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Abstract

A previous investigation has shown that at normal angle of incidence, the in-

tegral of the re�ectance over wavelength is bounded for a �at metal backed

absorber. The bound is applicable to any absorber made of linear, time-

invariant, causal and passive materials. We generalize the physical bound to

arbitrary angle of incidence and polarization. Di�erent design examples and

numerical calculations are provided to investigate the inequalities. It is shown

that the theoretical limit for TE polarization results in fair approximations

of the integral of the re�ectance over wavelength but the TM polarization

overestimates the integral value. A simple relation for estimating the opti-

mal thickness of a nonmagnetic absorber is suggested for arbitrary angle of

incidence.

1 Introduction

The main goal of an absorber design is to achieve the desired frequency response
with the minimum possible total thickness. For normal angle of incidence, Rozanov
has shown that the integral of the re�ectance over wavelength is bounded by a the-
oretical limit [10]. The inequality applies to any �at metal backed absorber consist
of linear, time-invariant, causal and passive materials. Therefore, all the meta-
material, electromagnetic band-gap and frequency selective surface based absorber
are included [3�9]. The physical bound can be used e�ciently to estimate the mini-
mum possible thickness of a nonmagnetic absorber for normal incident illumination.
Although conventional methods of absorbers are usually formulated for normal an-
gle of incidence, there are cases that the performance of the absorber at oblique
angles becomes important [2, 9]. For such applications it is necessary to generalize
the physical bound. This paper considers the generalization of the physical bound to
arbitrary angle of incidence. It is shown that theoretical limit becomes polarization
dependent at oblique angles of incidence. To proceed the time dependence e−iωt is
assumed throughout the analysis. The re�ection coe�cient is treated as a function
of the free space wavelength λ and is de�ned as the quotient of the amplitude of the
incident and re�ected electric �elds.

2 The physical bound for normal incidence

The re�ection coe�cient has no poles in the lower half-plane but may have nulls
there. If the nulls are located at λ1, . . . λn, . . . then the function

R̃(λ) = R(λ)
(λ− λ∗1) . . . (λ− λ∗n) . . .

(λ− λ1) . . . (λ− λn) . . .

where ∗ denotes complex conjugation, has neither poles, nor zeros, in the lower half-
plane. Hence the logarithm of R̃(λ) is an analytic function in the lower half-plane
and the Cauchy theorem can be applied. Integrate R̃(λ) along the real axis and close
the contour with semi-circle C∞ in the lower half-plane. Notice that |R̃(λ)| = |R(λ)|
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at real wavelengths and that the real part of ln(R(λ)) is an even function of λ. The
real part of the Cauchy integral over the contour transforms to

Re

∫
C

ln(R̃(λ)) dλ = 2

∫ ∞
0

ln |R(λ))| dλ

+ Re

∫
C∞

ln(R(λ)) dλ

+ Re

∫
C∞

ln

(
(λ− λ∗1) . . . (λ− λ∗n) . . .

(λ− λ1) . . . (λ− λn) . . .

)
dλ = 0

(2.1)

Consider a slab occupying the region 0 < z < d where for z < 0 there is vacuum
and at z = d there is a perfectly conducting plate. An incident plane wave is
re�ected from the slab. The re�ection coe�cient for the electric �eld is denoted R.
The low frequency behavior of the re�ection coe�cient is now used. For a single
slab the zeroth and �rst order terms are R(λ) = −1 − 4πi(µs

µ0
)d/λ where d is the

thickness and µs is the static value of the (total) permeability of the slab [1]. The
value of µs is assumed to be real. Thus along C∞ one can use

ln(R(λ)) = ln(−1) + ln(1 + 4πi
µsd

λµ0

) = iπ + 4πi
µsd

λµ0

+O(λ−2)

Then ∫ ∞
0

ln |R(λ)| dλ = −2π2µsd/µ0 − π
∑
n

Imλn

Energy conservation ensures that |R(λ)| < 1 and hence ln |R(λ)| ≤ 0, for real λ.
The last term on the right hand side is always positive since the imaginary part of
λn is negative. Thus the two terms on the right hand side have di�erent signs and
the following inequality holds:

|
∫ ∞

0

ln |R(λ)| dλ| ≤ 2π2µsd/µ0

where µs is the static permeability and d the thickness of the slab. For an absorber
with N layers these results are generalized to

|
∫ ∞

0

ln |R(λ)| dλ| ≤ 2π2

N∑
n=1

µs,ndn/µ0 (2.2)

Eq. 2.2 can be used to estimate the optimal thickness of a nonmagnetic absorber
for a desired frequency response. By rearranging the above equation it can be shown
that:

d ≥
|
∫∞

0
ln |R(λ)| dλ|

2π2
(2.3)

where d is the total thickness of the nonmagnetic absorber.
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3 Generalization to Oblique Angle of Incidence

Assume a planar structure in the region 0 < z < ` for which the complex permittivity
ε(z) and complex permeability µ(z) are z-dependent. We examine the low frequency
behavior of the re�ection coe�cient for such a structure.

