
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Scalable Modularized Synthesis Method for Distributed Kalman Filters

Mårtensson, Karl; Rantzer, Anders

2011

Link to publication

Citation for published version (APA):
Mårtensson, K., & Rantzer, A. (2011). A Scalable Modularized Synthesis Method for Distributed Kalman Filters.
Paper presented at 18th IFAC World Congress, 2011, Milan, Italy.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7281c9f7-4ef0-4ad8-a5cd-9d15f263147e

A Scalable Modularized Synthesis Method

for Distributed Kalman Filters ⋆

Karl Mårtensson and Anders Rantzer
∗

∗ The authors are with Automatic Control LTH, Lund University, Box
118, SE-221 00 Lund, Sweden, {karl, rantzer}@control.lth.se

Abstract: This paper presents a scheme to construct distributed observers for a system
consisting of agents interconnected in a graph structure. The scheme is an iterative procedure
to improve the observers with respect to global performance. It is modular in the sense that
each agent iterates using only local model information. As a consequence, the complexity of the
scheme scales linearly with the size of the system. The resulting observers estimate states for
each agent using only local measurements and model knowledge of its neighbors.
Distributed observers are suboptimal to centralized ones and it is desirable to measure the
amount of performance degradation. We show how to use the variables of the synthesis scheme
to also determine such a measure of the suboptimality.

1. INTRODUCTION

The classical Kalman filter problem has a well known
solution where the filter gains are determined from the so-
lution of a Riccati equation, see Kalman [1960] or Åström
[2006]. However, for large-scale systems this solution may
be intractable, for two main reasons. One is computa-
tional complexity. The other is that detailed models of
all components may not be available in one place. The
purpose of this paper is to address both these issues to
develop a filter design scheme that is both scalable and
modularized. To achive this, we will give up the idea
of solving large-scale Riccati equations in detail, and in-
stead design a distributed Kalman filter where each agent
maintains estimates for its own internal states, based on
a model of the local dynamics and the interaction with
neighboring agents. In the distributed filter, each agent
receives measurements from local sensors and exchanges
information with its neighbors.

Decentralized Kalman filtering for data fusion in sensor
networks was previously examined in Rao et al. [1993].
However, the methods presented there required all-to-all
communication. The works Spanos et al. [2005], Olfati-
Saber [2007] used consensus techniques to accomplish the
data fusion. In Alriksson and Rantzer [2006] weighting
matrices were computed which were used by each agent to
linearly combine the sensor measurements and the neigh-
bors state estimates to its own state estimate. Algorithms
where each agent only determines a local state estimate
of a large-scale, sparse system were presented in Khan
and Moura [2008]. Here, neither the full state nor the
full system model is known at any node of the system.
A method using dual decomposition for distributed esti-
mation is considered by Samar et al. [2007].

⋆ The research leading to these results has received funding from

the European Community’s Seventh Framework Programme under

grant agreement number 224428, acronym CHAT. This work was also

supported by the Linnaeus Grant LCCC from the Swedish Research

Council.

The work in this paper relates to Mårtensson and Rantzer
[2009, 2010]. In the first paper an distributed iterative
learning control scheme was considered. The theory in the
second paper treated an offline control synthesis scheme
similar to the previous paper. In this paper we will use
similar ideas to treat the distributed estimation problem.
The synthesis scheme iteratively updates the observers
to improve the performance. This is done by determin-
ing descent directions by calculating gradients via vector
and matrix multiplications of the size of the state vec-
tor and dynamics matrix of each agent of the system.
Hence, the result is an easily implementable procedure
that is tractable for large-scale systems. Since distributed
observers, i.e. observers with a structural constraint, are
suboptimal compared to centralized solutions, a method of
measuring the suboptimality of the intermediate observers
is given. This method uses the same variables as the syn-
thesis scheme. Hence, the method of finding suboptimality
bounds is not more complex than the synthesis procedure.

In Section 2 we introduce the distributed systems consid-
ered. The notation used in the paper is also defined here.
The theory behind the synthesis method is described in
Section 3. We also show the procedure of updating the
observer in this section. In Section 4 the theory for finding
a bound of the suboptimality to the result of the previously
mentioned method, is formulated. An example is given in
section 5, showing the described methodology.

