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Abstract

This paper is concerned with the permittivity reconstruction of inhomoge-
neous dielectric media. The method applies to profiles that vary with depth
only, i.e. it provides a one-dimensional profile reconstruction. The data are
collected and analyzed in the time domain. In the first part of the paper
the theory of the method is reviewed. It is showed that a finite time trace
of reflection data suffices to uniquely reconstruct the permittivity profile of
the medium. The latter part of the paper presents the experimental set-up
and contains also a thorough discussion of the errors that affect the measure-
ments. The inverse scattering algorithm that is used is either based upon
an imbedding procedure or on a Green functions approach. The input to
either of these algorithms is the reflection kernel or the impulse response of
the medium, i.e. the delta function response of the medium. Therefore, a
deconvolution of the the measured reflected field and the incident field must
be performed. This deconvolution problem is also addressed briefly in this
paper.

1 Introduction

In this paper an experimental implementation of two inversion algorithms for inho-
mogeneous dielectric media is presented. The first algorithm is based upon an imbed-
ding procedure which was suggested originally by Corones, Davison and Krueger [2].
The second algorithm utilizes the Green functions of the problem and this approach
was first introduced by Krueger and Ochs [7]. These algorithms and the underlying
theory are presented in Section 2.

The permittivity profile is assumed to vary only with depth and the variation is
assumed to be continuous. Otherwise, it is arbitrary. Thus, no assumptions are made
about a piecewise constant permittivity profile. The assumption on a continuous
permittivity profile can be relaxed, and extensions of the theory so that finite jump
discontinuities in the permittivity profile can be treated are possible, see [5]– [6].
These, extensions are, however, not presented in this paper. Furthermore, it is
assumed that the medium is dispersion free and lossless. It is, however, possible to
cope with lossy and dispersive profiles, but this requires an extension of the theory
presented in Section 2. The theory of lossy and dispersive media are presented
in [3]– [6] and [1], respectively.

To meet the assumptions made above and to have an easily controlled envi-
ronment for the experiment a coaxial component set-up is adopted. The one-
dimensional variation in the permittivity is then easy to realize and the dispersion
free wave propagation in the wave guide is guaranteed by the TEM wave mode.

One of the prominent advantages with the theory and the algorithms used in
this paper is that they only require a finite time trace of reflection data as input
data for the inversion of the permittivity profile. More specifically, one round trip
of reflection data is needed, where one round trip is defined as the time it takes
for the pulse to propagate through the medium and back again. The design of
the experiment can therefore be made so that all unwanted reflections from the
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experimental set-up arrive after one round trip. In this way these reflections do
not affect the measurements and it is possible to avoid some unwanted interference
with the experimental set-up. This is not possible with an experimental set-up that
measures the fixed frequency response of the dielectric sample.

Some general considerations are found in Section 3. In Section 4 the deconvolu-
tion problem encountered in this paper is described and analyzed. The experimental
set-up is described in Section 5 and a detailed presentation of the error analysis is
found in Section 6. Finally, in Section 7 the results of this paper are presented. An
appendix contains the computer code used in this paper.

2 Theory

In this section the mathematical model is presented, some notations are introduced
and the precise statement of the inverse problem is given.

2.1 Mathematical model

An inhomogeneous slab occupies the region 0 ≤ z ≤ L. The slab is assumed to
be lossless and is modeled by a relative permittivity ε(z) that varies with depth
z. A homogeneous lossless medium is situated on either side of the slab. These
homogeneous media have a constant permittivity ε1 and ε2, respectively, see Figure 1.

0 L
z

ε1 ε(z) ε2

Figure 1: The geometry of the slab.

To simplify the theoretical analysis in this section it is assumed that the per-
mittivity profile is continuous at the ends, z = 0 and z = L, respectively, and,
furthermore, continuously differentiable inside the slab, 0 < z < L. Typical plot
of the permittivity profile is shown in Figure 2. The assumption of continuity at
the left and right ends of the slab is no loss of generality, see e.g [5], and for the
purpose of this paper, the present assumptions are quite sufficient. More explicitly,
reflection and transmission data for a permittivity profile with finite jump disconti-
nuities at the edges can always be transformed to reflection and transmission data
for a permittivity profile where these jumps have been removed, i.e. the permittivity
profile is continuous everywhere. These transformations consist of solving Volterra
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integral equations of the second kind. These equations are well-posed and numeri-
cally efficient methods to solve these integral equations are easy to find. If the jump
discontinuities are inside the slab similar methods apply.

0

L

z

ε1

ε(z)

ε2

Figure 2: The permittivity profile ε(z) as a function of depth z.

The profile is excited by an electromagnetic wave impinging normally on the slab
from the left. Assuming that all fields only depend spatially on the depth z, the
Maxwell equations in the absence of free charges and currents imply (the fields E
and D are assumed to have components along the x-axis and B and H along the
y-axis) {

∂zE(z, t) = −∂tB(z, t)
∂zH(z, t) = −∂tD(z, t).

(2.1)

Here ∂z and ∂t denotes (partial) differentiation with respect to depth z and time t,
respectively. The constitutive relations{

D(z, t) = ε0ε(z)E(z, t)
H(z, t) = B(z, t)/µ0,

and (2.1) then imply that the electric field E(z, t) inside the slab satisfies the wave
equation

∂2
zE(z, t) − c−2(z)∂2

t E(z, t) = 0, (2.2)

where the local phase velocity c(z) = {ε0ε(z)µ0}−
1
2 .

2.2 Scattering representation and wave splitting

To the left of the slab, z < 0, the electric field is a sum of two parts, one right going
incident wave, Ei(t), and one left going reflected wave, Er(t). Similarly, to the right
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of the slab, z > L, the electric field consists of one right going transmitted wave,
Et(t). The total field E(z, t) outside the slab is therefore

E(z, t) =

{
Ei(t − z/c(0)) + Er(t + z/c(0)), z < 0
Et(t − � − (z − L)/c(L)), z > L,

where c(0) = {ε0ε1µ0}−
1
2 and c(L) = {ε0ε2µ0}−

1
2 are the phase velocities on the

left and right hand side of the slab, respectively (remember the continuity in the

permittivity profile at the ends). The quantity � =
∫ L

0

√
ε0ε(z)µ0 dz is the time it

takes for the wave front to go through the slab from z = 0 to z = L.
The incident and the scattered fields, respectively, are related by scattering op-

erators. These relations are integral operators represented by

Er(t) =

∫ t

−∞
R+(t − t′)Ei(t′) dt′ (2.3)

Et(t) =

√
c2

c1

{
Ei(t) +

∫ t

−∞
T+(t − t′)Ei(t′) dt′

}
,

where the kernels R+(t) and T+(t) are the reflection and the transmission kernels
of the slab, respectively, for an incident wave from the left. These kernels are
independent of how the slab is excited, i.e. totally determined by the ε(z) profile.
Notice that if Ei(t) = δ(t) (where δ is the Dirac delta function) then it follows that

Er(t) = R+(t) and Et(t) =
√

c2
c1
{δ(t) + T+(t − t′)}. Hence, the scattering kernels

R+ and T+ are the impulse responses of the medium.
One of the key stones in the theory of this paper is the wave splitting transfor-

mation. This is a transformation of dependent variables from the pair {E, ∂zE} to
another pair {E+, E−} defined by

E±(z, t) =
1

2

{
E(z, t) ∓ c(z)

∫ t

−∞
∂zE(z, t′) dt′

}
.

This wave splitting transformation can be written in a matrix shorthand notation
as (

E+

E−

)
=

1

2

(
1 −c∂−1

t

1 c∂−1
t

) (
E

∂zE

)
= T

(
E+

E−

)
. (2.4)

The operator T has a formal inverse

T−1 =

(
1 1

−c−1∂t c−1∂t

)
,

that will be used below.
In a region where the phase velocity c is constant this wave splitting transfor-

mation has the effect of projecting out the left and the right going parts of the
field. More explicitly, in a region where the phase velocity c is constant the general
solution to (2.2) is

E(z, t) = f(t − z/c) + g(t + z/c),
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where f and g are arbitrary functions. It is then easy to calculate the fields E+(z, t)
and E−(z, t) defined in (2.4). They are{

E+(z, t) = f(t − z/c)
E−(z, t) = g(t + z/c).

In a region where c is not constant the transformation defined in (2.4) is still well-
defined. In this case the fields E+(z, t) and E−(z, t) are defined as the left and the
right going parts of the field, respectively, even though no interpretation such as in
the constant phase velocity case above can be made. Notice that

E(z, t) = E+(z, t) + E−(z, t), (2.5)

for all profiles.
The fields E+(z, t) and E−(z, t) satisfy the following partial differential equation

∂z

(
E+

E−

)
=

(
α β
γ δ

) (
E+

E−

)
, (2.6)

where 


α = −c−1∂t + c′

2c

β = − c′

2c

γ = − c′

2c

δ = c−1∂t + c′

2c
.

This can most easily be seen by combining (2.2) and (2.4). This equation is equiv-
alent to the wave equation, (2.2), and gives the dynamics of the fields E+(z, t) and
E−(z, t).

2.3 Invariant imbedding

Consider now a subsection [z, L] of the region [0, L], see Figure 3. Mathematically,
the original problem, [0, L], is imbedded in a family of problems where the left edge
of the slab, z, is the parameter that is varied.

0 z L
z

E+(z, t)

E−(z, t)

Figure 3: The geometry of the subsection problem [z, L].
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The fields E+(z, t) and E−(z, t), defined at the position z, are related to each
other in a similar way as the incident field Ei(t) and the reflected field Er(t) in
(2.3) of the original physical problem are related to each other. This relation is
represented as an integral operator as

E−(z, t) =

∫ t

−∞
R+(z, t − t′)E+(z, t′) dt′. (2.7)

The kernel R+(z, t) can be interpreted as the reflection kernel for the subsection
[z, L], where the medium to the left of z is of constant permittivity ε(z). The
field E+(z, t) serves as an incident field, while E−(z, t) is a reflected field, for this
subsection problem. For the special value z = 0, the physical reflection kernel R+(t)
in (2.3) is identical to R+(0, t). Hence, the reflection kernel R+(t) for the physical
region [0, L] is imbedded in a family of subsection problems [z, L] with reflection
kernels R+(z, t).

The dynamics, (2.6), and the relation between the fields E+(z, t) and E−(z, t),
given by (2.7), imply that the reflection kernel R+(z, t) satisfies a non-linear differ-
ential equation. Lengthy, but straightforward, calculations show that

∂zR
+(z, t) − 2

c(z)
∂tR

+(z, t) =
c′(z)

2c(z)

∫ t

0

R+(z, t − t′)R+(z, t′) dt′ (2.8)

R+(z, 0) =
1

4
c′(z) (2.9)

R+(L, t) = 0. (2.10)

It is intuitively clear that the dependence of the reflection kernel R+(z, t) on z is
related to the local properties of the slab at z. This is expressed mathematically in
(2.9). Equation (2.10) implies that the reflection kernel is zero at z = L, i.e. no
scatterer present. Notice that (2.8) is non-linear due to the convolution integral on
the right hand side of the equation, and that (2.8) has a directional derivative in
the (z,− 2

c(z)
) direction. This latter property solves the inverse problem, which now

can be stated more explicitly.
The inverse problem solved in this paper is the reconstruction of the permittivity

profile ε(z) from reflection data. Specifically, given reflection data for one round trip,
i.e. R+(t), for 0 ≤ t ≤ 2�, find the permittivity profile ε(z), 0 ≤ z ≤ L, see Table 1.
The numerical algorithm based upon the imbedding equation (2.8) is now presented.