3.1 TE Polarization

The incident �eld is a TE-wave where

E(y, z) = x̂E(z)eikyy

H(y, z) = (ŷHy(z) + ẑHz(z))eikyy

where the transverse component ky = k0 sinα0 of the wave vector is constant. Here
k0 = ω

√
µ0ε0 is the wave number of vacuum and α0 is the angle between the wave

vector of the incident wave and the zaxis. From Maxwell equations it follows that

∂

∂z

(
E(z)
Hy(z)

)
=

 0 iωµ(z)

i

(
ωε(z)−

k2
y

ωµ(z)

)
0

( E(z)
Hy(z)

)

= D(z)

(
E(z)
Hy(z)

) (3.1)

We diagonalize the matrix D(z) in order to decompose the electromagnetic �eld into
right- and left moving waves. The eigenvalues are λ1,2 = ±ikz(z) = ±i(ω2ε(z)µ(z)−
k2
y)

1/2 and the eigenvectors are(
a1

a2

)
=

 1
kz
ωµ

 and

 1

− kz
ωµ


The matrix

Λ(z) =

 1 1
kz(z)

ωµ(z)
− kz(z)

ωµ(z)


diagonalizes the matrix D. The decomposed �elds are(

E+(z)
E−(z)

)
= Λ−1(z)

(
E(z)
Hy(z)

)

=
1

2

1
ωµ(z)

kz(z)

1 −ωµ(z)

kz(z)

( E(z)
Hy(z)

) (3.2)

Divide the region [0, `] into N intervals of length ∆z and assume that D(z) is
constant in each interval. Then(

E(zn)
Hy(zn)

)
= exp(−D(zn+1)∆z)

(
E(zn+1)
Hy(zn+1)

)
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Since D(z) = O(λ−1) the low frequency approximation to �rst order in ∆z/λ is(
E(zn)
Hy(zn)

)
= (I −D(zn+1)∆z)

(
E(zn+1)
Hy(zn+1)

)
From this we get in the limit ∆z → 0 and |λ| → ∞

(
E(0)
Hy(0)

)
=

I − d∫
0

D(z) dz

( E(`)
Hy(`)

)

We use Eq. (3.2) (
E+(0)
E−(0)

)
= Λ−1(0)

(
0

Hy(0)

)
Let E+(0) = 1 and E−(0) = RTE =re�ection coe�cient and solve for RTE. The
result is

RTE = −

1 + 2i
kz(0)

µ0

`∫
0

µ(z) dz

+O(λ−2)

For strati�ed slab with piecewise constant ε and µ the above expression simpli�es
to:

RTE = −

(
1 + 2i

k0z

µ0

N∑
n=1

µndn

)
+O(λ−2)

= −

(
1 + 2i

2π cosα0

λµ0

N∑
n=1

µndn

)
+O(λ−2)

(3.3)

where N is the number of layers in the medium.

3.2 TM Polarization

In the TM-case we assume the electric and magnetic �eldsE(y, z) = (ŷEy(z) + ẑEz(z)) eikyy

and H(y, z) = x̂H(z)eikyy. From Maxwell's equations we get

∂

∂z

(
Ey(z)
H(z)

)
=

 0 −i
k2
z(z)

ωε(z)
−iωε(z) 0

(Ey(z)
H(z)

)

A comparison with the TE-case gives that
kz(0)

ωµ0

is exchanged for
ωε0
kz(0)

and µ(z)

is exchanged for
kz(z)2

ωε(z)
. Thus in the low frequency limit the re�ection coe�cient

reads

RTM = −

1 + 2i
ε0

kz(0)

`∫
0

kz(z)2

ε(z)
dz

+O(λ−2)
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For a strati�ed slab with piecewise constant ε and µ the above expression sim-
pli�es to:

RTM = −

(
1 + 2i

ε0
λ cosα0

N∑
n=1

2π(µnεn/µ0ε0 − sin2 α0)

εn
dn

)
(3.4)

3.3 The physical limit for oblique incidence

The low frequency expressions for the re�ection coe�cients (Eqs. 3.3, 3.4) are utilized
in Eq. (2.1). Calculations show that the integral of the re�ectance over wavelength
(|
∫∞

0
ln |R(λ)|dλ|) has the following upper limits for a multilayered absorber:

2π2 cosα0Re

{
N∑
n=1

(µs,n/µ0)dn

}
TE

2π2

cosα0

Re

{
N∑
n=1

(µs,nεs,n − µ0ε0 sin2 α0)

µ0εs,n
dn

}
TM

(3.5)

From the above equation it is seen that with the increase of angle the theoretical
limit for TE-case decreases but for TM-case it increases unless all layers have ε = ε0
and µ = µ0. Unless ε = ε0 and µ = µ0 in all layers it is seen that as α0 → π/2

|
∫ ∞

0

ln |R(λ)|dλ| ≤

{
0 TE

∞ TM

It is expected that the limit value tends to zero for TE case, since the absorption
bandwidth shrinks at grazing angles for an absorber with �nite thickness. In the next
section it is shown that the upper bound for TM polarization always overestimates
the integral value and consequently it is of no importance that it tends to in�nity.