2. PROBLEM FORMULATION

2.1 Distributed Systems

Consider linear time-discrete systems

x(t + 1) = Ax(t) + w(t), x(0) = x0,

y(t) = Cx(t) + e(t)
(1)

The noises w and e are assumed to be independent Gaus-
sian with variance R1 and R2, respectively. The systems
are restricted to have a distributed structure, described
by an associated graph. The nodes (called agents) vi,

y1 =C 1x1

y2 =C 2x2

y3 =C 3x3

y4 =C 4x4

Φ12, A21

A31

A23

A34, A43

Fig. 1. Graphical representation of a dis-
tributed system. The arrows shows how
each agent affects the others. The set
E = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (1, 3),
(3, 2), (3, 4), (4, 3)}

i = 1, . . . , n, of the graph represent subsystems of the
complete system, that is the agents are a partition of the
states of the system. The variables in 1 corresponding to
each agent vi are denoted by xi, yi, wi and ei. The edges
of the graph are represented by ordered pairs, (i, j). Let
E be the collection of edges (by convention (i, i) ∈ E , ∀i).
We call agents vi and vj neighbors if at least one of (i, j)
and (j, i) are among the edges. An edge (i, j) means that
agent vi directly influence agent vj through the dynamics
of the system, that is

Aji = 0 if (i, j) /∈ E ,

(throughout the paper, subscripts i, j on matrices will refer
to blocks associated with agents i and j, respectively).
Hence the dynamics matrix has a sparsity structure which
resembles the graph structure of the distributed system. In
the paper we assume that the output of each agent only
depends on the states of that agent. This is represented by
the C matrix being block-diagonal, that is,

C = diag(C1, . . . , Cn),

where Ci is associated with agent vi. One example of the
complete setup is found in Figure 1.

We consider an observer to the system (1) on the form

x̂(t + 1) = Ax̂ + K(y(t) − Cx̂(t))

The dynamics equation for the error x̃ = x − x̂ is the
well-known equation

x̃(t + 1) = (A − KC)x̃(t) + w(t) − Ke(t) (2)

Since we consider a distributed setup, we restrict each
agent vi to only use measurements from neighbors to calcu-
late estimates x̂i(t) of its states. This imposes constraints
on the observer matrix K,

Kij = 0 if (i, j), (j, i) /∈ E (3)

With this restriction, the dynamics matrix A−KC of the
error x̃, satisfies the property that [A − KC]ij = 0 unless
agent i and j are neighbors. Denote

K = {K | ∀K such that Kij = 0 if (i, j), (j, i) /∈ E}

the subspace of matrices K satisfying the structural con-
straint.

3. ITERATIVE DISTRIBUTED OBSERVER
SYNTHESIS

It is a well-known fact that there is a matrix K (with-
out any structural restrictions) which minimizes the cost

E (aT x̃)2 for any a. The solution to this problem is given
by

K = APCT (R2 − CPCT)−1

P = (A − KC)P (A − KC)T + R1 + KR2K
T

The solution is easily obtained by solving the Riccati
equation.

In the same spirit we define the performance of the
observer, for a given a, by

J(K, a) = E (aT x̃)2 (4)

where x̃ satisfies (2). This performance is only defined for
matrices K such that A − KC is stable. The objective is
to find a K that satisfies the restrictions in (3), which
minimizes (4). The following proposition shows how to
determine the gradient to J with respect to K.

Proposition 1. Given the system (2) and a matrix K such
that A − KC is stable, the gradient to J with respect to
K is

∇KJ = 2A
[
KR2 − (A − KC)PCT

]
(5)

where

A = (A − KC)TA(A − KC) + aaT (6)

P = (A − KC)P (A − KC)T + R1 + KR2K
T (7)

Proof. We use the fact that the cost function J(K, a) =
tr(PaaT). In order to find the gradient to this expression,
we will determine the differential dP with respect to K.
For simplicity, let’s make the following denotations

AK = A − KC

M =
(
KR2 − AKPCT

)
dKT

Now, differentiating (7) it is easily seen that dP satisfies
the following Lyapunov equation

dP = AKdPAT
K + M + MT

This means that

dP =

∞∑

t=0

At
K(M + MT)(AT

K)t

Finally, using the expression for dP we have that

tr(dPaaT) = tr

(

2
∞∑

t=0

At
KM(AT

K)taaT

)

= 2tr
(
A
(
KR2 − AKPCT

)
dKT

)

We conclude the proof by using the fact that dZ = tr(Y ·
dXT) ⇒ ∇XZ = Y for matrices XT , Y of size n × p.

