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ABSTRACT 
There is often a need to predict the impact of alterations in 
one variable on another variable. This is especially the 
case in cancer research, where much effort has been made 
to carry out large-scale gene expression screening by 
microarray techniques. However, the causes of this 
variability from one cancer to another and from one gene 
to another often remain unknown. In this study we present 
a systematic procedure for finding genes whose 
expression is altered by an intrinsic or extrinsic 
explanatory phenomenon. The procedure has three stages: 
preprocessing, data integration and statistical analysis. We 
tested and verified the utility of this approach in a study, 
where expression and copy number of 13,824 genes were 
determined in 14 breast cancer samples. The expression of 
270 genes could be explained by the variability of gene 
copy number. These genes may represent an important set 
of primary, genetically “damaged” genes that drive cancer 
progression.   
 
 

 
1. INTRODUCTION 

 
Gene microarray experiments enable large-scale studies of 
gene expression.  Gene expression patterns are useful for 
finding significant biological differences between samples 
from different kinds of tumors [1,7]. Most of the 
published studies on gene microarrays are descriptive. 
These studies typically describe genes and clusters of 
genes that are able to discriminate between two or more 
different tumor types, or between two or more biological 
treatments. Very little information is available on the 
underlying causes of the variability seen in gene 
expression patterns. We are interested in attributing the 
variability of expression levels of genes across multiple 
samples to either intrinsic (DNA sequence, biological 
role) or extrinsic features (measured with another method) 
of the genes. In this study we present a general and 
systematic procedure, which can be used in explaining 

gene expression variation across a set of experiments or 
samples. 

The procedure consists of three stages: preprocessing, 
data integration and statistical analysis. Each stage is 
possible to implement according to purpose of the 
experiment. As preprocessing is very much dependent on 
the data, we are not discussing it in details. The heart of 
the procedure is data integration, where data from an 
explanatory phenomenon are combined with the gene 
expression data. In the statistical analysis stage the genes 
are ranked so that the top of the resulting list contains 
genes whose expression levels are very likely due to the 
explanatory phenomenon. 

We assume that before the procedure is applied the 
phenomenon explaining the gene expression variation is 
defined. Furthermore, we assume that for each gene 
expression ratio there is a corresponding explanatory 
value. The explanatory value could be another microarray 
measurement, gene ontology term, promoter sequence etc. 
The procedure allows missing values, so actually we 
assume that for each gene expression value, there is 
possibility to obtain an explanatory value. We are not 
making normal distribution assumptions in any stage of 
the procedure. Therefore our procedure is truly general in 
the sense that it is not restricted to process only normal 
distributed data. 

As an example of usefulness of the procedure, we 
provide a case study where we determine the impact of 
gene copy-number on gene expression levels in breast 
cancer. 

The order of the study is as follows. First we explain 
the principles of our procedure, i.e. how to determine the 
influence of an arbitrary phenomenon to gene expression 
levels. This theoretical discussion is followed by a case 
study where the procedure is used for finding genes that 
are overexpressed as a result of increased copy-number. In 
the end we discuss modifications of the procedure when 
underexpressed genes are studied. 

 
  



2. PRINCIPLES OF THE PROCEDURE 
 

The procedure has three main stages: Preprocessing, 
integration of the datasets and statistical analysis. These 
stages are illustrated in Figure 1. 
 
 

 
 

Figure 1. Block diagram of the procedure. 
 
The result of the procedure is a ranked list of genes. 

Top genes in the list are the ones having altered gene 
expression profile as a result of the explanatory 
phenomenon. 

 
2.1 Preprocessing 
 
In the preprocessing stage the data are modified so that 
they are comparable. Actual preprocessing algorithms are 
dependent on the data and the purpose of the experiment, 
so the scale of applied preprocessing and normalization 
methods is very large. There are no assumptions regarding 
to preprocessing, so any preprocessing technique is 
applicable.  

 
 2.2. Data integration 
 
Data integration is done in two phases. The purpose of the 
first phase is to find data points from explanatory data set 
that may explain gene expression variation. This phase is 
referred as labeling. The second phase utilizes results 
from the labeling phase and associates them to gene 
expression data, and is referred to as weighting. 

Labeling. In the labeling phase the explanatory data is 
divided into two groups. All data points in the first group 
(group 0) correspond to the situation where the following 
H0 hypothesis holds: "this observation does not belong to 
the group that explains gene expression variation" and the 
data in the second group (group 1) to the H1 hypothesis: 
"this observation belongs to the group that explains gene 
expression variation". The result of labeling is an index 

matrix, where entries are zeros and ones corresponding to 
the H0 or H1 hypothesis, respectively. The labeling matrix 
may contain missing values if there are such in the 
explanatory data set. Labeling is possible to execute with 
several statistical tests, clustering algorithms or a priori 
knowledge.  

Weighting. In the weighting phase the index matrix 
obtained from the labeling phase is used to divide gene 
expression values into two groups. Then the goodness of 
separation (referred to as weight) for each gene is 
computed. The weight tells how well the expression 
values of one gene are separated into the two groups 
defined in the labeling phase using the explanatory data 
for that gene. Again, this phase can be utilized in almost 
arbitrary many ways. However, the algorithm should 
result in large weights when separation between the 
groups is good. One simple weighting method is to 
compute the mean of both groups and calculate their 
difference. 

