௬
 

 
where  ݊௫,௬ is the number of pathways that protein pair (x,y) are both a part of, and 
݀௫,௬ is the distance between the pair of nodes representing these proteins. This objective 
function represents some form of information entropy of the system, i.e. it constitutes 
a crude measure of order/disorder. The optimal solution to this problem, that is the 
ordering of elements that minimize E, should yield a layout where proteins that co-
function with each other are placed very close to each other. The minimization of the 
objective function is not a trivial task however, given a dataset of consisting of 2000 
proteins the number of different layouts, which is equivalent to the number of 
permutations, has more than 5000 digits and thus beyond any exhaustive search 
attempt. 
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Figure 15: Hexagonal grid visualization, where each hexagon represents a protein and its color represents 
the ratio (red: up-regulation, blue: down-regulation). The distance between two nodes is associated with 
the number of pathways that particular pair of proteins are both involved in. Proteins of a chosen 
pathway highlighted, showing that the layout algorithm was not effective enough to bring proteins in 
this pathway close to each other. 

Genetic algorithms (GA) are a subclass of evolutionary algorithms (EA) are a family of 
population-based metaheuristic methods that attempt to mimic evolution and natural 
selection process to generate optimization and search problems (Mitchell 1998). It has 
been postulated that deterministic global optimization methods are computationally 
too demanding for most biological modelling problems and that evolutionary strategies 
are better suited for this purpose (Szallasi, Stelling, and Periwal 2010).  

Standard approach in GA optimization is to represent potential solutions to the 
problem as individuals and define the fitness function based on the objective function 
that is to be optimized. Starting with a random population, as the evolutionary 
processes such as reproduction, mutation and selection, take place the individuals strive 
to increase their overall fitness and thus approach the optimum solution for the 
objective function.  

As the solutions to this particular problem are ordering of the elements in the dataset, 
certain aspects of standard GA approach are not feasible. For instance, bisexual 
reproduction of individual solutions, where new solutions inherit half their “genome” 
from one parent and the other half from the other, is not possible since each element 
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needs to appear once and only once. Without bisexual reproduction, or multiple 
inheritances, randomized crossover events are also not implementable in this case.  

However a significant portion of the biomass on our planet consist of bacteria which 
have evolved into many different niches and adapted to extreme conditions, without 
the diversity provided by bisexual reproduction. We have thus adopted a GA where we 
model bacterial evolution; the genome of each individual being a permutation of 
proteins in the dataset and the asexual reproduction process heavily influenced by 
various mutation events. In order to provide as much variety as possible several different 
types of mutation events were modelled, mimicking processes like point mutations 
involving reshuffling portions of the genome, positional swapping of portions of the 
genome resembling transposons in eukaryotes. Furthermore, for further variability and 
avoiding local optima, each generation had “newcomers” introduced, based entirely 
new and random permutations of the initial dataset.  

Given the high mutational hazard on individuals, stability of best solutions was a 
problem. This problem can however be addressed rather simply by addition of elitism 
heuristics, where the most fit individuals each generation are immune from high level 
of mutations since they are deemed to be better adapted to their environment, whereas 
less fit individuals are under higher selective stress.  

While promising initially the GA-based optimization soon showed to be unpractical 
for the intended purpose, as the optimization took longer time to run than the actual 
enrichment analysis process. The results that could be achieved within acceptable 
number of generations, or time duration, were unfortunately not satisfactory (see 
Figure 15). Even though further tweaking of the algorithm could potentially increase 
the speed of convergence, for the project was scrapped in favour of other projects due 
to time constraints. Pathway oriented optimal layout of datasets is not an easy task, 
especially at runtime, without prior optimization. Therefore later efforts in dataset 
optimization have shifted from functional grouping of the proteins, towards more 
overview type visualizations. 

Figure 16 depicts the dataset visualization that has been implemented in newer versions 
of FEvER tool. This visualization is based on a chart type called bubble charts, where 
each entity is displayed as a bubble, its colour intensity representing the expression ratio 
and its size representing the significance. The chart provides a simple and quick 
overview to finding most interesting data points (i.e. large bubbles with bright colours), 
as well as displaying the proportional representation of missing values, which are 
displayed as small, fixed-size, black bubbles.  
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Figure 16: Bubble charts visualize datasets by using bubbles, or circles. Size and colour of the circles 
represent the significance and magnitude of the expression ratios. Location of the circles, however, is not 
of any particular meaning.  
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Cancer & Cancer Proteomics 

“Tumors destroy man in a unique and appalling way, as flesh of his own flesh which 
has somehow been rendered proliferative, rampant, predatory and ungovernable. 
They are the most concrete and formidable of human maladies, yet despite more 
than 70 years of experimental study they remain the least understood.” 

Francis Peyton Rous, Nobel lecture, 1966 

There is no doubt that cancer has become the biggest medical burden globally, 
surpassing coronary heart disease or stroke in number of deaths caused, with the trends 
indicating increasing numbers for both new incidents and mortality, over the coming 
years (Ferlay et al. 2015). In Sweden, the official estimates state that approximately 
every third individual alive today will be diagnosed with cancer at some point during 
their lifetime (Bergman, Hont, and Johansson 2013). The numbers in the United 
States are similarly alarming, where the lifetime probability of being diagnosed with 
invasive cancer is estimated to be around 40% (Siegel, Miller, and Jemal 2015). 

Given that the “war on cancer” was initiated over 40 years ago epidemiological studies 
point towards no significant victory towards this adversary, despite the remarkable 
progress made in increasing our understanding the molecular mechanisms underlying 
the pathogenesis and in some cases disease progression (Hanahan 2014).The critical 
question is then why do we keeping losing ground in this war, despite the extraordinary 
resources that have been utilized for this purpose. The enemy is spreading to new areas 
around the globe, growing in numbers. So one might wonder the reasons behind how 
the cure for cancer eluded us so well.  