The expression in (5) is not in a form appropriate for
distributed calculations. We will show that by introducing
adjoint (or dual) state variables, the expression can be
rewritten to allow a distributed scheme.

Proposition 2. Given a matrix K such that A − KC is
stable, define the systems

x̄(t + 1) = (A − KC)T x̄(t) (8)

λ(t − 1) = (A − KC)λ(t) + (R1 + KR2K
T)x̄(t) (9)

with initial and final condition x̄(0) = a and lim
t→∞

λ(t) = 0.

Then

∇KJ = 2

(
∞∑

t=0

x̄(t)x̄(t)T KR2 −
∞∑

t=0

x̄(t)λ(t)T CT

)

(10)

Proof. Let’s keep the notation AK = A − KC and
introduce RK = R1 + KR2K

T . Then

λ(t) =

∞∑

j=t+1

Aj−t−1
K RK x̄(j) =

=

∞∑

j=0

Aj
KRK(AT

K)j+1x̄(t)

Hence
∞∑

t=0

x̄(t)λ(t)T =
∞∑

t=0

∞∑

j=0

x̄(t)x̄(t)T Aj+1
K RK(AK)T)j =

= AAKP

Using this result in (5) proves the Proposition.

Since we impose a structure on K, the gradient ∇KJ needs
to be projected to the subspace K defining this structure.
This will be a descent direction of J(K, a). To understand
this, consider the restriction of J on K. The gradient of
this function is exactly the projection of ∇KJ on K.

Using Proposition 2 we can iteratively change the matrix
K to lower the cost J in a distributed manner. To
determine each local direction to update the part of K
which concerns agent i, the states of the agents are
simulated for a time interval [0, N]. This is obviously
done by only communicating states to neighboring agents.
After this phase, the adjoint states λi(t) are simulated
for the same time interval [0, N], but now backwards in
time. Still, the structure of AK and RK insures that this
can be done by only communicating with neighboring
agents. Now, each agent can approximate the parts of (10)
corresponding to neighboring agents and hence find a
descent direction to change these parts of K. The method
is formally described in the following Algorithm.

Algorithm 1. At iterate n, let K(n) is the current matrix
and let the time interval for the simulation be [0, N]. To
update K(n) in agent i:

(1) Let x̄(0) = a and simulate the states xi(t) of the
system (8) for times t = 0, . . . , N by communicating
states to and from neighboring agents.

(2) Simulate the adjoint states λi(t) of system (9) for
times t = 0, . . . , N backwards in time (with λ(N) =
0), by communicating adjoint states to and from
neighboring agents

λi(t − 1) =
∑

j∈Ei

(A − K(n)C)ijλj(t)



[R1]ix̄i(t) +
∑

j∈Ei

K
(n)
ij [R2]jK

T
jix̄(t)





where Ei denotes the neighbors of agent i.
(3) For every neighboring agent j, calculate the approxi-

mation of the projected gradient by

Gij = 2

(
N∑

t=0

x̄i(t)[(K
(n))T x̄(t)]j [R2]j

−
N∑

t=0

x̄i(t)λj(t)C
T
j

)

(4) For each neighboring agent j, update

K
(n+1)
ij = K

(n)
ij − γnGij

for some step length γn.
(5) Increase n by one and go to 1) and repeat.

Remark 1. In the equations in Algorithm 1 the notation
[X]j on a matrix or vector X , means the block in X
corresponding to agent j and is used to e.g. separate from
matrix subscripts.

Remark 2. In the equation in step 3, we find [(K(n))T x̄(t)]j .
That this expression only uses local information to agent
j follows easily from the structure of K(n).

An important property follows from the fact that the
calculations only uses local information for each agent.
This is that the complexity of the scheme is linear in
the number of agents (or states) of the system. The
structure of the matrices in the scheme implies that all
matrix multiplications only are made on relatively small
matrices compared to the full size of the matrices. This
can be compared to solving Lyapunov equations which in
standard implementation requires O(n3) flops.

Another property is that introducing more agents to the
system only changes the calculations for the agents which
are to be neighbors to the new ones. Hence it does not
involve much effort to add more agents to existing system.