Problem Known Sought
Direct ε(z), 0 ≤ z ≤ L R+(t), 0 ≤ t ≤ 2�
Inverse R+(t), 0 ≤ t ≤ 2� ε(z), 0 ≤ z ≤ L

Table 1.
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In order to make the numerical computations more easy a normalized travel time
coordinate transformation is made. The transformation is

x = x(z) =

∫ z

0

dz′

�c(z′)
(2.11)

s = t/�

R(x, s) = �R+(z, t),

where � =
∫ L

0

√
ε0ε(z)µ0 dz is the time it takes for the wave front to go through the

slab. This transformation maps the slab z ∈ [0, L] to the interval x ∈ [0, 1], and
the time s is normalized so that s = 1 is the time it takes for the wave front to go
through the slab. The new scaled reflection kernel R(x, s) satisfies

∂xR(x, s) − 2∂sR(x, s) = −1

2
A(x)

∫ s

0

R(x, s − s′)R(x, s′) ds′ (2.12)

R(x, 0) = −1

4
A(x) (2.13)

R(1, s) = 0, (2.14)

where

A(x) = −�c′(z(x)) = − d

dx
ln c(z(x)), 0 < x < 1. (2.15)

The inverse transformations of (2.11) and (2.15) are

z(x) = c(0)�

∫ x

0

{
exp

{
−

∫ x′

0

A(x′′) dx′′

}
dx′

}
, 0 < x < 1 (2.16)

ε(z(x)) = ε1 exp

{
2

∫ x

0

A(x′) dx′
}

, 0 < x < 1. (2.17)

Thus, the knowledge of A(x), 0 ≤ x ≤ 1 and the constants � and ε1 determine z, L
and ε(z), 0 ≤ z ≤ L. How A(x), 0 ≤ x ≤ 1 can be reconstructed numerically from
(2.12) and (2.13) is now presented.

The numerical implementation of the imbedding equation (2.12) is most easily
done by writing (2.12) as

∂xR(x, s − 2x) = −1

2
A(x)

∫ s−2x

0

R(x, s − 2x − s′)R(x, s′) ds′,

and integrate from x − h to x and let then time be s + 2x. The result is

R(x, s) − R(x − h, s + 2h) = −1

2

∫ x

x−h

A(x′)(R ∗ R)(x′, s + 2(x − x′)) dx′, (2.18)

where star ∗ denotes time convolution, i.e.

(R ∗ R)(x, s) =

∫ s

0

R(x, s − s′)R(x, s′) ds′.
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Introduce a uniform grid of points (xi, sj) in (x, s) space, where xi = ih, sj = 2jh,
i = 0, 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i, h = 1/N and N is an integer. Denote

Ri,j = R(xi, sj)

Ai = A(xi).

With the use of the trapezoidal rule in (2.18) the following algorithm is easily found

Ri,j =

{
Ri−1,j+1 −

h2

2

{
Ai

j−1∑
k=1

Ri,j−kRi,k

+Ai−1

j+1∑
k=1

Ri−1,j+1−kRi−1,k

}}{
1 − h2

8
A2

i

}−1

, (2.19)

where i = 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i, and where the values of Ai are deter-
mined from (take s = 0 in (2.18) and use (2.13))

Ai = −4Ri−1,1

{
1 +

h2

8
A2

i−1

}
. (2.20)

The error made in (2.19) and (2.20) is of order O(h3).
The input data of the numerical algorithm is


R+(2j�h), i = 0, 1, 2, . . . , N
�
ε1.

(2.21)

The reconstruction of the permittivity profile goes in two steps. First reconstruct
A(x) from the reflection data R+ data (the constant � is also needed). The from
A(x) and the constants � and ε1 determine z(x) and ε(z(x)). This is done from
(2.16) and (2.17). The length of the slab is also determined by L = z(1).

The initialization of the numerical algorithm is made by assigning

R0,j = R(0, 2jh) = �R+(0, 2j�h) = �R+(2j�h), j = 0, 1, 2, . . . , N.

The algorithm then proceeds as follows, see also Figure 4.

1. Use (2.20) to calculate A(xi) from data at grid line i − 1. The two arrows in
Figure 4 indicate this operation.

2. Use (2.19) to calculate Ri,j, j = 1, 2, . . . , N − i from old and new data at grid
lines i− 1 and i, respectively. Notice that the right hand side of (2.19) is now
known from the previous step.

3. Repeat the previous steps to move one grid line deeper into the medium, until
the right edge of the slab, i = N , is reached.
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i

j

i − 1 i

Figure 4: The numerical algorithm.

2.4 The Green functions

It is also possible to arrive at a numerically faster algorithm by using another relation
between the fields E+(z, t) and E−(z, t), defined at the position z. The representa-
tion used to derive the imbedding equation in Section 2.3, given by (2.7), gives the
reflection kernel for the subsection problem [z, L]. It is also possible to relate the
fields E+(z, t) and E−(z, t) to the external excitation E+(0, t). These relations are
integral operators represented by

E+(z, t) =

√
c(z)

c1

{
E+(0, t − �x(z)) +

∫ t−
x(z)

−∞
G1(z, t − t′)E+(0, t′) dt′

}
(2.22)

E−(z, t) =

√
c(z)

c1

∫ t−
x(z)

−∞
G2(z, t − t′)E+(0, t′) dt′, (2.23)

where x(z) is defined in (2.11). The two kernels G1(z, t) and G2(z, t) are called the
Green functions. The sum of (2.22) and (2.23) gives the total internal field in the
slab, see (2.5) and Figure 5. This is not true for the sum of the fields E+(z, t) and
E−(z, t) in Section 2.3 since the left end point of the slab is varied and thus the
physical set-up changed.

The representations in (2.22) and (2.23) lead to a very efficient way to calculate
the internal field, see [7]. However, calculations of the internal fields are not the



10

main topic of this paper and this matter is, therefore, not pursued here, since the
focus is on solving the inverse problem.

0 Lz
z

E+(0, t) E−(z, t) E+(z, t)

Figure 5: Wave splitting.

The following boundary conditions on the Green functions are easy to see by
letting z = 0 in (2.22) and (2.23), and comparing with (2.7).

G1(0, t) = 0

G2(0, t) = R+(0, t) = R+(t).

Following the same line of analysis as in Section 2.3, the dynamics, (2.6), and this
new relations between the fields E+(z, t) and E−(z, t), given by (2.22) and (2.23),
imply that the Green functions G1(z, t) and G2(z, t) satisfy a system of first order
linear differential equations. Lengthy, but straightforward, calculations show

∂zG1(z, t) +
1

c(z)
∂tG1(z, t) = − c′(z)

2c(z)
G2(z, t), (2.24)

∂zG2(z, t) −
1

c(z)
∂tG2(z, t) = − c′(z)

2c(z)
G1(z, t), (2.25)

with the boundary conditions

G1(z, �x(z)) = −1

8

∫ z

0

c′(z′)2

c(z′)
dz′ (2.26)

G2(z, �x(z)) =
1

4
c′(z). (2.27)

The numerical computations, just as in Section 2.3, become more easy if a nor-
malized travel time coordinate transformation is made.

x = x(z) =

∫ z

0

dz′

�c(z′)

s = t/�

G+(x, s) = �G1(z, t)

G−(x, s) = �G2(z, t).
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The system of first order linear differential equations then becomes

∂xG
+(x, s) + ∂sG

+(x, s) =
1

2
A(x)G−(x, s) (2.28)

∂xG
−(x, s) − ∂sG

−(x, s) =
1

2
A(x)G+(x, s), (2.29)

with the boundary conditions

G+(x, x) = −1

8

∫ x

0

A2(x′) dx′ (2.30)

G−(x, x) = −1

4
A(x), (2.31)

and where A(x) is defined as in (2.15).
For the numerical computations create a grid of points (xi, sj) in (x, s) space

similar to the one in Section 2.3. The discretized points are defined by xi = ih,
si+2j = (i + 2j)h, i = 0, 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i, where h = 1/N and N is
an integer. Denote

G+
i,j = G+(xi, si+2j)

G−
i,j = G−(xi, si+2j)

Ai = A(xi).

With the use of the trapezoidal rule in (2.28) and (2.29) the following algorithm is
easily found

G+
i,j =

{
G+

i−1,j +
h

4

{
AiG

−
i−1,j+1 + Ai−1G

−
i−1,j

}

+
h2

16
AiAi−1G

+
i−1,j+1

}{
1 − h2

16
A2

i

}−1

(2.32)

G−
i,j = G−

i−1,j+1 +
h

4

{
AiG

+
i,j + Ai−1G

+
i−1,j+1

}
, (2.33)

where i = 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i. The discretized boundary values of G+

and G− in (2.30) and (2.31) become

G+
i,0 = G+

i−1,0 −
h

16

{
A2

i + A2
i−1

}
(2.34)

G−
i,0 = −1

4
Ai, (2.35)

where i = 1, 2, . . . , N . The error made in (2.32), (2.33) and (2.34) is of order O(h3).
The values of Ai are determined by solving

Ai

{
1 + hG+

i−1,0 −
h2

16
A2

i−1 −
h2

16
A2

i

}
+ 4

{
G−

i−1,1 +
h

4
Ai−1G

+
i−1,1

}
= 0, (2.36)
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for Ai. This equation is obtained by letting j = 0 in (2.33) and then using (2.34)
and (2.35).

The input data in the numerical algorithm are the same as in Section 2.3, given
by (2.21), and the reconstruction proceeds in two steps. First a reconstruction of
A(x) and then a transformation to z(x) and ε(z(x)), where the latter step is identical
to the one in Section 2.3. To find A(x) initialize G+ and G−

G+
0,j = 0

G−
0,j = R(0, 2jh) = �R+(0, 2j�h) = �R+(2j�h),

where j = 0, 1, 2, . . . , N . The algorithm then proceeds similar to the one in
Section 2.3.

1. Solve (2.36) for Ai from data at grid line i − 1.

2. Use (2.32) and (2.33) to calculate G+
i,j and G−

i,j, j = 1, 2, . . . , N − i from old
and new data at grid lines i−1 and i, respectively. Notice that the right hand
side of (2.32) is now known from the previous step.

3. Repeat the previous steps to move one grid line deeper into the medium, until
the right edge of the slab, i = N , is reached.

This numerical algorithm based upon the Green functions approach is consider-
ably faster than the one presented in Section 2.3, which was based upon an invariant
imbedding procedure. This is simply due to the absence of time convolution inte-
grals in the Green functions approach. However, the invariant imbedding approach
provides a stronger mathematical tool for the theoretical analysis and it is therefore
motivated to present both methods here. It is also possible to compare the recon-
structions made with the two algorithms. No significant difference in the accuracy
of the reconstructions is, however, found for the class of profiles that is considered
in this paper.

3 General considerations

The reconstruction algorithms presented in Section 2 require that the impulse re-
sponse R+(t) of the medium is known for one round trip. However, this is an
idealized experimental situation where the incident field is a Dirac delta function.
The real incident pulse has always a finite width. The algorithm can be used if the
reflected wave form is deconvolved with the incident wave form, i.e. the reflection
kernel or impulse response R+(t) can be extracted from (2.3)

Er(t) =

∫ t

−∞
R+(t − t′)Ei(t′) dt′.

This deconvolution is also very efficient as a tool for removing certain errors
which will be discussed in Section 6 below, but as any tool it has limitations, which
restrict its use. It is sometimes stated that the deconvolution or some other suitable
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data processing can significantly improve the experimental results. This is generally
not true because the measured data contain noise. Thus, outside a limited frequency
band the quality of the data is too low to be processed. This is easily demonstrated
by the following experiment:

1. Measure the same signal twice and calculate the Discrete Fourier Transform
(DFT) of the two measurements, see Figure 6a for an example of a measure-
ment of the incident pulse and Figure 6b for its DFT.

2. Divide the Fourier transform of the first measurement with the Fourier trans-
form of the second. The result is showed in Figure 7.

0.2

0.1

0.0

1000x10-12 5000
time

Figure 6a: An example of a recording of the incident waveform.

15x10-12 

10

5

0

10x109 0
frequency

Figure 6b: The DFT of Figure 6a.
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1.00

20x109 151050
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Figure 7: The quotient of the two DFT waveforms.

The expected result is that this quotient is identical to one and this is indeed
the case at low frequencies. However, when the frequency approaches the upper
frequency limit of the system, the quotient of two small noisy quantities results in
violent oscillations. This effect can only be reduced by bandlimiting the measured
signal in the time or frequency domain or both. This filtering, if carefully done, can
somewhat extend the useful bandwidth. Additional information can be extracted
from the “out of band” part of the data if additional properties of the signal are
known by other means, i.e. a priori information. The more a priori knowledge
about the unknown sample, the more specific algorithms can be used and the better
results are expected. A good example to this is found in Section 6.6.

