
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Simulation of Networked Control Systems Using TrueTime

Cervin, Anton; Ohlin, Martin; Henriksson, Dan

2007

Link to publication

Citation for published version (APA):
Cervin, A., Ohlin, M., & Henriksson, D. (2007). Simulation of Networked Control Systems Using TrueTime. Paper
presented at 3rd International Workshop on Networked Control Systems: Tolerant to Faults, Nancy, France.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1ae6a7e6-acd3-4560-9162-beed411529fd


SIMULATION OF NETWORKED CONTROL SYSTEMS USING

TRUETIME

Anton Cervin, Martin Ohlin, Dan Henriksson

Department of Automatic Control LTH

Lund University, Sweden

anton@control.lth.se

Abstract: This paper gives a brief introduction to the TrueTime simulator and then gives
several examples on how TrueTime can be used to simulate networked control systems.
Among the examples are time-triggered and event-based networked control and AODV
routing in wireless ad-hoc networks.

1. INTRODUCTION

TrueTime (Cervin et al., 2003; Andersson et al., 2005)
is a Matlab/Simulink-based simulator for networked
and embedded control systems that has been devel-
oped at Lund University since 1999. The simulator
software consists of a Simulink block library (see
Fig. 1) and a collection of MEX files. The kernel block
simulates a real-time kernel executing user-defined
tasks and interrupt handlers. The various network
blocks allow nodes (kernel blocks) to communicate
over simulated wired or wireless networks. The latest
release, TrueTime 1.5, also features a couple of stand-
alone network interface blocks that makes it simpler
to develop networked control simulations.

Fig. 1. The TrueTime 1.5 block library. True-
Time is freeware and can be downloaded from
www.control.lth.se/truetime.

In contrast to other co-simulation tools such as State-
flow/Simulink or Ptolemy II (Baldwin et al., 2004),
TrueTime is not based on a mathematical model-
ing formalism. Rather, a TrueTime simulation is pro-
grammed in much the same way as a real embedded
system. The application is written in Matlab code or
in C++. The main difference from real programming
is that the execution/transmission times must be spec-
ified by the developer. This approachmakes TrueTime
a very flexible co-simulation tool. Also, the step from
simulation code to production code is not that large.
The main drawback is that the simulation models are
not amenable to analysis.

In this paper, we will focus on how networked control
applications can be simulated using TrueTime. Fol-
lowing a brief overview of TrueTime in Section 2, a
number of networked control examples are given in
Section 3. An overview of related simulation tools are
given in Section 4, and the conclusions are given in
Section 5.

2. A BRIEF OVERVIEW OF TRUETIME

2.1 The Kernel Block

The TrueTime Kernel block simulates a computer
node with a generic real-time kernel, A/D and D/A
converters, and network interfaces. The block is con-
figured via an initialization script. The script may be



parametrized, enabling the same script to be used for
several nodes.

In the initialization script, the programmer may cre-
ate objects such as tasks, timers, interrupt handlers,
semaphores, etc., representing the software executing
in the computer node. During a simulation, the kernel
repeatedly calls the code functions of the tasks and
interrupt handlers. The code functions may in turn
contain arbitrary function calls, but they must be writ-
ten in a special format that specifies the execution time
of each code segment. Another restriction is that local
variables do not retain their values between segments.

The initialization script and the code functions may be
written in either Matlab code or in C++. In the C++
case, the initialization script and the code functions
are compiled using Matlab’s MEX facility, rendering
a much faster simulation.

The TrueTime Kernel block supports various pre-
emptive scheduling algorithms such as fixed-priority
scheduling and earliest-deadline-first scheduling. It is
also possible to specify a custom scheduling policy.

2.2 The Network Blocks

The TrueTime Network block and the TrueTimeWire-
less Network block simulate the physical layer and the
medium-access layer of various local-area networks.
The types of networks supported are CSMA/CD
(Ethernet), CSMA/AMP (CAN), Round Robin (To-
ken Bus), FDMA, TDMA (TTP), Switched Ethernet,
WLAN (802.11b), and ZigBee (802.15.4). The blocks
only simulate the medium access (the scheduling),
possible collisions or interference, and the point-to-
point/broadcast transmissions. Higher-layer protocols
such as TCP/IP are not simulated (but may be imple-
mented as applications in the nodes).

The network blocks are mainly configured via their
block dialogues. Common parameters to all types of
networks are the bit rate, the minimum frame size, and
the network interface delay. For each type of network
there are a number of further parameters that can be
specified. For instance, for the wireless networks it
is possible to specify the transmit power, the receiver
signal threshold, the pathloss exponent (or a special
pathloss function), the ACK timeout, the retry limit,
and the error coding threshold.

A TrueTime model may contain several network
blocks, and each kernel block may be connected to
more than one network. Each network is identified by
a number, and each node connected to a network is
addressed by a number that is unique to that network.