4. SUBOPTIMALITY BOUND

4.1 Centralized Suboptimality Bound Calculations

When finding the optimal Kalman filter without any re-
striction on the structure of the matrix K, there is a closed
form to determine K. When we introduce restrictions
in the structure of K, there is no general formula for
finding the matrix. The minimization problem is not even
guaranteed to be convex. Since the underlying method of
Algorithm 1 is a descent method, we can only know that
an locally optimal solution is reached. If we can find a
value α ≥ 1 such that we can verify the inequality

J(K, a) ≤ αJ(Kopt, a) (11)

we would know that the performance of the solution K
is within a factor α of the performance of the optimal
solution Kopt. In other words, if we have a way of verifying
that an α close to 1 is such that (11) holds, then we know
that even though the current K might not be optimal, but
at least we will not be able to find another K reducing the
much more. For the remaining part of the paper let

J(K, a) =

N∑

t=0

x̄(t)T (R1 + KR2K
T)x̄(t) (12)

where x̄ satisfies (8). This is a truncated version of the
original cost function.

Theorem 3. If α ≥ 1 is such that for a given sequence of
dual (or adjoint) variables λ(t), with λ(N) = 0

J(K, a) ≤ α min
x̄(t), ξ(t)

x̄(0) = a

N∑

t=0

[

x̄(t)T R1x̄(t) + ξ(t)T R2ξ(t)

− 2λ(t)T
(
x̄(t + 1) − AT x̄(t) + CT ξ(t)

)]

(13)
then

J(K, a) ≤ αJ(Kopt, a) (14)

where
Kopt = argmin

K

min
x̄

J(K, a)

Proof. Assume that for α ≥ 1 and a given sequence λ(t),
that (13) holds. Then we have that

J(Kopt, a) =







min
K,x̄(t)

N∑

t=0

x̄(t)T (R1 + KR2K
T)x̄(t)

subject to: x̄(t + 1) = (A − KC)T x̄(t)

x̄(0) = a

≥







min
x̄(t),ξ(t)

N∑

t=0

x̄(t)T R1x̄(t) + ξ(t)T R2ξ(t)

subject to: x̄(t + 1) = AT x̄(t) − CT ξ(t)

x̄(0) = a

≥ min
x̄(t), ξ(t)

x̄(0) = a

N∑

t=0

[

x̄(t)T R1x̄(t) + ξ(t)T R2ξ(t)

− 2λ(t)T
(
x̄(t + 1) − AT x̄(t) + CT ξ(t)

)]

where the second inequality comes from introducing the
dual variables λ(t). Hence, the inequality gives that if (13),
holds, then so must (14).

The interpretation of the theorem is that over the time
interval [0, N] the cost can’t be reduced by more than a
factor 1

α
by changing K.

Theorem 3 gives a method to calculate a bound on the
suboptimality α if we are given some variables λ(t). This
is done by evaluating J(K, a) = aT λ(0) for the given
K, solving the minimization program in (13) and finally
picking the smallest α ≥ 1 such that (13) holds. Now, we
only need to choose λ(t). As the name suggests, we will
use the adjoint variables (9) which are determined in the
algorithm for updating K. To motivate this choice of dual
variables, we can refer to Pontryagin’s maximum principle.
Another motivation comes from examining

max
λ(t)

min
x̄(t),ξ(t)

N∑

t=0

[

x̄(t)T R1x̄(t) + ξ(t)T R2ξ(t)

−2λ(t)T (x̄(t + 1) − AT x̄(t) + CT ξ(t))
]

︸ ︷︷ ︸

L(x̄(t),ξ(t),λ(t))

The minimization in the expression is exactly what shows
up in the proof of Theorem 3. Hence, the maximization of
this expression would give us J(Kopt, a). Now, to find this
saddle point, we differentiate the objective function L

0 = ∇x̄(t)L = 2(R1x̄(t) − λ(t − 1) + Aλ(t))

0 = ∇ξ(t)L = 2(R2ξ(t) − Cλ(t))

By considering ∇x̄(t)L + K∇ξ(t)L = 0 and substituting

ξ(t) = KT x̄(t) we get (9).

4.2 Distributed Suboptimality Bound Calculations

In Theorem 3 we have not yet introduced the structure
of the matrix K. If this structure is considered, the
minimization problem in the theorem can be split up
to minimization problems for each agent of the system.