The main practical problem in deconvolution is to obtain a relevant incident field
or waveform. The pulse must be measured with the same system as used for the
actual measurement, i.e. for the reflected field or waveform. This can be obtained
by introducing a short in the sample cell at the position of the sample. However,
this requires frequently disassembling and assembling of the cell which wears and
tears the precision connectors.

4 Deconvolution

The kernel R+(t), which is required by the reconstruction algorithm, is computed
by a deconvolution in the frequency domain. There is also the possibility to perform
the deconvolution in the time domain. A recent contribution to the time domain
deconvolution utilizing the Singular Value Decomposition (SVD) is found in [10].
The time domain approach has not been pursued in the present paper.

The signal reflected from the sample is sampled in the time domain and trans-
formed to the frequency domain through a DFT. Assume that tk = T k

N
, k =

0, 1, 2, . . . , N − 1, is a partition of the time interval [0, T ] into N equidistant points.
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Then the DFT of fk = f(tk) is defined as

Fp =
N−1∑
k=0

fke
−iωptk =

N−1∑
k=0

fkW
pk, p = 0, 1, 2, . . . , N − 1, (4.1)

where ωp = 2πp
T

, p = 0, 1, 2, . . . , N − 1 and where

W = exp

{−i2π

N

}
.

This can be computed in an efficient way using any of the FFT algorithms that are
available. The inverse transform is

fk =
1

N

N−1∑
p=0

Fpe
iωptk , k = 0, 1, 2, . . . , N − 1.

The limitation of this approach is that the sample points zk = exp
{

i2πk
N

}
are

equally spaced around the unit circle in the complex z-plane, and ∆t∆f = T
N

1
T

=
1
N

. Thus, the resolution in the time domain and the number of sampling points
determine the resolution in frequency domain. This is often undesirable. In this
paper the limited resolution in frequency domain was unacceptable. This problem
can be solved by using “zero padding”, which means increasing the N with a number
of dummy zeros, but the computing time will then increase drastically. A more
efficient way to remedy this problem, and to be free from the limitations inherent in
the ordinary DFT, is to adopt another algorithm to generate the sampled amplitudes
in the frequency domain - the Chirp z-Transform (CZT), see Ref. [9]. The CZT
transform has the advantage that it is possible to choose the number of time-samples
different from the number of frequency-samples and it is possible to calculate the
frequency-samples only in the frequency interval of interest. The reference signal is
also transformed to the frequency domain using the CZT transform.

The CZT algorithm is based on the identity pk = 1
2
(p2 + k2 − (k − p)(k − p)).

The DFT defined in (4.1) is then

Fp = W
p2

2

N−1∑
k=0

gkW
− (k−p)2

2 , p = 0, 1, 2, . . . ,M − 1,

where gk = fkW
k2

2 , k = 0, 1, 2, . . . , N−1. This can be viewed as a three-step process
consisting of two multiplications and one convolution, which can be performed using
FFT. The most important feature of this approach compared to the standard FFT
is that the number of time samples need not be equal to the number of frequency
samples, i.e. the spacing and the starting point of the argument of Fp are arbitrary,
see Ref. [9].

Before the CZT transformation, same windowing is sometimes necessary. De-
pending on the shape of the signals the window function is chosen so that a good
compromise between frequency resolution and amplitude accuracy is obtained. No
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weighting function is ideal. The bandwidth, ripple, sidelobe level, sidelobe fall-off
rate, shape factor can be optimized but not all with the same window. The Kaiser-
Bessel weighting function, defined as

w(t) = 1 − 1.24 cos
2πt

T
+ 0.244 cos

4πt

T
− 0.00305 cos

6πt

T
, (4.2)

is superior to the other filters with respect to selectivity. This makes it excellent for
separation of closely spaced components with widely different levels.

A formal inverse DFT of the quotient of the DFT of the reflected and the incident
waveforms, respectively, is not possible because of noise at the higher frequencies
(above 12 GHz). The deconvolution problem is an ill-posed problem and filtering is
necessary to yield a stable and physically consistent result. A regularization filter is
used here to stabilize these ill-posedness effects. The reflection kernel R̂+(ω) in the
frequency domain then has the form

R̂+(ω) =
Y (ω)X(ω)∗

|X(ω)|2 + λC(ω)
,

where Y (ω) and X(ω) are the Fourier transformed reflected and incident waveforms,
respectively, and where star (∗) denotes the complex conjugate. The function C(ω)
is chosen as C(ω) = ω4, see also Ref. [8] for more details about this choice. To
determine the optimum value of the parameter λ the procedure described above is
used. Two recordings of the same signal are measured and deconvolved using one
of them as a reference. The constant λ is then adjusted so that a smooth transition
from one to zero at the high frequency end of the spectrum is obtained. A Kaiser-
Bessel window, see (4.2), is used on the kernel before it is transformed into the time
domain. The transformation to the time domain is made by using an inverse CZT
transform. It has the advantage that the number of time points, the beginning of the
time trace, and the length of the time trace for the kernel can be varied arbitrarily.

The deconvolution procedure is illustrated below in Section 7.

5 Experimental set-up

The measurement system can be described as a pulsed radar. A short pulse is
generated and sent towards the sample to be investigated. The reflected waveform
is recorded and using the algorithms described in Section 2.3 or 2.4 the permittivity
profile of the sample is reconstructed.

The set-up is similar to a Time Domain Reflectometer (TDR). However, a short
duration pulse is used as excitation instead of a step. A traditional TDR uses a
through-line sampler. This gives the best possible signal-to-noise ratio (SNR) and
the largest bandwidth. In our application a terminated sampler and a power divider
is used because the amplitude errors due to multiple reflections are reduced by
attenuations in the divider. The loss of resolution and dynamic range due to losses
in the divider are insignificant. Because the algorithms used are developed for a
one-dimensional case, the system is build using coaxial components. Other TEM
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transmission lines, such as striplines, have the advantage of being open structures
which makes it easier to insert and remove samples in the sample cell. Flat samples
are, however, more difficult to machine than cylindrical ones. A section of a coaxial
air line was used as a sample cell. The longest air line available is only 200mm long
which requires short samples and, consequently, pulses with very short rise time
have to be used in order to obtain adequate relative resolution.

    PSPL 3050 A
        PULSE
   GENERATOR

 PSPL 5330
   POWER
   DIVIDER

 S 53 TRIGGER /
  RECOGNIZER

  S6 SAMPLING
        HEAD

             TEK 7S12 TDR / SAMPLER

               TEK 7854 OSCILLOSCOPE

10 dB PAD

         10 dB
           PAD

  HP VECTRA DESKTOP COMPUTER

      HP 9000 /800 MINICOMPUTER

200 mm DELAY LINE

50 mm
DELAY
LINE

SMA /
APC7

200 mm
AIR LINE
HP 11567A
(SAMPLE
 HOLDER)

50 OHM
TERMINATION

Figure 8: The experimental set-up.

The two main components of the system are the pulse generator (Picosecond
Pulse Labs Model 3050A) and the sampling oscilloscope (Tektronix TDR/Sampler
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7S12 with a S-6 head installed in a 7854 frame). The specifications of these compo-
nents are summarized in Table 2 and 3, respectively, and an outline of the experi-
mental set-up is given in Figure 8. The signal from the generator is connected to
the sample cell and to the oscilloscope through a power divider optimized for broad-
band pulses. The generator is also a source of trigger pulses. The reflection from
the sample is continuously monitored and can be sampled, averaged, and stored
under the control of a desktop computer. Data are then transferred to a mainframe
computer for processing. Immediately after recording of the reflection data from an
unknown sample a short is placed in its place and a new recording is made. This
waveform is an inverted copy of the incident waveform (including all imperfections
of the measurement system) and is used as a reference for deconvolution.

Specifications
Pulse width (FWHM, 50%) 60ps
Pulse width (10%) 115ps
Rise & Falltime (10%-90%) 45ps
Amplitude 4V
Residual ringing ±3%
Precursor ±1%
VSWR 3:1
Jitter ±2.5ps
Repetition rate 1MHz
Trigger risetime 0.5ns

Table 2: Specifications of the pulse generator PSPL Model 3050A.

Specifications
Risetime 30ps
Displayed noise 5mV
Jitter 10ps
Maximum input voltage 1V p-p
Input resistance 10kOhm
Deflection factor accuracy 3%
Time/Div accuracy 3%

Table 3: Specifications of the Tektronix TDR/Sampler 7S12 with S-6 head
installed in a 7854 frame.

6 Analysis of errors

In this section a detailed analysis of the errors of the experimental set-up is presented.
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6.1 Signal quality

The most important parameter of the signal source is the rise time of the pulse, be-
cause it determines the resolution of the system. The generator is one of the fastest
that is available commercially. Moreover, it has two important characteristics: rel-
atively large output voltage, which gives a good SNR of the system, and very little
residual ringing. This last property is essential, because low level perturbations on
the baseline, which can only partially be removed from the recorded data, will se-
riously degrade the performance of the system. The generator also gives clean and
stable trigger pulses which reduces the system jitter.

6.2 Cable loss

As the pulse travels down the line it is attenuated by dielectric losses and finite
losses in the conductors. The losses are frequency dependent and high frequencies
are generally more attenuated. This degrades the risetime of the pulse and limits the
distance resolution. To avoid this problem the cables are kept as short as possible.
However, certain lengths are necessary to avoid multiple reflections and to create a
clean portion of the base line.

6.3 Internal reflection

The discontinuities present in the pulse source, connectors and other parts of the
system will degrade the performance. Consider a transmission line with two disconti-
nuities on it. If the first one has a reflection coefficient of 0.1, the error in determining
the reflection coefficient of the other will be 6%. The connectors (APC7 and SMA)
contribute very little to this error when they are new. However, after a few month
of use, even if handled with care, reflections became noticeable. This effect can be
reduced using deconvolution.

6.4 Oscilloscopes

The fastest available oscilloscopes have a rise time of the order of 300 ps. For analysis
of faster signals the sampling technique must be used. The obvious drawback of this
approach is that only repetitive waveforms can be captured. The main problem is
that the design of the sampling bridge makes it difficult to determine the baseline
level.

6.5 Input impedance error

The input of the oscilloscope has an impedance of 50 Ohms. For Tek S-6 terminated
by a HP load, the VSWR is <1.05 which corresponds to a variation in resistance of
47.6 to 52.5 Ohms. When connected to a 50 Ohms source, the measured voltage can
differ by 2.5% from the correct value. The attenuators, which generally have lower
performance, contribute to this error. However, if, as in our measurements, all data
are measured using the same system layout and the same sensitivity settings, this
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effect is not noticeable. The discontinuities cause reflections back into the source. If
the source is not matched, these reflections will be re-reflected and will distort the
measured waveform. This can be avoided by using a suitable time window.

6.6 Baseline error

Due to the design of the sampling head, it is difficult to determine the exact position
of the baseline. The reconstruction algorithm assumes that this position is at zero
level. If this is not the case, the error is integrated and an erroneous slope in the
reconstructed permittivity profile is introduced. Remember, that without any a
priori knowledge, the reconstruction algorithms in Section 2.3 or 2.4, will always
generate a permittivity profile that corresponds to the given reflection kernel. It is
possible to eliminate this problem by an offset of the recorded data and a repetition of
the calculation until the relative permittivity outside the sample is 1. This procedure
requires that the approximate length of the sample is known, which is the case in
our tests, but not in general. This corresponds to the a priori knowledge introduced
into the inverse scattering problem. This baseline error, if not corrected, can easily
create a 20% error in the reconstructed permittivity profile. If more information
is available (i.e. that the sample has constant or piecewise constant permittivity),
additional degrees of correction can be introduced. Figure 9 a and b clearly illustrate
this effect.
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Figure 9 a: Error created by 2 % baseline offset.
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Figure 9 b: Corrected baseline error.

6.7 SNR of an A/D converter

A 10 bits converter in the TEK oscilloscope gives a SNR = 62 dB, which is more
then enough compared to the SNR of the signal.

6.8 Amplitude linearity

All the measurements are made at the same sensitivity setting. Consequently, the
absolute value of the amplitude error has no importance. The vertical linearity is
investigated by measuring a number of identical waveforms which are offset by dif-
ferent amounts. This offset is then compensated by adding a constant to the stored
waveform. No significant differences are detected when the processed waveforms are
compared, as long as the input is kept under 250 mV.