One possible answer to that question is that the prevalence of cancer is associated with 
increasing global population together with growing life expectancy, as well as wider 
adoption of cancer-associated lifestyle choices, such as tobacco and alcohol 
consumption, obesity, physical inactivity, and increasing share of processed foods, 
sometimes referred to as “western” diets (Jemal et al. 2011; Ferlay et al. 2015).  

Another important insight is that the enemy might not be one single adversary but 
rather a collective term by which many different conditions described. Malignant 
tumours present in a wide range of forms that may arise from various different cell types 
around/in the tumour resulting in many different pathological states (Weinberg 2013). 
That being said, most cancer types, if not all, share a number of characteristics, from 
their origin to progression, that allow them to survive and adapt to changing 
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conditions. Understanding these common mechanisms is likely to be vital in our on-
going war against cancer. 

The Hallmarks of Cancer 

In their seminal review, The Hallmarks of Cancer, Hanahan and Weinberg point out 
that most, if not all, types of human cancer exhibit a number of common traits, as a 
collection of capabilities acquired throughout the multi-step progression from a normal 
state to malignancy (Hanahan and Weinberg 2000) typically involving the loss of 
function or gain of function mutations associated with critical genes. They postulate 
that while exact order in which these cells acquire these traits may vary, the acquisition 
of six main traits collectively orchestrates the tumorigenic transformation. These being: 
development of self-sufficiency in growth signalling, sustained replicative immortality, 
insensitivity to growth-inhibitory signalling, evasion of programmed cell death, 
potential for inducing angiogenesis as well as tissue invasion and the ability to 
metastasize (Figure 17).  

 

Figure 17: Original hallmarks of cancer by Hanahan and Weinberg (Hanahan and Weinberg 2000), 
reproduced with permission from the publisher. 
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A balance between growth inducing and inhibiting factors, and the signalling events 
that govern survival and apoptosis regulates the lifecycles of normal cells. Tumorigenic 
cells liberate themselves from dependence on exogenous signalling for growth and 
survival, as well as avoiding mechanisms that inhibit cell growth, replication and trigger 
apoptosis. Together these attributes allow cells to grow and expand in numbers. 
However, without supporting processes in place for such a growth-driven mechanism 
cells cannot sustain limitless expansion, as the replicative potential of cells is intrinsically 
limited in normal conditions. Telomere maintenance mechanisms, such as up-
regulation of telomerase expression, provide cells unlimited replicative potential. 
Another supporting process that needs to be established for the tumours to grow is the 
sustained angiogenesis. As cells grow and replicate the access to vital resources decrease 
while the demand for these resources increase dramatically. Thus for sustained growth 
cells need to promote growth of new blood vessels. Finally, as the nutrients and space 
become limiting factors, tumours invade nearby and distant tissues.  

Hanahan and Weinberg later amended their initial proposition adding two more 
hallmarks as well as two “enabling characteristics” (Hanahan and Weinberg 2011). One 
of these enabling characteristics is genomic instability. Cancer as a disease has its roots 
in genomic deregulation and it is no surprise that neoplastic cells exhibit some genomic 
defects. However, tumour cells typically have defects in the complex DNA maintenance 
machinery, thus increasing the rate by which mutations occur. Mutant copies are passed 
on either due to these defects, or due to insensitivity to apoptotic signalling events, 
another hallmark trait of these cells.  

Two of the remaining three characteristics (Figure 18) are related to the complicated 
relationship between cancer and the immune system. It has been shown that 
inflammation may have tumour-promoting effects, helping the tumour secure growth 
factors and survival signalling, as well as modifying the extracellular matrix that may 
facilitate angiogenesis, invasion and metastasis. Meanwhile, the immune system is also 
responsible for the continuous surveillance that leads to hindrance or eradication of 
tumour formation and progression, as well as micro-metastases. This effect of the 
immune system has been shown both in animal models and clinical epidemiological 
studies of human cancers. Neoplastic cells thus have an intricate relationship with cells 
of the immune system, where they benefit from the tumour-promoting inflammatory 
processes, which may facilitate their acquisition of more hallmark traits, and 
simultaneously try to evade the selective destruction in connection with the 
immunological surveillance. 

Lastly, cancer cells typically exhibit altered energy metabolism compared to their 
normal counterparts. This often occurs in the form of cells resorting to the much less 
efficient glycolysis instead of oxidative phosphorylation, an anomaly called the Warburg 
effect. While the functional rationale behind this effect is poorly understood, one theory 
is that glycolysis provides advantages in driving large-scale biosynthetic processes that 
are fundamental to cell growth and replication. Furthermore, hypoxic conditions that 
are prevalent in most tumour environments could also contribute to the equation, 
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where subpopulations of cells with differing energy metabolisms may have symbiotic 
relationships. Nevertheless, reprogramming of the energy metabolism appears to be a 
common trait of many cancers.  

 

Figure 18: Emerging hallmarks and enabling characteristics from the revised version of the Hallmarks of 
Cancer by Hanahan and Weinberg (Hanahan and Weinberg 2011), reproduced with permission from 
the publisher.  