This shows that the minimization problem actually can
be solved in a distributed way, where each agent has its
own minimization problem. Also, we understand that the
minimization program has a complexity with a size not
of the complete system but with a size of the separate
subsystems. The following Proposition shows this.

Proposition 4. The minimization problem in Theorem 3
can be separated to minimization problems for each agent
i by

min
x̄i(t), ξi(t)

x̄i(0) = ai

N∑

t=0

[

x̄i(t)
T [R1]ix̄i(t) + ξi(t)

T [R2]iξi(t)

− 2λi(t)
T
(
x̄i(t + 1) + CT ξi(t)

)
− 2

∑

(i,j)∈E

λT
j (t)AT x̄i(t)

]

(15)

Proof. Summing (15) over all agent i in the system, gives
the minimization problem in Theorem 3.

Since the cost J(K, a) for a given matrix K equals aT λ(0),
the left hand side of the inequality in Theorem 3, the cost
J can be separated and evaluated for each agent. If we use
this fact, we can rewrite Theorem 3 such that each agent
determines its own suboptimality bound from only local
measurements and information.

Corollary 5. If αi ≥ 1 are such that for all agent i

aT
i λi(0) ≤

αi min
x̄i(t), ξi(t)

x̄i(0) = ai

N∑

t=0

[

x̄i(t)
T [R1]ix̄i(t) + ξi(t)

T [R2]iξi(t)

− 2λi(t)
T
(
x̄i(t + 1) + CT ξi(t)

)
− 2

∑

(i,j)∈E

λT
j (t)AT x̄i(t)

]

then, letting α = max
i

αi,

J(K, a) ≤ αJ(Kopt, a)

Proof. The proof follows easily from Theorem 3 and
Proposition 4.

Obviously, the bounds that we get from Corollary 5 is
greater than or equal to the bound we get from using
Theorem 3. The bounds from Corollary 5 may even get
much greater than the former. In order to make the
distributed suboptimality bounds approach the centralized
ones, we introduce slack variables dij in each agent i for
each neighboring agent j. Now, each agent solves

aT
i λi(0) ≤

αi

(

min
x̄i(t), ξi(t)

x̄i(0) = ai

N∑

t=0

[

x̄i(t)
T [R1]ix̄i(t) + ξi(t)

T [R2]iξi(t)

− 2λi(t)
T
(
x̄i(t + 1) + CT ξi(t)

)
− 2

∑

(i,j)∈E

λT
j (t)AT x̄i(t)

]

+
∑

(i,j)∈E

dij

)

with the restriction that dji = −dij . The variables dij

will be used for all agents to have equal αi. Using a
consensus scheme, the agents change their dij to increase

x1 x2 x9 x10A21

A12

A9,10

A10,9

· · ·

Fig. 2. Graphical representation of the system in the
example. The arrows shows how each agent affects
the others.

or decrease their suboptimality bound αi. An important
aspect when introducing the extra slack variables is that
the minimization problem only has to be solved once for
each agent. After that the variables dij are tuned in order
to get consensus of the αi.

5. EXAMPLE

The system

x(t + 1) = Ax(t) + w(t)

y(t) = Cx(t) + e(t)

that is considered, consists of 10 agents, where the agents
are connected in a linear fashion, see Figure 2. This leads
to a tri-diagonal dynamics matrix, which, in this example,
is

A =










0.5 0.5
−0.5 0.1 −0.3

0.4 −0.2 −0.5
−0.4 −0.5 0.2

0.2 0.3 −0.1
−0.3 0.1 0.3

0.2 −0.4 −0.4
0.2 −0.2 0.3

0.5 −0.5 0.3
−0.1 −0.1










and with the remaining entries equal to zero. The noise
w(t) and e(t) have variance R1 = I and R2 = I,
respectively. The output are the corrupted states, i.e.
C = I. We wish to determine a Kalman filter matrix K to
minimize the cost

J(K, a) = E (aT x)2

where the constant a is picked form N (0, I). Since the
maximal magnitude of the eigenvalues of A, ρ(A) ≈ 0.81,
we can initially set K = 0 when running Algorithm 1.