6.9 Jitter and noise

Jitter is the random time uncertainty of a waveform point relative to a reference
point. In a TDR application jitter is particularly critical because the information
is extracted from time relations. The amount of jitter depends on the slope of the
trig signal and the amount of noise in it. During the sampling of a signal with a
slope different from zero, values randomly distributed around the signal value are
recorded. This makes jitter difficult to distinguish from amplitude noise. However,
the amount of noise due to jitter is largest at the large slope portions of the signal
as opposed to the amplitude noise.
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Jitter always limits the bandwidth of the system because the distribution of the
noise around the signal is not symmetric. The mean value at points where the signal
has negative second derivative is below the signal and where the second derivative is
positive the mean value is above the signal. After averaging the original waveform
will be reconstructed only for segments with constant slope. All other parts of the
signal will be smoothed which results in loss of resolution. The distortion caused
by this effect cannot be determined exactly because the probability distribution of
the error depends on the waveform and is therefore unknown. It can be estimated,
however, by measuring the noise at the most vertical part of the signal. Both kinds
of noise can be removed from the signal by measuring it several times and then aver-
aging. Generally, the larger the number of recordings averaged, the better the signal
quality becomes. However, the process takes time and if the number of recordings
is growing one must take into account the long-time drift of the oscilloscope. For
the set-up reported in this paper, 100 times is about optimum.

6.10 Sweep errors

Sweep errors consist of the absolute error and the linearity error. Both can be
calibrated by using a stable sinewave and using the zero crossing points as time
markers. The frequency of the wave must be high in order to obtain a large number of
calibration points. Unfortunately, due to the design of the TEK oscilloscopes trigger
circuit, the highest possible frequency is about 900 MHz which is not sufficient.
This problem is solved by using a chain of frequency multipliers connected to a very
stable 500 MHz source which is also used as a trigger. Alternatively, a high Q-value
resonator is used, triggered by short pulses with repetition frequency of 1 MHz.

6.11 Bandwidth

Many kind of errors can be normalized or filtered out. The price for these improve-
ments in signal quality is generally a loss of effective bandwidth. Thus, one should
try to start with as large bandwidth as possible even when the required resolution
does not motivate this. In this set-up all the components were specified for opera-
tion to at least 18 GHz. The resulting bandwidth of the system is 12 GHz. This
corresponds to a resolution of about 7 mm for permittivity values in the range 2-4
where the measurements are made. A 20 mm long sample with constant permittivity
showed a clean flat portion of permittivity in the middle of the profile.

6.12 Residual ringing

The ringing, which mainly originates from the generator, can be divided into two
parts. Some ringing is created in the step generating parts, and cannot be affected,
and some is created in the following, pulse shaping components, and can be delayed
with respect to the main pulse, see Figure 10. This makes it possible to create a
”quiet zone” where the first ringing has died out and the second has not arrived yet.
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The sample should be placed in this zone. This zone limits the maximum length of
the sample to about 90mm.

0.3
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0.0

5x10-9 43210
time

Figure 10: Residual ringing of the incident waveform.

7 Results

The general scheme for processing the recorded data is illustrated in Figures 11 a–
11 j. These figures show the step by step procedure to obtain the inversion of the
permittivity profile. The recorded incident and reflected waveforms, Figures 11 a
and b, are first transformed into the frequency plane, Figures 11 c and d, using the
transformation described in Section 4. Figures 11 e and f show the deconvolved
reflection kernel in the frequency domain with different normalizations. The time
domain behavior of the kernel from Figure 11 e is showed in Figures 11 g. Finally, in
Figures 11 i and j the reconstructions corresponding to Figures 11 g and h, respec-
tively, are showed illustrating the trade off between the resolution and amplitude
accuracy when different windows are used.



24

0.2

0.1

0.0

1000x10-12 8006004002000
time

Figure 11 a: The incident waveform.
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Figure 11 b: The reflected waveform.
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Figure 11 c: The DFT of the incident waveform.
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Figure 11 d: The DFT of the reflected waveform.
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Figure 11 e: Deconvolved reflected waveform with optimum normalization.
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Figure 11 f : Same as Figure 11 e, but with insufficient normalization.
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Figure 11 g: Deconvolved reflected waveform with optimum windowing.
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Figure 11 h: As Figure 11 g, but with rectangular windowing.
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Figure 11 i: Permittivity profile reconstruction from waveform in Figure 11 g.
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Figure 11 j: Permittivity profile reconstruction from waveform in Figure 11 h.

Two additional sets of figures illustrate the reconstruction of permittivity profiles
which are inhomogeneous, see Figures 12–13 and 15–16. The original samples are
depicted in Figures 14 and 17. In both the cases the samples are turned round and
new measurements with these reflected profiles are made for comparison. The two
reconstructions should be mirror images of each other. From these comparisons it
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is possible to conclude that the accuracy decreases slightly when the length of the
sample increases. This is due to the losses. If the losses are a priori known, then
these losses can be compensated for. No such compensation is made here.

The resolution of the measurement system is also clearly shown. A comparison of
the length of the samples (measures with a sliding calliper) with the length obtained
from the reconstructions of the permittivity profiles shows an error of 2%. This is
indeed a very sensitive test because the length of the medium is calculated from the
reconstructed permittivity.

The last set of reconstructions, see Figures 15–17, also illustrates the resolution of
the system in a different way. (The reconstruction depicted in Figure 15 has already
been given in Figure 11 i, but it is repeated here to facilitate the comparison.)
Between the two dielectric samples (of different lengths, but the same permittivity)
there is an air-gap. The length of this air-gap can be varied. The smallest possible
air-gap that still gives a fair reconstruction of the vacuum value of the permittivity
is a measure of the resolution of the system. This is illustrated in Figures 15–16.
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Figure 12: Reconstruction of a composite sample.
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Figure 13: Reconstruction of a composite sample.
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Figure 14: The original sample of Figure 13.
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Figure 15: Reconstruction of a composite sample.
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Figure 16: Reconstruction of a composite sample.
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Figure 17: The original sample of Figure 16.
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Appendix A Computer programs

DEBUGGED USING
DDT

C PROGRAM DECONV

C

C

IMPLICIT NONE

C

INTEGER NMAX

INTEGER IMAX

PARAMETER (NMAX=8192,IMAX=400)

C

REAL W(1:NMAX),TR(1:NMAX),TI(1:NMAX)

REAL AMP(1:NMAX),DB(1:NMAX)

REAL FYR(1:NMAX),FYI(1:NMAX)

REAL FR(1:NMAX),FI(1:NMAX),T_INC,TZ

REAL F_INC,T_INC1,T_INC2,T_ZERO,F_ZERO,LAMBDA

REAL F_CUTOFF

REAL T_FRONT,T_REAR,DATA(1:NMAX),E(0:IMAX)

INTEGER L,L2,NF,NR,KR,KI,KRF,KIF

INTEGER N,N2,M,MM,I,NT

INTEGER ITER,K,KK,KKK

INTEGER SYM,XWIN,YWIN,FWIN,N_HAN

INTEGER BA_K,BA_P,BA_R

INTEGER K_STEP,K_ZERO,P_STEP,P_ZERO

CHARACTER*2 FPR,IDX,IDY

CHARACTER*4 ID

C

COMMON /INTID/ N_HAN

C

CALL SCREENCLEAR

C

N_HAN=25

C

C Indata

C

1000 FORMAT(2A)

2000 FORMAT(4A)

3000 FORMAT(I4)

4000 FORMAT(I3)

WRITE(6,*) ’ ’

WRITE(6,*) ’ <><><> PROGRAM DECONVOLUTION <><><>’

WRITE(6,*) ’ <><><> SUPER-RESOLUTION <><><>’
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WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter ID of the kernel.’

READ(5,1000) IDY

WRITE(6,*) ’ ’

WRITE(6,*) ’ KERNEL WINDOW. Choose 0 or 7! ’

WRITE(6,*) ’ ’

CALL MENUE

READ(5,3000) YWIN

WRITE(6,*) ’ ’

WRITE(6,*) ’ Baseline adjustment on kernel data? Y=1, N=0’

READ(5,3000) BA_K

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter size of zero padding on kernel data.’

READ(5,3000) K_ZERO

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter change in sampling rate. 0,1,2,...?’

READ(5,3000) K_STEP

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter ID of the input pulse.’

READ(5,1000) IDX

WRITE(6,*) ’ ’

WRITE(6,*) ’ PULSE WINDOW. Choose 0 or 7! ’

WRITE(6,*) ’ ’

CALL MENUE

READ(5,3000) XWIN

WRITE(6,*) ’ ’

WRITE(6,*) ’ Baseline adjustment on pulse data? Y=1, N=0’

READ(5,3000) BA_P

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter size of zero padding on pulse data.’

READ(5,3000) P_ZERO

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter change in sampling rate. 0,1,2,...?’

READ(5,3000) P_STEP

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter filter parameter lambda. Try 5e-33.’

READ(5,*) LAMBDA

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter time zero in ps. Try -200 ps.’

READ(5,*) T_ZERO

T_ZERO=T_ZERO*1E-12

WRITE(6,*) ’ ’

WRITE(6,*) ’ FREQUENCY WINDOW’

WRITE(6,*) ’ ’

CALL MENUE
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READ(5,3000) FWIN

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter cutoff frequency in GHz. Try 16 GHZ.’

READ(5,*) F_CUTOFF

F_CUTOFF=F_CUTOFF*1E9

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter number of frequency points M.’

READ(5,3000) M

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter time increment for output kernel in ps. ’

READ(5,*) T_INC

T_INC=T_INC*1E-12

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter number of time points.’

READ(5,3000) NT

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter time zero for output kernel in ps.’

READ(5,*) TZ

TZ=TZ*1E-12

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter number of iterations. 0,1,2,...’

READ(5,3000) ITER

WRITE(6,*) ’ ’

C

C End indata

C

F_INC=F_CUTOFF/FLOAT(M-1)

T_FRONT=0.0

T_REAR=0.0

NF=0

NR=0

C

IF (ITER.GT.1) THEN

CALL CHOOSE_L(NT,L2)

L=NT

L2=L*2

F_INC=1.0/(T_INC*FLOAT(L))

M=INT(F_CUTOFF/F_INC)

IF (L.LT.(2*M)) THEN

WRITE(6,*) ’ L too small! L= ’,L,’ M= ’,M

WRITE(6,*) ’ ’

CALL EXIT

END IF

WRITE(6,*) ’Enter object front time in ps.’

READ(5,*) T_FRONT
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T_FRONT=T_FRONT*1E-12

WRITE(6,*) ’ ’

WRITE(6,*) ’Enter object rear time in ps.’

READ(5,*) T_REAR

T_REAR=T_REAR*1E-12

WRITE(6,*) ’ ’

NF=INT(T_FRONT/T_INC)+1

NR=INT(T_REAR/T_INC)+2

DO K=1,L2

DATA(K)=0.0

END DO

END IF

C

FPR=’hi’

ID=IDY//IDX

CALL OOUTFN(FPR,ID,9)

C

ID=IDY//IDX

WRITE(9,*) ’ HISTORY FILE for tk’,ID

WRITE(9,*) ’ ’

WRITE(9,*) ’ PROGRAM DECONV.’