An important advantage of highlighting these common characteristics, or hallmark 
capabilities, of tumours is that it provides targets on which to concentrate the 
development of therapeutic efforts. Referring to the war analogy, if the mechanisms by 
which the enemy sustains its function can be identified and targeted, the battleground 
may look different in the future. These hallmarks capabilities provide that type of 
understanding and potential targets, by which therapeutics can eliminate or mitigate 
vital functional aspects of neoplastic cells. Examples of such therapeutics include 
telomerase inhibitors to limit the replicative potential of these cells, inhibitors of VEGF 
or EGFR signalling to prevent angiogenesis and proliferation (See Figure 6 in 
(Hanahan and Weinberg 2011)). However, given the heterogeneity of tumours the 
selective pressure resulting from treatments directed at specific targets is likely to result 
in relapse either by means of adapting to the treatment by decreasing dependence on 
the treatment target or by expansion of a minority subpopulation which is insensitive 
to the treatment. 
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Expression profiling: the biomarker question 

The term biomarker, or molecular marker, is loosely used for molecules that are 
measurable indicators of a specific biological process, condition or disease. Proteins 
have a unique position for biomarker discovery, as they are the ultimate effectors of 
biological processes in connection with disease, response to treatment and recovery 
(Rifai, Gillette, and Carr 2006). In theory, biomarkers are valuable tools for three main 
purposes; for gaining insights for accurate and early detection of disease (diagnostic 
biomarkers), for prediction of disease progression, recurrence and survival (prognostic 
biomarkers), and for predicting response to different therapeutics (predictive or response 
biomarkers) (Frantzi, Bhat, and Latosinska 2014). All three types of biomarkers are 
vital in the war against cancer. Early detection and accurate classification of the disease 
is strongly correlated with longer survival, indicating the importance of diagnostic 
biomarkers, while identification of patients under higher risk and optimal course of 
therapy of a given individual provides the motivation for searching prognostic and 
predictive markers, respectively. 

However despite the abundance of studies aimed at identifying biomarkers in different 
cancer subtypes, the clinical utility of the candidate markers have not in large realised 
the intended goals (Hanash 2011). In fact, recent estimates show that less than 1% of 
reported cancer biomarkers are actually useful in clinical practice (Kern 2012). While 
the exact reasons for this lack of efficiency may be difficult to pinpoint, the biomarker 
problem has been extensively discussed and reviewed in literature (Rifai, Gillette, and 
Carr 2006; Sawyers 2008; Kern 2012; Frantzi, Bhat, and Latosinska 2014; Kondo 
2014). In short, three main types of challenges impede development and use of 
biomarkers; these are challenges in discovery candidate markers and the validation of 
these candidates. 

In order to be practically useful, biomarkers should preferably be measurable reliably 
and efficiently (in terms of time and cost), as well as through non-invasive means. This 
definition immediately poses a challenge in cancer settings, as it is difficult to reach 
tumours in a non-invasive manner (Sawyers 2008). While biofluids such as plasma 
provide non-invasive means for discovery efforts, the complexity and dynamic range of 
sample proteome impedes development of reliable methods of discovery. In connection 
with the complexity and dynamic range, many likely candidates of disease specific 
markers are expected to have low-abundance in the samples, body fluids and tissue 
samples alike. Furthermore, in many cases there is significant individual variation, both 
on human and disease level.  

Once discovered the validation of candidate biomarkers poses a challenge in itself. With 
the technological and methodological advances, it is now possible to characterize, at an 
unprecedented level, the changes in DNA, or gene expression level, which provided 
important insights to underlying mutations and/or genomic defects in particular 
conditions. However it is now well established that gene expression and protein 
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expression do not necessarily correlate, as demonstrated in Paper IV, supporting the 
lack of transition to clinical use for many of these markers. The difficulty in working 
with solid tumours is another hinder to be tackled, specifically for predictive markers, 
since it is often impractical to take several biopsies from patients who are already under 
considerable burden (Sawyers 2008). 

An important aspect of biomarker discovery studies is the problem formulation and 
subsequent data analysis. A common approach in discovery-based gene or protein 
expression studies is to look for entities that have statistically significant differential 
expression, and then reporting these entities as potential biomarkers in discriminating 
between the conditions studied. This can be considered as a supervision bias or a self-
fulfilling prophecy. Similar potential pitfalls of fallacies in biomarker discovery have 
been voiced by Kondo and Kern (Kondo 2014; Kern 2012), and several strategies in 
validation of candidate markers are proposed (Rifai, Gillette, and Carr 2006; Frantzi, 
Bhat, and Latosinska 2014).  

Finally, virtually all biomarker studies are carried out in isolation, that is to say they 
focus on a single disease or tissue, and ignore the possible interference from other organs 
producing these biomolecules. Many proposed biomarkers appear in very diverse 
disease states. This is merely a reflection of their roles in dealing with stress in a cell and 
hence many lack any specificity beyond the recognition that there is generically 
something wrong with the patient. Furthermore, the heterogeneity of expression 
between patients is problematic, there appears to be no common baseline level that can 
be applied. This restricts many markers to a monitoring role, assuming one can have a 
reading from the patient when they are disease free. A more integrative approach is 
needed with many more “healthy” controls. 

Despite falling short of expectations, biomarker discovery will likely stay as one of the 
most common motivations for shotgun proteomics experiments. 

Cancer datasets in focus 

In this thesis we present four studies (Papers II-V), which were aimed at investigating 
the proteomes of several different types of human malignancies using mass 
spectrometry-based shotgun approaches, highlighting potentially key pathways in 
pathogenesis and progression with bioinformatics tools presented in the previous 
chapter. 

Soft-tissue sarcoma 

Sarcomas are highly malignant and heterogeneous tumours of mesenchymal origin. 
Despite representing less than 1% of human malignancies (Baird et al. 2005), there are 
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more than 100 subtypes of soft-tissue sarcomas (STS) recognized by histological 
examination (van de Rijn and Fletcher 2006). Approximately one third of the patients 
develop metastases, and metastatic disease at the time of diagnosis is not uncommon 
(Ferguson et al. 2011).  