In Figures 3-4 shows the result of a simulation when
using both Algorithm 1 and the results in Theorem 3
on the system. The number of update iterations in the
Algorithm is set to be 50. Each update iteration consists
of N = 10 time samples for which the systems (8)-(9) are
simulated. In Figure 3, the plot denoted αexact is the true
suboptimality the Kalman filter K gives rise to, i.e.

αexact =
J(K(n), a)

J(Kopt, a)

Hence, the value for αexact at each iteration is determined
by solving the corresponding Lyapunov equation. In the
figure we also plot α, the bound on the suboptimality
calculated by using Theorem 3 (which is shown to be
possible to do in a distributed way in Section 4.2). In
Figure 4 we find the relative difference of α and αexact

of the plots in Figure 3, i.e.

∆αrel =
a − αexact

αexact

In Theorem 3 it is not guarantee that the right hand side
is always positive. In case the matrix K is far from the
optimal, the result might be negative. In such cases it is
not possible to find a positive α such that the inequality is

satisfied. Iterations where this happens are omitted from
the plots.

In Figure 3 we see that both α and αexact approaches
1. This means that the cost when using matrix K(n) is
approaching the optimal centralized Kalman filter solu-
tion. By analysing Figure 4 we see that the bound of
the suboptimality is not more than a factor 3 from the
actual suboptimality for most times. Also, the relative
difference approaches a value of 1.4. Hence we understand
that the bounds actually gives us valuable information of
the current K(n).

0 5 10 15 20 25 30 35 40 45 50
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Iteration (k)

α

αexact

Fig. 3. Plots of the estimated suboptimality using the
described method and the exact suboptimality.

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration (k)

∆αrel

Fig. 4. Plot of the relative difference between the estimated
and the exact suboptimality.

6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

By using adjoint states, we have seen a method to iter-
atively construct observers which will reduce a globally
defined cost function. This is done by finding a descent
direction to the cost function and change the observer
matrix in that direction. The calculations in the scheme
are shown to be possible to perform using only local
information of the system for each agent, which results

in that the complexity of scheme is linear with respect to
the number of agents.

Using the same adjoint variables that take part in the
synthesis scheme, suboptimality bounds for the current
observer can be determined. The suboptimality bounds
give us an indication of the performance of the current
observer and can function as a stopping criterion for the
iterative synthesis scheme.

6.2 Future Works

We will work on connecting the state feedback synthesis
with the observer synthesis to get a method for output
feedback synthesis. We will for example look at what
happens to the suboptimality bounds in this case.

REFERENCES

Peter Alriksson and Anders Rantzer. Distributed Kalman
filtering using weighted averaging. In Proceedings of the
17th International Symposium on Mathematical Theory
of Networks and Systems, Kyoto, Japan, July 2006.

Karl Johan Åström. Introduction to Stochastic Control
Theory. Dover, New York, 2006. Reprint. Originally
published by Academic Press 1970.

R.E. Kalman. A new approach to linear filtering and
prediction problems. Trans. ASME–J.Basic Eng., 82
(2):35–45, 1960.

Usman A. Khan and Jos M. F. Moura. Distributing the
kalman filters for large-scale systems. IEEE Transac-
tions on Signal Processing, 56(10):4919–4935, Oct 2008.

Karl Mårtensson and Anders Rantzer. Sub-optimality
bound on a gradient method for iterative distributed
control synthesis. In Proc. 19th International Sympo-
sium on Mathematical Theory of Networks and Systems,
Budapest, Hungary, July 2010.

Karl Mårtensson and Anders Rantzer. Gradient methods
for iterative distributed control. In Proceedings of 48th
IEEE Conference on Decision and Control, Shanghai,
China, 2009.

R. Olfati-Saber. Distributed kalman filtering for sensor
networks. In Proc. of the 46th IEEE Conference on
Decision and Control, 2007.

B.S.Y. Rao, H.F. Durrant-Whyte, and J.A. Sheen. A
fully decentralized multi-sensor system for tracking and
surveillance. Int. Journal of Robotics Research, 12(1):
20–44, Feb 1993.

Sikandar Samar, Stephen Boyd, and Dimitry Gorinevsky.
Distributed estimation via dual decomposition. In Proc.
of the European Control Conference, Kos, Greece, July
2007.

D. Spanos, R. Olfati-Saber, and R.M. Murray. Distributed
sensor fusion using dynamic consensus. In Proc. of the
16th IFAC World Congress, Prague, Czech Republic,
2005.