WRITE(9,*) ’ ’

WRITE(9,*) ’N_HAN=’,N_HAN,’ PARAMETER=’,NMAX

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

ID=IDY//’00’

WRITE(9,*) ’KERNEL tk’,ID

WRITE(9,*) ’ ’

WRITE(9,*) ’KERNEL WINDOW =’,YWIN

WRITE(9,*) ’Baseline adjustment =’,BA_K,’ (Y=1,N=0)’

WRITE(9,*) ’Size of zero padding =’,K_ZERO

WRITE(9,*) ’Change in sampling rate =’,K_STEP

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

WRITE(9,*) ’PULSE tx’,IDX

WRITE(9,*) ’ ’

WRITE(9,*) ’PULSE WINDOW =’,XWIN

WRITE(9,*) ’Baseline adjustment =’,BA_P,’ (Y=1,N=0)’

WRITE(9,*) ’Size of zero padding =’,P_ZERO

WRITE(9,*) ’Change in sampling rate =’,P_STEP

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

WRITE(9,*) ’DECONVOLUTION PARAMETER’

WRITE(9,*) ’ ’

WRITE(9,*) ’Filter parameter lambda =’,LAMBDA
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WRITE(9,*) ’Pulse time zero in ps =’,T_ZERO*1E12

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

WRITE(9,*) ’OUTPUT KERNEL PARAMETER’

WRITE(9,*) ’ ’

WRITE(9,*) ’Kernel time zero in ps =’,TZ*1E12

WRITE(9,*) ’Time increment in ps =’,T_INC*1E12

WRITE(9,*) ’Number of time points =’,NT

WRITE(9,*) ’Time trace in ps =’,NT*T_INC*1E12

WRITE(9,*) ’ ’

C

IF (ITER.GT.1) THEN

WRITE(9,*) ’Front object time in ps =’,T_FRONT*1E12

WRITE(9,*) ’Rear object time in ps =’,T_REAR*1E12

WRITE(9,*) ’NF =’,NF,’ NR =’,NR

WRITE(9,*) ’Object size in ps =’,

+(NR-NF)*T_INC*1E12

WRITE(9,*) ’New freq. cutoff in GHz =’,

+L/2*F_INC*1E-9

END IF

C

WRITE(9,*) ’FREQUENCY WINDOW =’,FWIN

WRITE(9,*) ’Cutoff Frequency in GHz =’,F_CUTOFF*1E-9

WRITE(9,*) ’Number of freq. points (M) =’,M

WRITE(9,*) ’Frequency increment in MHz =’,F_INC*1E-6

WRITE(9,*) ’Number of iterations =’,ITER

WRITE(9,*) ’ ’

C

C KERNEL

C

CALL SCREENCLEAR

C

WRITE(6,*) ’ Running KERNEL ......’

WRITE(6,*) ’ ’

FPR=’tk’

ID=IDY//’00’

CALL READ_FILE(W,N2,FPR,ID)

CALL SORT(TR,TI,T_INC1,W,N2)

N=N2/2

IF (BA_K.EQ.1) CALL BASELINE(TR,N)

IF (K_STEP.NE.0) CALL S_RATE(TR,TI,N,T_INC1,K_STEP)

IF (K_ZERO.NE.0) CALL ZERO_PAD(TR,TI,N,K_ZERO)

SYM=0

CALL WINDOW(TR,TI,N,YWIN,SYM)

C
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CALL CZT(TR,TI,N,M,0.0,T_INC1,0.0,F_INC,-1)

C

DO K=1,M

FYR(K)=TR(K)

FYI(K)=TI(K)

END DO

CALL AMP_DB(FYR,FYI,AMP,DB,M)

FPR=’fk’

CALL WRITE5_FILE(F_INC,AMP,DB,FYR,FYI,M,FPR,ID)

C

C End KERNEL

C

C PULSE

C

WRITE(6,*) ’ Running PULSE ......’

WRITE(6,*) ’ ’

FPR=’tx’

ID=IDX

CALL READ_FILE(W,N2,FPR,ID)

CALL SORT(TR,TI,T_INC2,W,N2)

N=N2/2

IF (BA_P.EQ.1) CALL BASELINE(TR,N)

IF (P_STEP.NE.0) CALL S_RATE(TR,TI,N,T_INC2,P_STEP)

IF (P_ZERO.NE.0) CALL ZERO_PAD(TR,TI,N,P_ZERO)

SYM=0

CALL WINDOW(TR,TI,N,XWIN,SYM)

C

CALL CZT(TR,TI,N,M,T_ZERO,T_INC2,0.0,F_INC,-1)

C

CALL AMP_DB(TR,TI,AMP,DB,M)

FPR=’fx’

CALL WRITE5_FILE(F_INC,AMP,DB,TR,TI,M,FPR,ID)

C

C End PULSE

C

WRITE(6,*) ’ Running DECON ......’

WRITE(6,*) ’ ’

CALL DECON(TR,TI,FYR,FYI,M,FR,FI,LAMBDA)

CALL AMP_DB(FR,FI,AMP,DB,M)

FPR=’fr’

ID=IDY//IDX

CALL WRITE5_FILE(F_INC,AMP,DB,FR,FI,M,FPR,ID)

C

IF (ITER.GT.1) GOTO 200

C
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WRITE(6,*) ’M= ’,M,’ F_CUTOFF in GHZ =’,F_CUTOFF*1E-9

WRITE(6,*) ’ ’

WRITE(6,*) ’ Enter new value on M, less than previous one.’

READ(5,3000) M

F_CUTOFF=(M-1)*F_INC

WRITE(9,*) ’New value on M, less than previous one =’,M

WRITE(9,*) ’New frequency cutoff in GHZ =’,

+F_CUTOFF*1E-9

WRITE(6,*) ’ ’

WRITE(6,*) ’New frequency cutoff in GHZ =’,F_CUTOFF*1E-9

WRITE(9,*) ’ ’

WRITE(6,*) ’ ’

C

WRITE(6,*) ’ Running ICZT ......’

WRITE(6,*) ’ ’

C

K=1

KK=M

DO KKK=1,M-1

TR(K)=FR(KK)

TI(K)=-FI(KK)

K=K+1

KK=KK-1

END DO

TR(M)=FR(1)

TI(M)=0.0

K=M+1

KK=2

DO KKK=1,M-2

TR(K)=FR(KK)

TI(K)=FI(KK)

K=K+1

KK=KK+1

END DO

C

F_ZERO=-F_CUTOFF

MM=2*M-2

SYM=0

CALL WINDOW(TR,TI,MM,FWIN,SYM)

C

CALL CZT(TR,TI,MM,NT,TZ,T_INC,F_ZERO,F_INC,1)

C

FPR=’tk’

CALL AMP_DB(TR,TI,AMP,DB,NT)

CALL WRITE5_FILE(T_INC,TR,TI,AMP,DB,NT,FPR,ID)
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C

GOTO 999

C

200 CONTINUE

C

WRITE(6,*) ’ Running ITER ’,ITER,’ times ......’

WRITE(6,*) ’ ’

C

E(0)=0.0

DATA(1)=FR(1)

DATA(2)=FI(1)

KR=3

KI=4

KRF=L2-1

KIF=L2

DO K=2,M

DATA(KR)=FR(K)

DATA(KI)=FI(K)

DATA(KRF)=FR(K)

DATA(KIF)=-FI(K)

KR=KR+2

KI=KI+2

KRF=KRF-2

KIF=KIF-2

END DO

C

DO I=1,ITER

C

WRITE(6,*) ’ITER=’,I

C

CALL FOUR1(DATA,L,1)

C

DO K=1,L2

DATA(K)=DATA(K)*F_INC

END DO

C

E(I)=0.0

DO K=1,2*NF-2

E(I)=E(I)+DATA(K)*DATA(K)

END DO

DO K=2*NR+1,L2

E(I)=E(I)+DATA(K)*DATA(K)

END DO

C

IF (I.EQ.ITER) GOTO 300
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C

DO K=1,2*NF-2

DATA(K)=0.0

END DO

DO K=2*NR+1,L2

DATA(K)=0.0

END DO

C

C DO K=2*NF,2*NR,2

C DATA(K)=0.0

C END DO

C

CALL FOUR1(DATA,L,-1)

C

DO K=1,L2

DATA(K)=DATA(K)*T_INC

END DO

C

DATA(1)=FR(1)

DATA(2)=FI(1)

KR=3

KI=4

KRF=L2-1

KIF=L2

DO K=2,M

DATA(KR)=FR(K)

DATA(KI)=FI(K)

DATA(KRF)=FR(K)

DATA(KIF)=-FI(K)

KR=KR+2

KI=KI+2

KRF=KRF-2

KIF=KIF-2

END DO

C

IF (I.EQ.(ITER-1)) THEN

KR=1

KI=2

MM=L/2+1

DO K=1,L

FR(K)=DATA(KR)

FI(K)=DATA(KI)

KR=KR+2

KI=KI+2

END DO
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KK=MM

DO K=1,L/2

TR(K)=FR(KK)

TI(K)=FI(KK)

KK=KK+1

END DO

KK=MM

DO K=1,L/2

TR(KK)=FR(K)

TI(KK)=FI(K)

KK=KK+1

END DO

SYM=0

FPR=’fi’

ID=IDY//IDX

CALL AMP_DB(FR,FI,AMP,DB,MM)

CALL WRITE5_FILE(F_INC,AMP,DB,FR,FI,MM,FPR,ID)

CALL WINDOW(TR,TI,L,FWIN,SYM)

KR=1

KI=2

DO K=L/2+1,L

DATA(KR)=TR(K)

DATA(KI)=TI(K)

KR=KR+2

KI=KI+2

END DO

DO K=1,L/2

DATA(KR)=TR(K)

DATA(KI)=TI(K)

KR=KR+2

KI=KI+2

END DO

FPR=’fu’

ID=’0000’

CALL WRITE3_FILE(F_INC,DATA,L,FPR,ID)

END IF

C

END DO

C

300 CONTINUE

FPR=’tk’

ID=IDY//IDX

CALL WRITE3_FILE(T_INC,DATA,L2,FPR,ID)

FPR=’en’
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T_INC1=1.0

K=ITER+1

CALL WRITE2_FILE(T_INC1,E,K,FPR,ID)

C

999 CONTINUE

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

WRITE(9,*) ’ ’

WRITE(9,*) ’ File used in this program. File created in’,

+’ this program’

WRITE(9,*) ’ ’

WRITE(9,*) ’ tk’,IDY//’00’,’ hi’,

+IDY//IDX

WRITE(9,*) ’ tx’,IDX,’ fk’,

+IDY//’00’

WRITE(9,*) ’ fx’,IDX

WRITE(9,*) ’ fr’,

+IDY//IDX

WRITE(9,*) ’ tk’,

+IDY//IDX

WRITE(9,*) ’ en’,

+IDY//IDX

CLOSE(9)

WRITE(6,*) ’ ’

WRITE(6,*) ’ READY! Read file hi’,ID

WRITE(6,*) ’ ’

C

END
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SUBROUTINE FOUR1(DATA,NN,ISIGN)

C

C

C NN MUST be an integer power of 2 (this is not checked for!).

C

C***********************************************

C

C Replaces DATA by its discrete Fourier transform, if ISIGN

C is input as 1; or replaces DATA by NN times its inverse

C discrete Fourier transform, if ISIGN is input as -1.

C DATA is a complex array of length NN or, equivalently, a

C real array of length 2*NN.