Poorly differentiated sarcomas represent a diagnostic challenge as these tumours lack a 
typical and easily identifiable phenotype. A particular category of poorly differentiated 
tumours is pleomorphic sarcomas, which in turn have multiple subtypes including the 
malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma (MFH/UPS). 
While there are several studies regarding the genomic profiling of this disease, little is 
known about the proteome. In paper II, we describe a study where we investigate the 
proteomes of STS samples collected at Lund University Hospital. We have focused in 
particular on leiomyosarcomas (LMS) and MFH/UPS examining the possibility that 
these two subtypes share a  common lineage. 

Starting out with an analysis of various types of STS (139 tumours in total) based on 
2D-DIGE experiments, we could not find any meaningful results using unsupervised 
hierarchical clustering. Considering only the LMS and MFH/UPS samples, some 
distinct clusters of LMS tumours did emerge, however the MFH/UPS samples were 
could not be distinguished from the LMS samples. We identified 20 tumours, 15 of 
which representing the three clusters of LMS and a group of 5 MFH/UPS samples, 
which were analysed by both tandem-mass tagging (TMT) and label-free LC-MS/MS. 
In a multi-group comparison we identified vinculin (VINC), collagen type VI alpha-3 
chain (COL6A3) and myosin heavy chain smooth muscle isoform (MYH11) as 
discriminators between the 4 groups. Both VINC and COL6A3 have been associated 
with cancer related pathways in different malignancies in the literature, particularly of 
interest both have previously been reported to undergo expression regulation in 
mesenchymal tumour cells (Schreier et al. 1988; Schenker and Trüeb 1998).  

In depth analyses based on data from label-free LC-MS/MS experiments revealed 2 
distinct subgroups amongst the LMS samples in the study (Paper II, Figure 3 and Table 
3). One of these groups is significantly enriched in ribosomal proteins as well as 
subunits of eukaryotic translation initiation factors. Survival data was not available for 
these samples, thus it was not possible to carry out survival analysis to investigate 
whether or not the subtypes differ in malignancy. Functional analysis of the 156 
discriminating proteins revealed Granzyme-A signalling in apoptosis and survival, 
cytoskeleton remodelling and telomere maintenance as the most targets of expression 
regulation.  

Despite the emergence of LMS subgroups with respect to protein expression, 
MFH/UPS samples could not be discriminated as a group from the LMS samples. 
Instead they were spread between the two clusters (Paper II, Figure 2). It has been 
shown that human mesenchymal stem cells (hMSCs) can give rise to MFH/UPS 
samples via commitment to Wnt signalling (Matushansky et al. 2007), and that both 
subtypes of sarcomas can originate from the same murine model (Guijarro et al. 2013) 
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via Notch signalling. In the light of these studies, we believe our result indicate that 
tumours classified as MFH/UPS most likely arise from hMSCs during different stages 
of smooth muscle differentiation. This discovery-phase study opens the door for further 
functional analyses of these rare and aggressive tumours. 

Gastroesophageal tumours 

Oesophageal tumours are rare and malignant tumours that arise in the epithelial lining 
of the oesophagus. While the overall occurrence is about 1% of all human malignancies, 
the disease is about four times more likely among men than women (Siegel, Miller, and 
Jemal 2015; Bergman, Hont, and Johansson 2013). With the 5-year survival rates 
reported at just below 20%, oesophageal tumours are among the top 5 causes of cancer 
related deaths in males between ages 40-59 in the U.S. (Siegel, Miller, and Jemal 2015). 
In Sweden, the number of incidents has been on a slow but steady rise over the past 30 
years, and the 5-year survival rates are about 13%, for both sexes (Bergman, Hont, and 
Johansson 2013). While the standard treatment has been surgery, optimal course of 
action in treating these tumours is still a matter of debate (Mariette, Piessen, and 
Triboulet 2007). 

In Paper III, we report a study that aims at highlighting mechanisms behind 
malignancy as well as potential biomarkers for predicting prognosis and response to 
alternative treatment methods, a need expressed previously in literature (Tew, Kelsen, 
and Ilson 2005; Koshy et al. 2004). We profiled the proteomes of 81 gastroesophageal 
tumours, paired with control samples taken from healthy tissue from the same patients 
(see Paper III, Table 1), using both 2D-DIGE and shotgun mass spectrometry.  

Based on protein expression patterns, we observed a clear separation between tumours 
and normal samples, using unsupervised clustering methods. Proteins discriminating 
the samples (q < 0.01) were enriched for the GO biological processes such as; epithelial 
cell differentiation, ectoderm development, epithelium development, keratinocyte 
differentiation, epidermis development, epidermal cell differentiation, peptide cross-
linking and cellular homeostasis. 

Furthermore, we carried out pathway and GO-enrichment analysis using FEvER 
method (Paper I), comparing the tumours to normal samples. We filtered the dataset 
to the proteins for which a tumour/normal ratio can be calculated for at least 3 
individuals. We could thus do a non-parametric, paired test of significance for the 
observed ratios. Based on this filtered dataset, we identified several extra cellular matrix 
related pathways as the most likely targets of expression regulation. Specifically we 
found that Periostin precursor (POSTN) and Cytokeratin-7 (KRT7) were upregulated 
169x (adjusted p-value = 0.00022) and 111x (adjusted p-value = 0.01838) respectively, 
points towards significant restructuring of the cytoskeleton and cell-adhesion 
interactions. Among other high scoring pathways we observed Translation, Post-
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translational protein modification, Syndecan interactions, ECM proteolycans, Gene 
expression, Collagen formation, and Asparagine N-linked glycosylation.  