4 Numerical Investigation of the Bounds

The applicability of the extracted physical bounds are investigated in this section.
For this reason a versatile absorber is considered that can adapt easily to di�erent
design goals. The absorber is a single resistive layer capacitive circuit absorber [5]
with the schematic shown in Fig. 1. Four di�erent design cases are considered where
the absorption takes place for:

• normal angle of incidence, Fig. 2.

• TE polarization at 45◦, Fig. 3.

• TM polarization at 45◦, Fig. 4.

• both normal and 45◦ angle of incidence and both polarizations, Fig. 5.
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Figure 1: The schematic of the single resistive layer absorber. The FSS layer is a
square patch periodic array.

Design ID d1( mm) d2( mm) Thickness εr1 εr2
Normal 2.4 3.2 6 1 2.5
TE - 45◦ 2.4 4.7 7.5 1 1.95
TM - 45◦ 3.9 4.1 8.4 1.13 2.54

All 3.3 5 8.7 2.9 2.1

Table 1: The thicknesses and permittivity of the dielectric layers for di�erent design
goals. (dc = 0.2 mm & εrc = 4.4.)

The corresponding values of the dielectric layers thicknesses and permittivities are
tabulated in Table 4 for each di�erent design case. Now for each design case, the
numerical value of the integral of the re�ectance over wavelength is calculated (fre-
quency interval 0.01�50GHz) and is compared to the theoretical limits of Eq. (3.5).
The calculations are given in Tables 4-4.

From the calculated values it is seen that in all cases, the upper bound for the
TM case overestimates the value of the integral. Even in the case that the absorber is
designed for TM polarization the ratio between the integral value and the theoretical
limit is small (≈ 0.67). Therefore, the bound for TM polarization cannot be used

Re�ection Coe�cient |
∫

ln |R(λ)|dλ| Upper Bound Ratio
RN 107.03 118.43 0.9
RTE 76.63 83.75 0.91
RTM 47.18 114.86 0.41

Table 2: Comparison of the integral of re�ectance and the upper bound for the
absorber designed for normal angle of incidence.
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Figure 2: The frequency response of the absorber when it is designed for good
performance at normal angle of incidence.
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Figure 3: The frequency response of the absorber when it is designed for good
performance at 45◦ angle of incidence and TE polarization.

Re�ection Coe�cient |
∫

ln |R(λ)|dλ| Upper Bound Ratio
RN 90.45 148.04 0.61
RTE 94.33 104.68 0.9
RTM 41.6 140.96 0.3

Table 3: Comparison of the integral of re�ectance and the upper bound for the
absorber designed for 45◦ and TE polarization.
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Figure 4: The frequency response of the absorber when it is designed for good
performance at 45◦ angle of incidence and TM polarization.
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Figure 5: The frequency response of the absorber when it is designed for both
normal and 45◦ angles of incidence and both polarizations.

Re�ection Coe�cient |
∫

ln |R(λ)|dλ| Upper Bound Ratio
RN 115.54 165.81 0.7
RTE 107.87 117.24 0.92
RTM 109.09 162.52 0.67

Table 4: Comparison of the integral of re�ectance and the upper bound for the
absorber designed for 45◦ and TM polarization.
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Re�ection Coe�cient |
∫

ln |R(λ)|dλ| Upper Bound Ratio
RN 140.65 171.73 0.82
RTE 110.24 121.43 0.91
RTM 112.78 192.48 0.58

Table 5: Comparison of the integral of re�ectance and the upper bound for the ab-
sorber designed for both normal and 45◦ angles of incidence and both polarizations.

for estimation of the optimal thickness of a nonmagnetic absorber. Fortunately, the
opposite happens for the bound in case of TE polarizations. In almost every design
case, it results in fair approximation of the integral values with ratios larger than
0.9 (the ideal case is 1). Consequently, the Eq. (2.3) can be generalized easily to
arbitrary angle of incidence for a nonmagnetic absorber as the following:

d ≥
|
∫∞

0
ln |R(λ)| dλ|

2π2 cosα0

(4.1)

where α0 is the angle of incidence.

5 Conclusion

The physical bound of a �at metal backed absorber is generalized to arbitrary angle
of incidence. To achieve this goal, the asymptotic behavior of the re�ection coe�-
cient at low frequency is studied. It is shown that at oblique angles of incidence the
theoretical limit becomes polarization dependent. Design examples and numerical
calculations are provided to examine the applicability of the derived bounds. It is
shown that the theoretical limit for the TM polarization is not useful in estimating
the optimal thickness of a nonmagnetic absorber. In contrary, the TE polarization
is able to perform the task e�ciently. Simple relation is suggested for calculating
the optimal thickness of a nonmagnetic absorber for a desired frequency response at
an arbitrary angle of incidence.
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