C

C************************************************

C

C

REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

DIMENSION DATA(2*NN)

N=2*NN

J=1

DO I=1,N,2

IF (J.GT.I) THEN

TEMPR=DATA(J)

TEMPI=DATA(J+1)

DATA(J)=DATA(I)

DATA(J+1)=DATA(I+1)

DATA(I)=TEMPR

DATA(I+1)=TEMPI

END IF

M=N/2

1 IF ((M.GE.2).AND.(J.GT.M)) THEN

J=J-M

M=M/2

GOTO 1

END IF

J=J+M

END DO

MMAX=2

2 IF (N.GT.MMAX) THEN

ISTEP=2*MMAX

THETA=6.28318530717959D0/(ISIGN*MMAX)

WPR=-2.D0*DSIN(0.5D0*THETA)**2

WPI=DSIN(THETA)

WR=1.D0

WI=0.D0
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DO M=1,MMAX,2

DO I=M,N,ISTEP

J=I+MMAX

TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1)

TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)

DATA(J)=DATA(I)-TEMPR

DATA(J+1)=DATA(I+1)-TEMPI

DATA(I)=DATA(I)+TEMPR

DATA(I+1)=DATA(I+1)+TEMPI

END DO

WTEMP=WR

WR=WR*WPR-WI*WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

END DO

MMAX=ISTEP

GOTO 2

END IF

RETURN

END
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SUBROUTINE MENUE

C

COMMON /INTID/ N_HAN

INTEGER N_HAN

C

WRITE(6,*) ’ WINDOW MENUE’

WRITE(6,*) ’ ’

WRITE(6,*) ’ ’

WRITE(6,*) ’ 0 RECTANGULAR WEIGHTING’

WRITE(6,*) ’ 1 HANNING/TUKEY WEIGHTING’

WRITE(6,*) ’ 2 HAMMING WEIGHTING’

WRITE(6,*) ’ 3 BLACKMAN WEIGHTING’

WRITE(6,*) ’ 4 KAISER-BESSEL WEIGHTING’

WRITE(6,*) ’ 5 BLACKMAN-HARRIS WEIGHTING’

WRITE(6,*) ’ 6 FLAT TOP WEIGHTING’

WRITE(6,*) ’ 7 ’,N_HAN,’ points leading and trailing

+HANNING’

WRITE(6,*) ’ ’

WRITE(6,*) ’ YOUR CHOICE ? ’

WRITE(6,*) ’ ’

RETURN

END
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SUBROUTINE WINDOW(XREAL,XIMAG,N,W,SYM)

C

IMPLICIT NONE

C

REAL XREAL(0:*),XIMAG(0:*),WEIGHT

REAL PI,PI2,AR,ARG,ARG2,ARG3,ARG4

REAL A0,A1,A2,A3,A4

INTEGER N,N_HAN,W,SYM,I

COMMON /INTID/ N_HAN

C

PI=4.0*ATAN(1.0)

PI2=8.0*ATAN(1.0)

A0=0.0

A1=0.0

A2=0.0

A3=0.0

A4=0.0

C

IF (W.EQ.0) THEN

WRITE(6,*) ’ RECTANGULAR WEIGHTING’

WRITE(6,*) ’ ’

RETURN

ELSEIF (W.EQ.1) THEN

WRITE(6,*) ’ HANNING/TUKEY WEIGHTING’

WRITE(6,*) ’ ’

A0=0.5

A1=0.5

ELSEIF (W.EQ.2) THEN

WRITE(6,*) ’ HAMMING WEIGHTING’

WRITE(6,*) ’ ’

A0=0.54

A1=0.46

ELSEIF (W.EQ.3) THEN

WRITE(6,*) ’ BLACKMAN WEIGHTING’

WRITE(6,*) ’ ’

A0=0.42

A1=0.5

A2=0.08

ELSEIF (W.EQ.4) THEN

WRITE(6,*) ’ KAISER-BESSEL WEIGHTING’

WRITE(6,*) ’ ’

A0=0.402083

A1=0.498583

A2=0.098108

A3=0.001226
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ELSEIF (W.EQ.5) THEN

WRITE(6,*) ’ BLACKMAN-HARRIS’

WRITE(6,*) ’ ’

A0=0.35875

A1=0.48829

A2=0.14128

A3=0.01168

ELSEIF (W.EQ.6) THEN

WRITE(6,*) ’ FLAT TOP WEIGHTING’

WRITE(6,*) ’ ’

A0=0.215508

A1=0.415930

A2=0.278005

A3=0.083617

A4=0.006939

ELSEIF (W.EQ.7) THEN

WRITE(6,*) N_HAN, ’ points leading and trailing HANNING’

WRITE(6,*) ’ ’

GOTO 20

ELSE

WRITE(6,*) ’No such window. W= ’,W

WRITE(6,*) ’ ’

CALL EXIT

ENDIF

C

IF (SYM.EQ.0) THEN

ARG=PI2/FLOAT(N)

ARG2=2.0*ARG

ARG3=3.0*ARG

ARG4=4.0*ARG

DO I=0,N-1

WEIGHT=A0-A1*COS(ARG*I)+A2*COS(ARG2*I)

WEIGHT=WEIGHT-A3*COS(ARG3*I)+A4*COS(ARG4*I)

XREAL(I)=XREAL(I)*WEIGHT

XIMAG(I)=XIMAG(I)*WEIGHT

ENDDO

C

RETURN

C

ELSEIF (SYM.EQ.1) THEN

ARG=PI/FLOAT(N-1)

ARG2=2.0*ARG

ARG3=3.0*ARG

ARG4=4.0*ARG

DO I=0,N-1
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WEIGHT=A0+A1*COS(ARG*I)+A2*COS(ARG2*I)

WEIGHT=WEIGHT+A3*COS(ARG3*I)+A4*COS(ARG4*I)

XREAL(I)=XREAL(I)*WEIGHT

XIMAG(I)=XIMAG(I)*WEIGHT

END DO

C

RETURN

ELSE

WRITE(6,*) ’Error in SYM. SYM= ’,SYM

WRITE(6,*) ’ ’

CALL EXIT

END IF

20 IF (SYM.NE.0) THEN

WRITE(6,*) ’Error in SYM. SYM= ’,SYM

WRITE(6,*) ’ ’

CALL EXIT

ELSE

ARG=PI2/FLOAT(2*N_HAN-1)

DO I=0,N_HAN-1

WEIGHT=0.5-0.5*COS(ARG*I)

XREAL(I)=XREAL(I)*WEIGHT

XIMAG(I)=XIMAG(I)*WEIGHT

XREAL(N-1-I)=XREAL(N-1-I)*WEIGHT

XIMAG(N-1-I)=XIMAG(N-1-I)*WEIGHT

END DO

C

RETURN

END IF

C

END
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SUBROUTINE CZT(XR,XI,N,M,T_ZERO,T_INC,F_ZERO,F_INC,ISN)

C

C************************************************

C

C CZT: ISN=-1 TIME TO FREQUENCY

C ICZT: ISN=+1 FREQUENCY TO TIME

C

C Ref.: "The Chirp z-Transform Algorithm". IEEE Trans. Audio C

C Electroacoust.,vol. AU-17,pp.86-92,June 1969.

C "Conversion of Frequency-Domain Data to the Time

C Domain". Proc. IEEE,vol.74,no.1,January 1986.

C

C************************************************

IMPLICIT NONE

C

INTEGER NMAX

PARAMETER (NMAX=8191)

C

REAL XR(0:NMAX),XI(0:NMAX)

REAL T_ZERO,T_INC,F_ZERO,F_INC

REAL TR,TI

REAL RV(0:NMAX),IV(0:NMAX)

REAL PI,PI2,ARG,ALFA,BETA,GAMMA,DELTA,NORM,C,S

INTEGER N,M,L,NU,I,ISN

C

IF (ISN.EQ.1) THEN

S=T_ZERO

T_ZERO=F_ZERO

F_ZERO=-S

S=T_INC

T_INC=F_INC

F_INC=-S

END IF

C

PI=4.0*ATAN(1.0)

PI2=8.0*ATAN(1.0)

ALFA=F_INC*T_INC*PI

BETA=F_ZERO*T_INC*PI2

GAMMA=F_ZERO*T_ZERO*PI2

DELTA=F_INC*T_ZERO*PI2

C

C Step 1

C

L=N+M-1

CALL CHOOSE_L(L,NU)
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C

C End Step 1

C

C Step 2

C

DO I=0,N-1

ARG=ALFA*I*I+BETA*I

C=COS(ARG)

S=SIN(ARG)

TR=C*XR(I)+S*XI(I)

TI=C*XI(I)-S*XR(I)

XR(I)=TR

XI(I)=TI

END DO

C

DO I=N,L-1

XR(I)=0.0

XI(I)=0.0

END DO

C

C End Step 2

C

C Step 3

C

CALL DFT(XR,XI,L,NU,-1)

C

C End Step 3

C

C Step 4

C

RV(0)=1.0

IV(0)=0.0

C

IF (M.GE.N) THEN

DO I=1,M-1

ARG=ALFA*I*I

RV(I)=COS(ARG)

IV(I)=SIN(ARG)

END DO

DO I=1,N-1

RV(L-I)=RV(I)

IV(L-I)=IV(I)

END DO
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ELSEIF (L.GE.(2*N)) THEN

DO I=1,N-1

ARG=ALFA*I*I

RV(I)=COS(ARG)

IV(I)=SIN(ARG)

RV(L-I)=RV(I)

IV(L-I)=IV(I)

END DO

ELSE

DO I=1,L/2-1

ARG=ALFA*I*I

RV(I)=COS(ARG)

IV(I)=SIN(ARG)

RV(L-I)=RV(I)

IV(L-I)=IV(I)

END DO

DO I=L-N+1,L/2

ARG=ALFA*(L-I)*(L-I)

RV(I)=COS(ARG)

IV(I)=SIN(ARG)

END DO

END IF

C

IF (L.NE.(M+N-1)) THEN

C

DO I=M,L-N

RV(I)=0.0

IV(I)=0.0

END DO

C

END IF

C

C End Step 4

C

C Step 5

C

CALL DFT(RV,IV,L,NU,-1)

C

C End Step 5



54

C

C Step 6

C

DO I=0,L-1

TR=RV(I)*XR(I)-IV(I)*XI(I)

TI=IV(I)*XR(I)+RV(I)*XI(I)

XR(I)=TR

XI(I)=TI

END DO

C

C End Step 6

C

C Step 7

C

CALL DFT(XR,XI,L,NU,1)

C

C End Step 7

C

C Step 8

C

NORM=T_INC/FLOAT(L)

C

DO I=0,M-1

ARG=ALFA*I*I+GAMMA+DELTA*I

C=COS(ARG)

S=SIN(ARG)

TR=C*XR(I)+S*XI(I)

TI=C*XI(I)-S*XR(I)

XR(I)=TR*NORM

XI(I)=TI*NORM

END DO

C

C End Step 8

C

IF (ISN.EQ.1) THEN

S=T_ZERO

T_ZERO=-F_ZERO

F_ZERO=S

S=T_INC

T_INC=-F_INC

F_INC=S

END IF

C

RETURN

END
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SUBROUTINE DECON(XR,XI,YR,YI,N,ZR,ZI,LAMBDA)

C

IMPLICIT NONE

C

REAL XR(1:N),XI(1:N),YR(1:N),YI(1:N)

REAL ZR(1:N),ZI(1:N)

REAL DEN

REAL LAMBDA

INTEGER N,I

C

DO I=1,N

DEN=1.0/(XR(I)*XR(I)+XI(I)*XI(I)+LAMBDA*I*I*I*I)

ZR(I)=(XR(I)*YR(I)+XI(I)*YI(I))*DEN

ZI(I)=(XR(I)*YI(I)-XI(I)*YR(I))*DEN

END DO

C

RETURN

END
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SUBROUTINE DFT(XREAL,XIMAG,N,NU,ISN)

C

C

C***********************************************

C

C Ref.: E. Oran Brigham, "The Fast Fourier Transform"

C Prentice-Hall, Inc. 1974

C

C DFT: ISN=-1 (TIME TO FREQUENCY)

C IDFT: ISN=+1 (FREQUENCY TO TIME)

C

C***********************************************

C

IMPLICIT NONE

C

INTEGER NMAX

PARAMETER (NMAX=8192)

C

REAL XREAL(1:NMAX),XIMAG(1:NMAX)

INTEGER N,NU,ISN

REAL TREAL,TIMAG,P,ARG,C,S,PI2

INTEGER N2,NU1,I,L,K,K1,K1N2,IBITR

C

PI2=8.0*ATAN(1.0)

ISN=-ISN

N2=N/2

NU1=NU-1

K=0

DO 100 L=1,NU

102 DO 101 I=1,N2

P=IBITR(K/2**NU1,NU)

ARG=PI2*P/FLOAT(N)

C=COS(ARG)

S=SIN(ARG)*ISN

K1=K+1

K1N2=K1+N2

TREAL=XREAL(K1N2)*C+XIMAG(K1N2)*S

TIMAG=XIMAG(K1N2)*C-XREAL(K1N2)*S

XREAL(K1N2)=XREAL(K1)-TREAL

XIMAG(K1N2)=XIMAG(K1)-TIMAG

XREAL(K1)=XREAL(K1)+TREAL

XIMAG(K1)=XIMAG(K1)+TIMAG

101 K=K+1

K=K+N2

IF(K.LT.N) GOTO 102
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K=0

NU1=NU1-1

100 N2=N2/2

DO 103 K=1,N

I=IBITR(K-1,NU)+1

IF(I.LE.K) GOTO 103

TREAL=XREAL(K)

TIMAG=XIMAG(K)

XREAL(K)=XREAL(I)

XIMAG(K)=XIMAG(I)