One of the aims of this study was to investigate the oesophageal tumour proteome for 
prognostic markers of the disease. We carried out survival analysis based on the clinical 
parameters as well as the protein expression data, however we could not identify any 
proteins that were indicative of higher risk or more aggressive disease. Specifically, there 
were no proteins in our dataset that could discriminate the patients with the longer 
survival times from those that were shorter.   

Breast cancers 

Breast cancer is one of the most common malignancies and one of the leading causes 
of death among women and as such it is one of the most studied forms of cancer. 
Globally, breast cancer ranks second in prevalence, just behind of lung cancer, and fifth 
in mortality (Ferlay et al. 2015). In Sweden, breast cancer constitutes over 30% of the 
diagnosed malignancies for women, however with developments in treatment and 
earlier diagnosis, the 10-year survival is approximately 80% (Bergman, Hont, and 
Johansson 2013). 

This thesis contains two studies aimed at obtaining a better understanding of the breast 
cancer proteome and functional regulatory activities, both in terms of pre-clinical 
research, and potential therapeutic application developments in mice models. Despite 
the extensive efforts in profiling the genome and transcriptome of the disease, few 
molecular biomarkers have made it to clinical use, and stratification typically depends 
on histological parameters like the TNM (Tumor Node Metastasis) status. The 
commonly used molecular markers are the expression of receptors of estrogen (ER), 
progesterone (PR), and the receptor kinase ERBB2 (also known as HER2/neu). Several 
panels of molecular markers, based on transcriptomics studies, have been proposed for 
classification of breast cancer in several subtypes (Perou et al. 2000; Sørlie et al. 2001; 
Sorlie et al. 2003; Hu et al. 2006).  

In paper IV, we describe a study aimed at investigating the similarity of human breast 
cancer cell lines (BCCLs), a commonly used model system, to the corresponding in 
vivo human molecular subtypes that they are assumed to represent. The study revealed 
several interesting insights; one of which is the observed similarity of the BCCL 
proteomes. In fact, just about two thirds of the identified proteins (2270 out of 3417) 
were found in all five cell lines that were investigated, and an additional 521 proteins 
(approximately 15%) were shared among four out of five cell lines (Paper IV, Figure 
1). This finding is supportive of the idea that cell lines predominantly exhibit a 
generally similar “core” proteome that allows them to survive and grow under in vitro 
conditions.  
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Furthermore, comparisons of proteome and transcriptome of the same cell lines provide 
significant differences. Not only do our results confirm the notion of a general lack of 
correlation between abundances of mRNA and the corresponding proteins, but also 
the cell lines cluster differently based on expression data on different levels (Paper IV, 
Figure 4). Functional analyses using the FEvER method, described earlier, and in Paper 
I, we could investigate the similarities, or lack thereof, between the pathways that are 
likely to be differentially regulated in these cell lines. Again, an overall lack of 
correlation was observed between the significance scores for the pathways between 
proteomics and transcriptomics datasets.  

Lastly, we compared the proteomes of 450 tumour samples to the five BCCLs in the 
study. While a comparable amount of proteins identified in both cases, an intriguingly 
small overlap was observed between the datasets. Suspecting that the disparity might be 
caused by the contribution of tumour stromal cells, the addition of adipocytes and a 
cell line derived from human breast fibroblasts was devised. However, while increasing 
the number of identified proteins by 300 new proteins, the addition of these cells did 
not add to the overlap of proteins between cell lines, and the clinical samples. GO term 
analysis of the datasets highlighted the difference of processes that are activated in the 
different conditions; the tumour samples had much better coverage of cell adhesion 
and hormone signalling pathways while the cultured cells had a similarly better coverage 
of metabolic processes and cell-cycle regulation. Tumour samples are very 
heterogeneous and highly complex, containing cells of different lineages, such as blood 
cells or cells of the immune system (Weinberg 2013). In comparison, cultured cell lines 
are very homogeneous, which is a direct consequence of their clonal expansion. 
Furthermore, cells in a culture not only share essentially the same genome, but also the 
same environmental factors originating from culturing conditions and are not exposed 
to the same selective pressure dynamics that is present in vivo; they simply grow and 
divide. Considering these results we conclude that while being a useful model of 
understanding the basic cellular processes in different types of cells, it is unlikely to be 
a suitable model for biomarker discovery or therapeutic models. 