 
 2.3. Statistical analysis 
 
When a gene has large weight that does not necessarily 
mean that the gene's expression variation can be explained 
by the explanatory phenomenon since, depending on the 
algorithm chosen in the labeling and weighting phases, 
some misclassifications are very likely to occur. 
Therefore, the final stage in our procedure is to analyze 
statistically the relevance of the weighting. One powerful 
statistical test class is permutation tests, which are used in 
this study. [4]  

We used the permutation tests to test whether a large 
weight for a gene is really due to the explanatory 
phenomenon or not. The test is executed by permutating 
the label vector of the gene. The number of permutations 
is proportional to the number of samples in the groups 0 
and 1. The number of data points belonging to group 0 
and group 1 remains the same. In other words, 
permutation results in random groups whose sizes are the 
same as in the original grouping. The permutated labels 
are used for computing a new weight, which is compared 
to the old (original) weight. Pseudo-code for assessing α-
value for one gene is illustrated below.  

 
IN:  LabelVector (labels of gene x) 
 cDNAData (cDNA values of gene x) 
 
OUT:  α-value 
 
n := number of rounds, e.g. 10,000  
counter := 0 
wold = CompWeight(cDNAData, LabelVector) 
 



 
repeat n times 
 PermLabels := Permutate(LabelVector) 
 wnew := CompWeight(cDNAData, PermLabels) 

If  wnew > wold 

  counter := counter +1 
 end 
end  
α := counter/n 
 
The result of the whole procedure is the probability that 

the null-hypothesis, i.e. “large weight is due to random 
event” is erroneously rejected. This probability is called 
the α-value.  

Finally the genes are ranked according to their α-
values so that the gene having the smallest α-value is 
ranked first, the gene having the second smallest α-value 
second etc.  

 
3. CASE STUDY  

 
In this section we illustrate how the procedure we have 
presented in earlier sections can be used for explaining the 
variation in gene expression profiles of breast cancer. We 
have elaborated the biological aspects of this case in [3].  

Most functional genomic studies of cancer and other 
diseases are based on assessing steady-state expression 
levels of thousands of genes by cDNA microarrays. Our 
aim is to identify underlying causes of these patterns, a 
process that would eventually enable a mechanistic 
understanding of the dysregulation of gene expression in 
cancer. One important determinant of gene expression in 
cancer is variation in gene copy-number (by e.g. gene 
amplification), which can be measured by comparative 
genomic hybridization (CGH) [5,6]. We have used 
microarrays containing 13,824 genes to determine both 
the levels of gene expression (mRNA) and copy number 
(DNA) in 14 breast cancer specimens. 

We arrange the expression data as a matrix with 
13,824 rows and 14 columns. The explanatory 
phenomenon in this case is copy-number variation, which 
is observed by the CGH microarray experiment. 

The first stage is preprocessing. We deleted 
measurements having low quality. In the cDNA data we 
discarded all ratios whose mean red (test sample) and 
green (reference sample) intensities were under 100 
fluorescent units. Moreover, we discarded values whose 
area was less than 50 pixels. In the CGH data we deleted 
all ratios whose green intensity was below 100 fluorescent 
units. We did not exclude any gene from further analysis; 
only ratios of poor quality were discarded and treated as 
missing values. Then, CGH and cDNA calibrated intensity 
ratios were log-transformed and normalized using median 

centering of the values in each cell line. Furthermore, 
cDNA ratios for each gene across all 14 cell lines were 
median centered. 

Preprocessing was followed by data integration. In 
labeling we assigned CGH values over 1.43 (5% of all 
CGH values) to group 1 (amplified) and the rest to group 
0 (not amplified). In the weighting phase, we used the 
signal-to-noise statistic [2]: 
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where m1, σ1 and m0, σ0 denote the means and standard 
deviations for the expression levels for amplified and non-
amplified cell lines, respectively. 

Finally we applied a permutation test. For every gene 
we did 10,000 permutations and obtained an α-value for 
every gene. A low α-value indicates a strong association 
between gene expression and gene amplification. Figure 2 
illustrates sorted α-values when α ∈[0,0.1].   

 

 
 
Figure 2. Sorted α-values (α< 0.1). 
 
We defined our cut-point in α to be 0.05 (significant) 

resulting in 270 genes, as illustrated in Figure 2, that may 
be targets of gene amplification events in breast cancer. 
This set of genes includes several known oncogenes in 
breast cancer, such as the HER-2/ERBB2 oncogene as 
well as multiple novel genes included in amplicons at 
defined chromosomal loci, such as at 17q12, 17q23, 
20q13 and 8q.  

 
4. DISCUSSION  

 
We have shown how this statistical analysis enabled us to 
quickly identify 270 genes whose expression levels 



potentially were due to an underlying gene amplification 
event in cancer. Since genes that undergo amplification or 
other “genetic damage” in cancer may be the primary 
“driver genes” of cancer development and progression, the 
procedure enabled us to quickly identify a small subset of 
genes for further analysis. This approach is therefore 
highly valuable in trying to prioritize and simplify the 
most essential gene expression information in cancer. 

In the analysis of low-level expression changes it is 
very hard to distinguish whether the ratio is small due to 
biological reasons or noise. Signal-to-noise statistics 
consist of means and standard deviations, which are 
known to be sensitive to noise. Therefore, in the analysis 
of low-level expression changes, we need to assume more 
of the data and construct a model for the noise. After 
modeling the noise, we may try to filter the noise out from 
the measurements and use signal-to-noise statistics, or try 
an alternative weighting algorithm. For example, neural 
network based approaches such as support vector 
machines or learning vector quantization may turn out to 
be good choices. 

In summary, we have developed a procedure that could 
be used in studies where the underlying causes of gene 
expression variations are examined. When we applied the 
procedure to explain overexpression in breast cancer study 
[3], the procedure was able to identify high-impact 
primary candidate gene targets for development of 
therapies and for sub-classification of breast cancer.  
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