XREAL(I)=TREAL

XIMAG(I)=TIMAG

103 CONTINUE

ISN=-ISN

RETURN

END
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INTEGER FUNCTION IBITR(J,NU)

C

IMPLICIT NONE

C

INTEGER J,NU,I,J1,J2

C

J1=J

IBITR=0

DO 200 I=1,NU

J2=J1/2

IBITR=IBITR*2+(J1-2*J2)

200 J1=J2

RETURN

END
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SUBROUTINE CHOOSE_L(L,NU)

C

IMPLICIT NONE

C

INTEGER L,NU

C

IF (L.GT.8192) THEN

WRITE(6,*) ’L is too big. L= ’ , L

CALL EXIT

END IF

IF (L.GT.4096) THEN

L=8192

NU=13

RETURN

END IF

IF (L.GT.2048) THEN

L=4096

NU=12

RETURN

END IF

IF (L.GT.1024) THEN

L=2048

NU=11

RETURN

END IF

IF (L.GT.512) THEN

L=1024

NU=10

RETURN

END IF

IF (L.GT.256) THEN

L=512

NU=9

RETURN

END IF

IF (L.GT.128) THEN

L=256

NU=8

RETURN

END IF

IF (L.GT.64) THEN

L=128

NU=7

RETURN

END IF



60

IF (L.GT.32) THEN

L=64

NU=6

RETURN

END IF

IF (L.GT.16) THEN

L=32

NU=5

RETURN

END IF

IF (L.GT.8) THEN

L=16

NU=4

RETURN

END IF

IF (L.GT.4) THEN

L=8

NU=3

RETURN

END IF

IF (L.GT.2) THEN

L=4

NU=2

RETURN

END IF

IF (L.GT.1) THEN

L=2

NU=1

RETURN

END IF

WRITE(6,*) ’L is too small. L= ’ , L

CALL EXIT

END
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SUBROUTINE SCREENCLEAR

C

IMPLICIT NONE

C

WRITE(6,*) CHAR(27)//’H’//CHAR(27)//’J’

RETURN

END
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SUBROUTINE READ_FILE(W,N,FPR,ID)

C

C This subroutine reads the data used in this program

C

IMPLICIT NONE

C

REAL W(0:*)

INTEGER N,I,IOS

CHARACTER*2 FPR

CHARACTER*4 ID

WRITE(6,*) ’ ’

C

CALL OINFN(FPR,ID,20)

C

1000 FORMAT(4E13.5,4E13.5)

I = 0

READ(20,1000,IOSTAT=IOS) W(I),W(I+1)

10 IF(IOS.EQ.0) THEN

I=I+2

READ(20,1000,IOSTAT=IOS) W(I),W(I+1)

GO TO 10

END IF

CLOSE(20)

N=I

RETURN

END
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SUBROUTINE OINFN(FPR,ID,LUN)

C

IMPLICIT NONE

C

CHARACTER*6 FLNAME

CHARACTER*4 ID

CHARACTER*2 FPR

INTEGER LUN

C

FLNAME=FPR//ID

OPEN (UNIT=LUN,FILE=FLNAME,ERR=150,STATUS=’OLD’)

GO TO 20

150 WRITE(6,*) ’Error in trying to open the input file:’,

+FLNAME

CALL EXIT

20 CONTINUE

RETURN

END
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SUBROUTINE SORT(XREAL,XIMAG,T_INC,W,N2)

C

IMPLICIT NONE

C

REAL XREAL(0:*),XIMAG(0:*),W(0:*),T_INC

INTEGER N2,I

C

T_INC=W(2)

DO I=1,N2-1,2

XREAL((I-1)/2)=W(I)

XIMAG((I-1)/2)=0.0

END DO

C

RETURN

END
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SUBROUTINE S_RATE(XR,XI,N,T_INC,STEP)

C

C Change of sampling rate.

C

IMPLICIT NONE

C

REAL XR(1:*),XI(1:*),T_INC

INTEGER N,STEP,I,K

C

K=0

DO I=1,N,STEP

K=K+1

XR(K)=XR(I)

XI(K)=XI(I)

END DO

C

T_INC=T_INC*STEP

N=K

C

RETURN

END



66

SUBROUTINE ZERO_PAD(XR,XI,N,NMAX)

C

IMPLICIT NONE

C

REAL XR(1:*),XI(1:*)

INTEGER N,NMAX,I

C

DO I=N+1,NMAX

XR(I)=0.0

XI(I)=0.0

END DO

C

N=NMAX

RETURN

END
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SUBROUTINE BASELINE(W,N)

C

C Adjust for non-zero baseline.

C

IMPLICIT NONE

C

REAL W(0:N-1),K

INTEGER N,I

C

K=0.0

DO I=0,24

K=K+W(I)

END DO

DO I=N-25,N-1

K=K+W(I)

END DO

K=K/50.0

WRITE(6,*) ’ Enter baseline offset. Try ’,K

WRITE(6,*) ’ ’

READ(5,*) K

C

DO I=0,N-1

W(I)=W(I)-K

END DO

C

RETURN

END
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SUBROUTINE AMP_PHASE(RE,IM,AMP,PHASE,N)

C

IMPLICIT NONE

C

REAL RE(1:N),IM(1:N),AMP(1:N),PHASE(1:N)

INTEGER N,I

C

DO I=1,N

AMP(I)=SQRT(RE(I)*RE(I)+IM(I)*IM(I))

IF (RE(I).LE.(573.0*IM(I))) THEN

PHASE(I)=2.0*ATAN(1.0)

ELSE

PHASE(I)=ATAN(IM(I)/RE(I))

END IF

END DO

C

RETURN

END
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SUBROUTINE AMP_DB(RE,IM,AMP,DB,N)

C

IMPLICIT NONE

C

REAL RE(1:N),IM(1:N),AMP(1:N),DB(1:N)

INTEGER N,I

C

DO I=1,N

AMP(I)=SQRT(RE(I)*RE(I)+IM(I)*IM(I))

IF (AMP(I).LE.1E-36) THEN

DB(I)=-720.0

ELSE

DB(I)=20.0*LOG10(AMP(I))

END IF

END DO

C

RETURN

END
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SUBROUTINE WRITE2_FILE(INC,Y,N,FPR,ID)

C

IMPLICIT NONE

C

REAL Y(0:*),INC

INTEGER N,I

CHARACTER*2 FPR

CHARACTER*4 ID

C

1000 FORMAT(4E13.5,4E13.5)

C

CALL OOUTFN(FPR,ID,20)

C

DO I=0,N-1

WRITE(20,1000) INC*I,Y(I)

END DO

C

CLOSE(20)

C

RETURN

END
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SUBROUTINE WRITE3_FILE(INC,Y,N,FPR,ID)

C

IMPLICIT NONE

C

REAL Y(0:*),INC

INTEGER N,I,K

CHARACTER*2 FPR

CHARACTER*4 ID

C

1000 FORMAT(4E13.5,4E13.5,4E13.5)

C

CALL OOUTFN(FPR,ID,20)

C

K=0

DO I=0,N-2,2

WRITE(20,1000) INC*K,Y(I),Y(I+1)

K=K+1

END DO

C

CLOSE(20)

C

RETURN

END
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SUBROUTINE WRITE5_FILE(INC,Y1,Y2,Y3,Y4,N,FPR,ID)

C

C This subroutine writes data to the file FPR&ID

C N .LE. *

C

IMPLICIT NONE

C

REAL Y1(0:*),Y2(0:*),Y3(0:*),Y4(0:*),INC

INTEGER N,I

CHARACTER*2 FPR

CHARACTER*4 ID

C

1000 FORMAT(4E13.5,4E13.5,4E13.5,4E13.5,4E13.5)

C

CALL OOUTFN(FPR,ID,20)

C

DO I=0,N-1

WRITE(20,1000) INC*I,Y1(I),Y2(I),Y3(I),Y4(I)

END DO

C

CLOSE(20)

C

RETURN

END



73

SUBROUTINE OOUTFN(FPR,ID,LUN)

C

IMPLICIT NONE

C

CHARACTER*6 FLNAME

CHARACTER*4 ID

CHARACTER*2 FPR

INTEGER LUN

C

FLNAME=FPR//ID

OPEN (UNIT=LUN,FILE=FLNAME,ERR=150)

RETURN

150 WRITE(6,*)’Error in trying to open the output file:’,

+FLNAME

RETURN

END
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C Program INV

C

C****************************************************************C

C C

C This program solves the inverse problem, assuming that the C

C conductivity, SIG(X), is given. The Riccati equation is C

C used to reconstruct the coefficients A and B. Then the C

C relative permittivity, EPSR, is computed as a function of C

C depth, Z. C

C C

C (SL=l*c_0) C

C C

C****************************************************************C

C

C

IMPLICIT NONE

REAL RPLUS(0:4096),EPSRZ,SL

INTEGER N

CHARACTER*4 ID

C

CALL READ_DATA(N,RPLUS,EPSRZ,SL,ID)

CALL RSOLVE(N,EPSRZ,SL,RPLUS,ID)

STOP

END
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SUBROUTINE READ_DATA(N,RPLUS,EPSRZ,SL,ID)

C

C This subroutine reads the data used in this program

C

IMPLICIT NONE

REAL RPLUS(0:4096),T,EPSRZ,SL,SIG1,L1,L

INTEGER N,I,IOS

CHARACTER*2 FID

CHARACTER*4 ID

COMMON /SIGMA/ SIG1

C

1000 FORMAT(2A)

1001 FORMAT(2E13.5)

1002 FORMAT(E13.5)

C

CALL SCREENCLEAR

WRITE(6,*) ’ <><><> Solve the inverse problem for’,

+ ’ EPS(Z) <><><>’

WRITE(6,*) ’ ’

WRITE(6,*) ’Enter the input file id’

WRITE(6,*) ’2-digit # for synthetic data’

WRITE(6,*) ’4-digit # for experimental data’

READ(5,1000) ID

C

IF(LGE(ID,’0100’)) THEN

FID(1:1)=ID(1:1)

FID(2:2)=ID(2:2)

CALL OINFN(FID,’ce’,20)

ELSE

CALL OINFN(ID,’cs’,20)

ENDIF

C

READ(20,1002) EPSRZ

READ(20,1002) L1

READ(20,1002) SIG1

C READ(20,1002) G1

CALL CLOSE(20)

C

CALL OINFN(ID,’tk’,20)

C

I = 0

READ(20,1001,IOSTAT=IOS) T,RPLUS(I)

10 IF(IOS.EQ.0) THEN

I=I+1

READ(20,1001,IOSTAT=IOS) T,RPLUS(I)
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GO TO 10

END IF

N = I-1

CALL CLOSE(20)

C

L=T/2.

DO I=0,N

RPLUS(I)=RPLUS(I)*L

END DO

C

SL=L*3.E8

RETURN

END
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SUBROUTINE RSOLVE(N,EPSRZ,SL,ROLD,ID)

C

C This subroutine inverts the reflection data assuming

C the conductivity SIG known.

C

IMPLICIT NONE

REAL RNEW(0:4096),ROLD(0:4096)

REAL Z(0:4096),EPSR(0:4096),A(0:4096),B(0:4096)

REAL CONV(0:4096),E(0:4096)

REAL C,C1,C2,C3,C4,C5,SUM,SUM2

REAL CON,HSL,H,SIGN,RHS,AC,AN,RELER,EPSRZ,SL,SIG

INTEGER I,J,K,N,JMAX

CHARACTER*2 ID

C

1000 FORMAT(6E13.5)

C

H = 1./N

HSL = H*SL/SQRT(EPSRZ)

CON = -SL/(EPSRZ*3.*8.854E-4)

C

CALL OOUTFN(ID,’po’,22)

C

E(0) = 1.

Z(0) = 0.

EPSR(0) = EPSRZ/(E(0)**2)

B(0) = CON*SIG(0.)

A(0) = -4.*ROLD(0)+B(0)

WRITE(22,1000) Z(0),EPSR(0),SIG(0.),0.,A(0),B(0)

C

C Compute the convolution product of the RPLUS data

C

CONV(0) = 0.

DO J = 1,N-1

SUM = 0.