From a more clinical point of view, hormonal involvement in breast cancer has been 
reported as early as the end of 19th century (Beatson 1896). Hormone receptor status, 
that is whether or not malignant cells express oestrogen and progesterone receptors, is 
an important parameter in the therapeutic decision-making process. In particular ER+ 
tumours, among the most common (Patani, Martin, and Dowsett 2013) and diverse 
clinical groups (Cancer Genome Atlas Network 2012), often rely on oestrogen 
signalling for growth and are susceptible to hormonal therapy. In Paper V, we describe 
a study with which we target the dependence on oestrogen receptor signalling in ER+ 
breast cancer, using a patient-derived, luminal-like mouse xenograft model 
(Bergamaschi et al. 2009; Skrbo et al. 2014). Our results showed a clear dependence of 
the malignant cells on oestrogen signalling, more than 50% decrease in tumour volume 
was observed over 2 weeks of treatment, either by oestrogen withdrawal or by a ER-
antagonist pharmaceutical, fullvestrant (see Paper V, Figure 2a). The estradiol 
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concentration in serum was measured for control of the hypothesis that fullvestrant 
treatment would block ER-signalling even in the abundance of the agonist (Paper V, 
Figure 2b). Furthermore, we analysed the proteomes of tumours that have undergone 
both types of treatments, as well as control, and carried out pairwise comparative 
pathway analysis using the FEvER tool (Paper I) and found signs of metabolic 
regulation. Treatments were compared to control separately, and combined, yielding 
three pairwise comparisons. In all three cases, TCA Cycle and respiratory electron 
transport and metabolism of lipids and lipoproteins, especially fatty acid, triacylglycerol, 
and ketone body metabolism, pathways were found to be highly significant (Paper V, 
Table 1). In both cases, the majority of the proteins in these pathways were found to 
be upregulated in comparison to untreated tumours, and together these results indicate 
a likely increase of oxidative phosphorylation activity upon oestrogen-signalling 
inhibition (Paper V, Figure 3a). These results were confirmed by both GO annotation 
enrichment applied to the same dataset (Paper V, Figure 3b) and by high-resolution 
magic angle spinning magnetic resonance spectroscopy (HR MAS MRS), an 
orthogonal method of metabolite quantification (Moestue et al. 2011), on a new set of 
PDX samples (Paper V, Figure 4). Mass spectrometry proteomics, together with the in 
depth metabolomics is strongly indicative of a therapy-induced decrease in the 
previously discussed Warburg effect, and a reprogramming of cellular energy 
metabolism upon oestrogen deprivation. 

Finally, investigation of subpopulations previously defined in the same PDX model 
(Skrbo et al. 2014) revealed that the oestrogen-treatment has an effect on proportional 
representation of these subpopulations in tumours (Paper V, Figure 5). Furthermore, 
proteomic analysis of these subpopulations indicate that the metabolic differences are 
likely to exist in between two of the subpopulations, and that the treatment changes 
the subpopulations by means of selective pressure. Taken together, our results from 
Paper V give insights regarding in vivo molecular and functional dynamics as a result 
of hormonal therapy. 
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Outlook 

Where do we stand today? 

Despite the hiccups, e.g. (Ransohoff 2005), in the early years of the century, proteomics 
as a field has established itself to the extent that the benefits of studying the proteome 
is widely accepted and recognized. While one cannot consider proteomics is a fully 
matured field of biomedical science, the remarkable progress made in the past 15 years 
should be recognized. 

Currently available technologies together with well-designed workflows have provided 
a deeper and more consistent view of the human proteome than ever before. We can 
now identify and quantify several thousand proteins in discovery-phase shotgun 
experiments, efficiently and reproducibly quantify over a hundred proteins in targeted 
studies, and identify thousands of post-translationally modified peptides from a single 
sample, in a single experiment. On a bigger scale, drafts of the human proteome have 
been assembled and published last year, by two independent research groups (M.-S. 
Kim et al. 2014; Wilhelm et al. 2014), which constitutes a significant step towards a 
more thorough understanding of how our bodies function. Furthermore, not only do 
we know which proteins are expressed in our body, but also where they are expressed, 
as a study on tissue-specificity of thousands of proteins described recently (Fagerberg et 
al. 2014). These landmark achievements in proteome research, will no doubt prove to 
be invaluable in expanding our understanding of complex diseases like cancer, paving 
the way for advance therapeutics, tailored for the needs of each individual patient.  

As discussed in the previous chapter, cancer is not one single disease, thus a universal 
cure for cancer is likely to remain elusive. The idea of considering each case unique has 
gained momentum. Along this line of thinking, there is no one cure for cancer but 
rather the goal is to find the right therapy for the right patient. A concept, usually 
referred to as personalized medicine, implies characterization of critical mutations, 
identification of the amplified or silenced pathways and other regulatory activity, for 
each and every patient.  

Over the past decade, remarkable progress has been made toward personalized 
medicine, as patients are screened for molecular biomarkers in many types of cancer. 
In breast cancer specifically, HER2 status has transformed from a prognostic biomarker 
to a predictive biomarker. Introduction of Herceptin (Trastuzumab) for HER2+ breast 
cancer patients, Gleevec (Imatinib) for BCR-Abl+ chronic myelogenous leukemia 
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(CML) patients as well as PARP inhibitors for BRCA1/BRCA2 mutant breast or 
ovarian cancer patients, show great promise in management of these malignancies.  

There are still limitations, to the current methods, and obstacles that need to be 
overcome. These shortcomings are of both technological and biological nature, for 
example mass spectrometry proteomics is still inadequate in sampling proteins in the 
lower-end of the dynamic range, especially in shotgun experiments. This particular 
issue constitutes an undeniable obstacle in the way for biomarker discovery studies, as 
discussed earlier in the Proteomics chapter. Emergence of new approaches that aim to 
combine the advantages of affinity-based methods and mass spectrometry proteomics 
(N. L. Anderson et al. 2004; Olsson et al. 2012; Säll et al. 2014) are likely to mitigate 
the problem to some extent. 

 

Figure 19: Steps of inference; from ground truth that is instrument data to functional interpretation and 
new biological insights. Each step ”up” implies inferential uncertainties and reliance on external data 
resources. 

Furthermore, proteomics workflows heavily rely on canonical information stored on 
databases, whether that is on genes, peptides, proteins or functional annotations, such 
as pathways. This reliance on canonical data implies two potential pitfalls: the quality 
as well as the relevance, or usefulness, of the information available. Incorrect or 
misleading information on these pathways propagate due to this heavy reliance, which 
may prove to be detrimental when drawing conclusions on functional level, after several 
layers of inference. 
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Concluding remarks 

The research covered in this thesis aims to better utilize quantitative proteomics data 
from mass spectrometry experiments, in order to improve our understanding of 
functional implications of expression regulation in cancer. The introductory chapters 
of the thesis provide an overview of the technological, computational and biomedical 
aspects of the work presented, respectively.  

