

A generalization of the predictable degree property to rational convolutional encoding matrices

Johannesson, Rolf; Wan, Zhe-Xian

Published in: [Host publication title missing]

10.1109/ISIT.1994.394954

1994

Link to publication

Citation for published version (APA): Johannesson, R., & Wan, Z.-X. (1994). A generalization of the predictable degree property to rational convolutional encoding matrices. In [Host publication title missing] (pp. 17) https://doi.org/10.1109/ISIT.1994.394954

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 • You may not further distribute the material or use it for any profit-making activity or commercial gain

 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

Download date: 07. Dec. 2025

A Generalization of the Predictable Degree Property to Rational Convolutional Encoding Matrices¹

Rolf Johannesson, Zhe-xian Wan

Dept. of Information Theory, Lund University, P.O. Box 118, S-221 00 LUND, Sweden.

Abstract — The predictable degree property was introduced by Forney [1] for polynomial convolutional encoding matrices. In this paper two generalizations to rational convolutional encoding matrices are discussed.

I. Introduction

The predictable degree property, introduced by Forney [1], is a useful analytic tool when we study the structural properties of convolutional encoding matrices.

Let G(D) be a rate R = b/c binary polynomial encoding matrix with ν_i as the constraint length of the i-th row. For any polynomial input $\underline{u}(D)$ the output $\underline{v}(D) = \underline{u}(D)G(D)$ is also polynomial. We have

$$\begin{array}{rcl} \deg \underline{v}(D) & = & \deg \underline{u}(D)G(D) = \deg \sum_{i=1}^b u_i(D)\underline{g}_i(D) \\ & \leq & \max_{1 \leq i \leq b} \{\deg u_i(D) + \nu_i\}. \end{array} \tag{d}$$

Definition 1 A polynomial encoding matrix G(D) is said to have the *predictable degree property* if for all polynomial inputs $\underline{u}(D)$ we have equality in (1).

Let $[G(D)]_h$ be the (0,1)-matrix with 1 in the position (i,j) where deg $g_{ij}(D) = \nu_i$ and 0, otherwise. Then we have

Theorem 1 Let G(D) be a polynomial encoding matrix. Then G(D) has the predictable degree property if and only if $[G(D)]_h$ is of full rank.

Since a basic encoding matrix is minimal-basic if and only if $[G(D)]_h$ is of full rank ([1] [4]) we have the following theorem which is due to Forney [1]:

Theorem 2 Let G(D) be a basic encoding matrix. Then G(D) has the predictable degree property if and only if it is minimal-basic.

In [4] we gave an example of a basic encoding matrix that is minimal but not minimal-basic. That minimal encoding matrix does not have the predictable degree property.

II. THE PREDICTABLE DEGREE PROPERTY FOR RATIONAL ENCODING MATRICES

Let $g(D) = (g_1(D), \ldots, g_c(D))$, where $g_1(D), \ldots, g_c(D) \in \mathbb{F}_2(\overline{D})$. Denote by

$$\mathcal{P}^* = \{ p(D) \in \mathbb{F}_2[D] \mid p(D) \text{ is irreducible} \} \cup \{ D^{-1} \}. \tag{2}$$

For any $p \in \mathcal{P}^*$ we define

$$e_p(g(D)) = \min\{e_p(g_1(D)), \dots, e_p(g_c(D))\},$$
 (3)

where $e_p(g_i(D))$ is an exponential valuation of $g_i(D)$ [2] [3]. For any rational input $\underline{u}(D)$ the output $\underline{v}(D)$ is also rational. We have

$$e_{p}(\underline{v}(D)) = e_{p}\left(\sum_{i=1}^{b} u_{i}(D)\underline{g}_{i}(D)\right)$$

$$\geq \min_{1 \leq i \leq b} \{e_{p}(u_{i}(D)) + e_{p}(\underline{g}_{i}(D))\}. \tag{4}$$

Definition 2 A rational encoding matrix G(D) is said to have the *predictable degree property* if for $p = D^{-1}$ and all rational inputs $\underline{u}(D)$ we have equality in (4).

Let G(D) be a rational encoding matrix. As a counterpart to $[G(D)]_h$ for polynomial encoding matrices, for any $p \in \mathcal{P}^*$ we introduce the $b \times c$ matrix $[G(D)]_h(p)$ to be a matrix whose element in the position (i,j) is equal to the coefficient of the lowest term of $g_{ij}(D)$, written as a Laurent series of p, if $e_p(g_{ij}(D)) = e_p(g_{ij}(D))$, and equal to 0, otherwise.

Then we can prove

Theorem 3 Let G(D) be a rational encoding matrix. Then G(D) has the predictable degree property if and only if $[G(D)]_h(D^{-1})$ has full rank.

III. THE PREDICTABLE EXPONENTIAL VALUATION PROPERTY

Definition 3 A rational encoding matrix G(D) is said to have the *predictable exponential valuation property* if we have equality in (4) for all $p \in \mathcal{P}^*$.

Theorem 4 Let G(D) be a rational encoding matrix. Then G(D) has the predictable exponential valuation property if and only if $[G(D)]_h(p)$ mod p has full rank for all $p \in \mathcal{P}^*$.

A rational encoding matrix is said to be canonical if it can be realized with a minimal number of delay elements in controller canonical form [5].

Theorem 5 Let G(D) be a rational encoding matrix and assume that $e_p(\underline{g}_1(D)) \leq 0$, $1 \leq i \leq b$, for all $p \in \mathcal{P}^{\bullet}$. Then G(D) has the predictable exponential valuation property if and only if G(D) is canonical.

The predictable exponential valuation property is not equivalent to being canonical.

REFERENCES

- Forney, G.D., Jr. (1970), Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory, IT-16:720-738.
- [2] Jacobson, N. (1989), Basic Algebra II, 2nd ed. Freeman, New York.
- [3] Forney, G.D., Jr. (1991), Algebraic structure of convolutional codes, and algebraic system theory. In Mathematical System Theory, A.C. Antoulas, Ed., Springer-Verlag, Berlin, 527-558.
- [4] Johannesson, R. and Wan, Z. (1993), A linear algebra approach to minimal convolutional encoders, *IEEE Trans. Inform. Theory*, IT-39:1219-1233.
- [5] Johannesson, R. and Wan, Z. (1994). On canonical encoding matrices and the generalized constraint lengths of convolutional codes. To appear in a book published by Kluwer on the occasion of J.L. Massey's 60th birthday.

¹This work was supported in part by the Swedish Research Council for Engineering Sciences under Grant 91-91.