DO K = 1,J

SUM = SUM + ROLD(K)*ROLD(J+1-K)

END DO

CONV(J) = SUM

END DO

C

DO I = 1,N

C

C Compute A(I) using Newton’s method

C

SIGN = SIG(Z(I-1) + HSL*E(I-1))
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C = CON*SIGN*(E(I-1)**2)

C1 = C*EXP(-H*A(I-1))

RHS = ROLD(1)*(1-H*B(I-1)/2.-H*H*ROLD(0)*(A(I-1)

+ + B(I-1))/2.)

C5 = C1*EXP(-H*A(I-1))

AC = C5 - 4.*RHS/(1.+H*C5/2.)

DO J = 1,10

C2 = C1*EXP(-H*AC)

AN = AC - (4.*RHS + (AN-C2)*(1.+H*C2/2.))/

+ ((1.+H*C2)*(1.+H*C2/2.) - (AN - C2)*(H*H*C2)/2.)

IF (AN.EQ.0.) RELER = ABS(AN-AC)

IF (AN.NE.0.) RELER = ABS((AN-AC)/AN)

IF (RELER.LT..5E-5) GO TO 20

AC = AN

END DO

WRITE(6,*) I,RELER

20 A(I) = AN

B(I) = C1*EXP(-H*AN)

RNEW(0) = -.25*(AN-B(I))

E(I) = E(I-1)*EXP(-H*(A(I-1)+AN)/2.)

Z(I) = Z(I-1) + HSL*(E(I)+E(I-1))/2.

C

EPSR(I)= EPSRZ/(E(I)**2)

WRITE(22,1000) Z(I), EPSR(I), SIG(Z(I)),H*I,A(I),B(I)

C

IF (I.LT.N) THEN

C

C Compute RNEW array

C

JMAX = N - I

C1 = -H*H*(AN+B(I))/2.

C2 = 1./(1.+H*B(I)/2. - C1*RNEW(0))

C3 = -H*H*(A(I-1) + B(I-1))/2.

C4 = 1. - H*B(I-1)/2.

DO J = 1,JMAX

SUM = CONV(J) + ROLD(0)*ROLD(J+1)

SUM2 = 0.

IF (J.GT.1) THEN

DO K = 1,J-1

SUM2 = SUM2 + RNEW(K)*RNEW(J-K)

END DO

CONV(J-1) = SUM2

END IF

RNEW(J) = C2*(C4*ROLD(J+1) + C3*SUM + C1*SUM2)

END DO
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C

DO J = 0,JMAX

ROLD(J) = RNEW(J)

END DO

END IF

END DO

C

CALL CLOSE(22)

RETURN

END
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FUNCTION SIG(X)

C

C SIG(X) is the assumed conductivity

C

IMPLICIT NONE

REAL SIG,SIG1,X

COMMON /SIGMA/ SIG1

C

SIG = SIG1

RETURN

END
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C Program INVGREEN

C*****************************************************************C

C C

C This program solves the inverse problem, assuming that the C

C conductivity, SIG(X), is given. The Green function is C

C used to reconstruct the coefficients A and B. Then the C

C relative permittivity, EPSR, is computed as a function of C

C depth, z. C

C The normalization of time is SL/c. C

C C

C Input: C

C 1. File k## C

C N+1 values of Rplus(s) C

C C

C 2. File a## C

C Relative permittivity at z = 0, SL, constant SIG C

C C

C Output: C

C File o## C

C N+1 values of z, epsr(z), sig(z), x(z), A(x), B(x)C

C C

C*****************************************************************C

IMPLICIT NONE

REAL RPLUS(0:1024)

INTEGER N

C

CALL READ_DATAG(N,RPLUS)

CALL RSOLVE(N,RPLUS)

STOP

END
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SUBROUTINE READ_DATAG(N,RPLUS)

C******************************************************************

C This subroutine reads the data used in this program.

C The factor CON is -l/eps_0/eps_r.

C The factor HSL is l*h*c(0).

C EPSRZ is the value of the relative permittivity at z=0.

C SIG1 is the assumed constant value of the conductivity.

C******************************************************************

IMPLICIT NONE

REAL RPLUS(0:1024),EPSRZ,HSL,SIG1,X,CON,SL

INTEGER N,I,IOS

CHARACTER FID*2

COMMON /SIGMA/ SIG1

COMMON /CONSTANTS/ EPSRZ,HSL,CON

COMMON /FILEID/ FID

C

1000 FORMAT(A)

C

CALL SCREENCLEAR

WRITE(6,*) ’<><><> SOLVE THE INVERSE PROBLEM FOR’,

+ ’ EPS(Z) <><><>’

WRITE(6,*) "<><><> THE GREEN FUNCTIONS TECHNIQUE’,

+ ’ IS USED <><><>"

WRITE(6,*) ’ ’

WRITE(6,*) ’Enter the input ID #, a two digit number’

READ(5,1000) FID

CALL OINFN(’k’,FID,20)

I=0

READ(20,*,IOSTAT=IOS) X,RPLUS(I)

10 IF(IOS.EQ.0) THEN

I=I+1

READ(20,*,IOSTAT=IOS) X,RPLUS(I)

GO TO 10

END IF

CALL CLOSE(20)

N=I-1

CALL OINFN(’a’,FID,20)

READ(20,*) X,X

READ(20,*) EPSRZ,SL,SIG1

CALL CLOSE(20)

C

HSL=SL/SQRT(EPSRZ)/N

CON=-SL/(EPSRZ*3.*8.854E-4)

RETURN

END
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SUBROUTINE RSOLVE(N,R)

C***************************************************************

C This subroutine inverts the reflection data assuming

C the conductivity SIG known.

C The Green functions approach is used.

C***************************************************************

IMPLICIT NONE

REAL R(0:1024),G1(0:1024),G2(0:1024)

REAL H,A,B,AM,AP,Z,E

INTEGER N,I

CHARACTER FID*2

COMMON /FILEID/ FID

C

H=1./N

CALL OOUTFN(’o’,FID,22)

CALL INITIATE(N,R)

DO I=1,N

CALL NEWAB(I,H,A,B)

CALL GREEN(I,N,A,B,AM,AP,G1,G2)

CALL PROFILE(I,H,A,B,Z,E)

CALL UPDATE(I,N,A,B,AM,AP,Z,E,G1,G2)

END DO

CALL CLOSE(22)

RETURN

END
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SUBROUTINE INITIATE(N,R)

C **********************************************************

C This subroutine initiates the inversion algorithm.

C The field E(z)=c(0)/c(z).

C The variable ATT=integral of B from 0 to x.

C **********************************************************

IMPLICIT NONE

REAL R(0:N),G1(0:1024),G2(0:1024)

REAL A,B,EPSRZ,CON,SIG,ATT,AP,AM,Z,E,HSL

INTEGER N,I

COMMON /OLD/ ATT,A,B,AP,AM,Z,E

COMMON /CONSTANTS/ EPSRZ,HSL,CON

COMMON /OLDG/ G1,G2

C

1000 FORMAT(6E13.5)

C

DO I=0,N

G1(I)=0

G2(I)=R(I)

END DO

Z=0.

E=1.

B=CON*SIG(0.)

A=-4*R(0)+B

AP=(A+B)/2.

AM=(A-B)/2.

ATT=1.

WRITE(22,1000) Z,EPSRZ,SIG(0.),0.,A,B

RETURN

END



85

SUBROUTINE NEWAB(I,H,A,B)

C***************************************************************

C This subroutine computes the new A and B values at the new

C station in terms of the old values of AP, AM, G1 and G2

C at time s=x-h and s=x+h.

C***************************************************************

IMPLICIT NONE

REAL G1OLD(0:1024),G2OLD(0:1024)

REAL A,B,APOLD,AMOLD,AOLD,BOLD,ZOLD,EOLD,ATT

REAL EPSRZ,HSL,CON,SIG,C1,F1,F2,F3

REAL AC,FA,FD,H,RELER

INTEGER I,J

COMMON /OLD/ ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

COMMON /CONSTANTS/ EPSRZ,HSL,CON

COMMON /OLDG/ G1OLD,G2OLD

C

C1=CON*SIG(ZOLD+HSL*EOLD)*EOLD**2*EXP(-H*AOLD)

B=C1*EXP(-H*AOLD)

F1=G2OLD(1)+.5*H*AMOLD*G1OLD(1)

F2=H*G1OLD(0)-.0625*H*H*(AOLD*AOLD-BOLD*BOLD)

F3=-4*F1/ATT*EXP(-.5*H*BOLD)

AC=B+F3*EXP(-.5*H*B)/(1+F2)

DO J=1,10

B=C1*EXP(-H*AC)

FA=(AC-B)*(1-.0625*H*H*(AC*AC-B*B)+F2)-F3*EXP(-.5*H*B)

FD=(1+H*B-.5*H*H*B*(AC-B))*(1-.0625*H*H*(AC*AC-B*B)+F2)

& -.125*H*H*(AC-B)*(AC+H*B*B)

A=AC-FA/FD

IF (A.EQ.0.) RELER=ABS(A-AC)

IF (A.NE.0.) RELER=ABS((A-AC)/A)

IF (RELER.LT..5E-5) GOTO 1

AC=A

END DO

WRITE(6,*) I,RELER

RETURN

1 B=C1*EXP(-H*A)

RETURN

END
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SUBROUTINE GREEN(I,N,A,B,AM,AP,G1,G2)

C***************************************************************

C This subroutine computes the Green functions G1 and G2 at the

C new station I.

C***************************************************************

IMPLICIT NONE

REAL G1(0:1024),G2(0:1024)

REAL G1OLD(0:1024),G2OLD(0:1024)

REAL A,B,AP,AM

REAL ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

REAL H,C1,C2,C3

INTEGER N,I,J

COMMON /OLD/ ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

COMMON /OLDG/ G1OLD,G2OLD

C

H=1./N

ATT=ATT*EXP(H*(BOLD+B)/2)

AP=(A+B)/2/ATT

AM=(A-B)/2*ATT

C

DO J=0,N-I

C1=1-.25*H*H*AP*AM

C2=G1OLD(J)+.5*H*APOLD*G2OLD(J)+.5*H*AP*G2OLD(J+1)

C3=.25*H*H*AP*AMOLD*G1OLD(J+1)

G1(J)=(C2+C3)/C1

G2(J)=G2OLD(J+1)+.5*H*(AM*G1(J)+AMOLD*G1OLD(J+1))

END DO

RETURN

END
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SUBROUTINE PROFILE(I,H,A,B,Z,E)

C **********************************************************

C This subroutine takes the computed values of A and B at

C the position I and converts them to permittivity and

C conductivity values.

C The field E(z)=c(0)/c(z).

C **********************************************************

IMPLICIT NONE

REAL G1OLD(0:1024),G2OLD(0:1024)

REAL E,A,B,Z,H,HSL,EPSRZ,SIG,EPS,CON

REAL ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

INTEGER I

COMMON /OLD/ ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

COMMON /CONSTANTS/ EPSRZ,HSL,CON

COMMON /OLDG/ G1OLD,G2OLD

C

1000 FORMAT(6E13.5)

C

E=EOLD*EXP(-H*(AOLD+A)*.5)

Z=ZOLD+HSL*.5*(EOLD+E)

EPS=EPSRZ/E/E

WRITE(22,1000) Z,EPS,SIG(Z),H*I,A,B

RETURN

END
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SUBROUTINE UPDATE(I,N,A,B,AM,AP,Z,E,G1,G2)

C***************************************************************

C This subroutine updates the arrays and the variables.

C The attenuation factor ATT is already updated in the subroutine

C GREEN.

C***************************************************************

IMPLICIT NONE

REAL G1OLD(0:1024),G2OLD(0:1024)

REAL G1(0:1024),G2(0:1024)

REAL A,B,AM,AP,E,Z

REAL ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

REAL EPSRZ,HSL,CON

INTEGER N,I,J

COMMON /OLD/ ATT,AOLD,BOLD,APOLD,AMOLD,ZOLD,EOLD

COMMON /CONSTANTS/ EPSRZ,HSL,CON

COMMON /OLDG/ G1OLD,G2OLD

C

DO J=0,N-I

G1OLD(J)=G1(J)

G2OLD(J)=G2(J)

END DO

AOLD=A

BOLD=B

APOLD=AP

AMOLD=AM

ZOLD=Z

EOLD=E

RETURN

END