Paper I describes a novel method for evaluation expression regulation on a functional 
level, and highlight pathways that are likely to be affected by changes in protein 
regulation. This method is based on a relatively simple mathematical model, which in 
turn is built on observations originating from the relationship between physical entities 
such as proteins and artificial constructs such as pathways. 

Papers II-V are focused on biological questions regarding the cancer proteome and 
protein expression regulation in different malignancies. Paper II presents an 
investigation of soft-tissue sarcoma proteome, specifically leiomyosarcomas. Despite 
poor overlap between datasets identified by different methods, we manage to highlight 
several interesting proteins and pathways that may likely give insights to origins and 
differentiation patterns amongst these rare and highly malignant tumours. A similar 
study is presented in Paper III, in which we investigate protein expression profiles of 
gastroesophageal tumours. Using the paired clinical samples, we investigate the 
differences in protein expression between normal esophagus and tumour samples, as 
well as highlighting the expression regulation for proteins in the cytoskeleton modelling 
and cell-adhesion pathways. 

Papers IV and V are focused on breast cancer models. In Paper IV we present a study 
investigating the level of similarity between immortalized, patient-derived breast cancer 
cell lines and the tumour types these cell lines are assumed to represent. The low level 
of similarity between the cell lines and tumours, as well as the differences between 
protein and gene expression profiles raise a warning flag for inference on cancer 
proteome based on results from in vitro experiments. Our results indicate that while 
immortalized cell lines constitute a useful model they are not entirely representative of 
the molecular dynamics inside a tumour, and thus may not be a suitable model for 
studies for biomarker discovery. 

In Paper V we describe a study, which aims to investigate dependence to oestrogen 
signalling in ER+ tumours. Based on the mouse PDX model we described the positive 
effects of blockage of this pathway, highlight the changes in protein expression and 
cellular subpopulations caused by the treatment, and identify changes to the energy 
metabolism and validate the results by an orthogonal method measuring the 
metabolites in the TCA cycle. Based on these results we can speculate about the 
dynamics between ER signalling, proliferation and energy metabolism, which opens 
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the doors for combined therapies that are designed to hit multiple pathways, for ER+ 
breast cancer patients. 

Taken together, the works presented in this thesis show the potential of mass 
spectrometry proteomics, coupled with well-designed data analysis practices. Mass 
spectrometry proteomics have typically been a technology-driven field; however as the 
instrumentation techniques mature the focus will inevitably shift to data analysis 
methods to climb what Aebersold referred to as the “mount bioinformatics” (Aebersold 
2009). Given the challenges that are visible ahead, and presumably many more that are 
not yet visible, it is likely going to be a difficult climb up. However, considering the 
promise of the riches that lie beyond, the view from the summit should be worth the 
struggles of the metaphorical climb up.  
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Populärvetenskaplig  
sammanfattning 

Den mänskliga kroppen är ett komplext maskineri med en rad olika reglersystem och 
kontrollmekanismer. Flera grenar av modern biomedicinsk forskning riktar sig mot 
olika nivåer av detta komplexa maskineri. En av dessa grenar heter genomik, som är 
läran om hur den genetiska koden som finns i varenda cell av en organism används och 
regleras. Slutförandet av Human Genome Project (HGP) gav det vetenskapliga 
samfundet en blåkopia av de molekylära byggstenarna i våra kroppar. Det överraskande 
resultatet är att nästan hela vår arvsmassa, det vill säga de proteinkodande regionerna i 
vårt DNA, delas inte bara bland alla levande människor, men också bland en 
överväldigande del av alla däggdjur. 

Man kan då undra vilka mekanismer som står för de synliga och osynliga skillnaderna 
mellan oss människor. Svaret ligger delvis bland de biologiska molekyler som ligger på 
en högre nivå, dvs. proteinerna. Faktumet att en viss gen finns hos två människor 
betyder inte att de uttrycker samma protein, eller att det proteinet ifråga är funktionellt 
i samma utsträckning för dessa två individer. Proteomik är ännu en, något yngre, gren 
av biomedicinsk forskning som fokuserar på kvalitativ och kvantitativ kartläggning av 
proteomet. Proteomet definieras som den mängd proteiner som uttrycks av en cell, 
vävnad eller organism, vid en viss tidpunkt under specifika förhållanden. Proteomik 
studerar identiteten, kvantiteten eller funktionen av de proteinerna som finns i det 
undersökta systemet. Till skillnad från genomet, som är mer eller mindre identiskt hos 
de allra flesta cellerna i kroppen och bevaras så stabilt som möjligt, är proteomet otroligt 
dynamiskt med avseende på både tid och plats, och regleras konstant. 

För att illustrera detta, betrakta en nervcell i ditt öga och en epitel cell på din hud. De 
ser ut och fungerar helt annorlunda eftersom de uttrycker olika proteiner, men de har 
samma uppsättning gener i cellkärnan. På samma sätt kan olika proteiner hittas i en 
cell som är i tillväxtfas jämfört med en cell som är mitt i celldelningsprocessen. Ett 
annat sådant exempel är förändringen i proteinuttryck för celler som exponeras för 
miljöfaktorer såsom starka variationer i tillgänglighet av näringsämnen eller olika typer 
av stress såsom syrebrist eller joniserande strålning. 

 



78 

Proteomikens roll i cancerforskningen 

Det övergripande målet för många proteomik projekt är att analysera förändringarna i 
proteinuttryck mellan två eller flera tillstånd, särskilt i sjukdomar såsom cancer där 
storskaliga förändringar i proteomet inträffar. En djupare förståelse av dessa 
förändringar kommer i slutändan att hjälpa forskare att utveckla bättre läkemedel och 
läkare att skräddarsy effektivare behandlingar för patienterna. 

Majoriteten av läkemedel som används idag mot cancer består av giftiga molekyler som 
påverkar främst delande celler. Målet med terapin bygger till stor del på antagandet att 
cancerceller genomgår celldelning snabbare och oftare än "normala" celler i sin 
omgivning. Cytotoxiska läkemedel orsakar allvarliga biverkningar för patienten, vilket 
har en stor inverkan på livskvaliteten. Tyvärr har patienten i många fall väldigt liten 
nytta av behandlingen, om ens någon alls, på grund av förvärvad resistens. Samtidigt, 
är den ekonomiska bördan av dessa behandlingar för samhället inte försumbar. Många 
patienter har nedsatt immunförsvar och är mottagliga för opportunistiska sjukdomar. 

Personlig medicin 

Med begreppet personlig medicin menas att skräddarsy behandlingen baserad på den 
specifika typ av sjukdom patienten har. På så sätt får patienten den behandling som har 
störst chans att ge hälsofördelar, samtidigt som de cytotoxiska läkemedlen används 
minimalt och patienten förhoppningsvis upplever en mindre inverkan på livskvalitén. 
Men för att personlig medicin ska bli verklighet måste vissa utmaningar tacklas. 
Framförallt, för att skräddarsy behandlingen till en patient, bör de mekanismer som 
påverkas av sjukdomen upptäckas. Pro-onkogena mutationer, som är de förändringarna 
i arvsmassan som främjar tumörutveckling eller överlevnad, måste identifieras. Nätverk 
av samverkande proteiner, som kallas för signalvägar, eller pathways, som har ändrats i 
de maligna cellerna, måste analyseras i detalj. 

En rad viktiga framsteg mot användningen av personlig cancerbehandling i kliniken 
har gjorts. Idag lämnar nästan varje cancerpatient i Sverige prover som undersöks med 
state-of-the-art instrument, som avslöjar många viktiga insikter om olika steg av det 
molekylära maskineriet. Viktiga mutationer identifieras och signalvägar undersöks 
utifrån gen- eller proteinuttryck.  

En framgångssaga är användningen av Herceptin för HER2-positiv bröstcancer. HER2 
är ett receptorprotein som sitter på cellmembranet, och detta protein är involverat i den 
signalöverföring som är viktig för cellernas överlevnad och utveckling i tumörerna. 
Herceptin är en molekyl som blockerar signaleringsprocessen genom detta 
receptorprotein och därigenom hindrar utvecklingen av de celler som uttrycker detta 
protein i hög grad. Ett annat lovande exempel är användningen av små molekyler som 
kallas tyrosin-kinas-hämmare, särskilt hos patienter som har en viss typ av cancer i 
buken (gastrointestinala stromacellstumörer). 
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I båda fallen riktas behandlingen mot ett protein av intresse, typiskt en svagpunkt i en 
känslig signalväg. Baserat på dessa principer är forskningen som presenteras i denna 
avhandling en samling av studier som syftar till att utöka vår förståelse av proteomet i 
olika typer av cancer. Artikel I beskriver en ny beräkningsmetod för att utvärdera 
reglering av proteinuttryck. Denna metod, och den mjukvara som implementerar 
metoden, ger prekliniska forskare möjlighet att identifiera de mekanismer som skiljer 
tumörceller från normala celler i motsvarande vävnad. 

De återstående fyra artiklarna beskriver studier som fokuserar på proteomikanalys av 
olika former av cancer. I artiklarna II och III är kliniska prover från mjukdels sarkom 
och gastroesofageal tumörer analyserade och nya insikter om dessa komplexa sjukdomar 
med hjälp av viktiga proteiner och signalvägar läggs fram. Artikel IV och V är däremot 
fokuserade på bröstcancerbiologi. Artikel IV visar att det finns liten till ingen 
korrelation mellan proteinuttryck av ”odödliga” cellinjer och molekylära subtyper av 
bröstcancer, som dessa cellinjer förmodas representera. Resultaten från denna studie 
pekar mot att försiktighet måste iakttas vid överföring av kunskap från studier av dessa 
modellsystem. Artikel V presenterar en studie kring de terapeutiska aspekterna av ER-
positiv, luminal bröstcancer. Vi har i synnerhet undersökt den systemiska betydelsen av 
östrogensignaleringsvägen och den terapeutiska potentialen av inhibering av denna väg 
demonstreras. 

Det skulle vara alltför optimistiskt att ge en uppskattning på hur många år det kommer 
att ta innan vi har effektiva behandlingsmetoder mot alla former av cancer. Däremot är 
det klart att vi kommer att se viktiga förbättringar inom cancerterapi under de 
kommande 15-20 åren som i sin tur kommer att leda till förbättringar för patientens 
livskvalitet och ökad överlevnad. 
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"It is not the critic who counts; not the man who points out how 
the strong man stumbles, or where the doer of deeds could have 
done them better. The credit belongs to the man who is actually 
in the arena, whose face is marred by dust and sweat and blood; 

who strives valiantly; who errs, who comes short again and again, 
because there is no effort without error and shortcoming; but 

who does actually strive to do the deeds; who knows great 
enthusiasms, the great devotions; who spends himself in a worthy 

cause; who at the best knows in the end the triumph of high 
achievement, and who at the worst, if he fails, at least fails while 

daring greatly, so that his place shall never be with those cold and 
timid souls who neither know victory nor defeat. " 

 

Theodore Roosevelt, Citizens in a Republic, Paris 1910 
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