The network blocks may be used in two different
ways. The first way is to have one kernel block for
each node in the network. The tasks inside the kernels

Fig. 2. Networked control system with a plant, four
computer nodes, and a network.

can then send and receive arbitrary Matlab structure
arrays over the network using certain kernel primi-
tives. This approach is very flexible but requires some
amount of programming to configure the system. The
second way is to use the stand-alone network inter-
face blocks. These blocks eliminate the need of kernel
blocks, but they restrict the network packets to contain
scalar or vector signal values. Finally, it is possible to
mix kernel blocks and network interface blocks in the
same network.

3. EXAMPLES

3.1 Configuring a Networked Control Application

The first example illustrates the steps needed to
configure a networked control application in True-
Time. We will consider the model in Fig. 2 (example
distributed.mdl in the TrueTime distribution),
in which four nodes are connected to a network. The
Sensor node samples the process output periodically
and sends the measurement values to the Controller
node over the network. The arrival of a sensor packet
to the Controller node triggers a task that computes a
new control signal. The control signal is then sent to
the Actuator node, where it is applied to the process.

In this example, each node contains a TrueTime Ker-
nel block. Focusing on the Controller node, the initial-
ization of the kernel involves specifying the number
of analog inputs and outputs, selecting the scheduling
policy, creating the control task, and configuring the
network interface. The complete Matlab code for this
is given below:

function controller_init

% Initialize the kernel



nbrInputs = 1;

nbrOutputs = 0;

sched = ’prioFP’; % Fixed-priority sched.

ttInitKernel(nbrInputs, nbrOutputs, sched);

% Controller parameters

h = 0.010; % Sampling period

N = 100;

Td = 0.035;

K = 1.5;

% Create task data (local memory)

data.u = 0.0;

data.K = K;

data.ad = Td/(N*h+Td);

data.bd = N*K*Td/(N*h+Td);

data.Dold = 0.0;

data.yold = 0.0;

% Create control task

deadline = h;

prio = 2;

ttCreateTask(’ctrltask’, deadline, prio, ...

’ctrlcode’, data);

% Initialize network interface

ttCreateInterruptHandler(’nw_handler’, ...

prio, ’msgRcv’);

ttInitNetwork(3, ’nw_handler’); % node #3

The local memory of the task (in this case controller
parameters and states) is represented by a Matlab
structure array (data). Each time the task is invoked,
the code function ctrlcode.m should be executed.
This function is given below:

function [exectime,data] = ctrlcode(seg,data)

switch seg,

case 1,

y = ttGetMsg; % Get sensor message

r = ttAnalogIn(1); % Read reference value

P = data.K*(r-y);

D = data.ad*data.Dold + ...

data.bd*(data.yold-y);

data.u = P + D;

data.Dold = D;

data.yold = y;

exectime = 0.0005;

case 2,

ttSendMsg(2,data.u,80); % Send to actuator

exectime = -1; % finished

end

The code is this case consists of two segments, corre-
sponding to the two cases in the switch statement.
In the first segment, the sensor value is read from the
network interface and the reference is read from an
analog input. The control signal in then computed.
This takes 0.5 ms simulated time, as specified by the
exectime return value. In the second segment, the
control signal is sent to the actuator.

In the last line of the initialization script, an interrupt
handler is connected to the network interface. Each
time a packet arrives, the function msgRcv should be

executed. This minimal code function simply creates
an instance (a job) of the controller task:

function [exectime,data] = msgRcv(seg, data)

ttCreateJob(’ctrltask’)

exectime = -1; % finished

To complete the configuration, similar functions (an
initialization function, a task code function, and an in-
terrupt handler code function)must be written for each
of the nodes. Finally, the network must be configured
(via its block dialogue) to have 4 nodes, and the other
relevant network parameters must be chosen.

3.2 Using the Stand-Alone Network Interface Blocks

The second example illustrates how the new, stand-
alone network interface blocks can be used to simulate
time-triggered or event-triggered networked control
loops. In this case, because there are no kernel blocks,
no initialization scripts or code functions must be
written.

The networked control system in this example consists
a plant (an integrator), a network, and two nodes: an
IO device (handling AD and DA conversion) and a
controller node. At the IO node, the process is sam-
pled by a ttSendMsg network interface block, which
transmits the value to the controller node. There, the
packet is received by a ttGetMsg network interface
block. The control signal is computed and the con-
trol is transmitted back to the IO node by another
ttSendMsg block. Finally, the signal is received by a
ttGetMsg block at the IO and actuated to the process.

Two versions of the control loop will be studied. In
Fig. 3, both ttSendMsg blocks are time-triggered. The
process output is sampled every 0.1 s, and a new
control signal is computed with the same interval but
with a phase shift of 0.05 s. The resulting control
performance and network schedule is shown in Fig. 4.
The process output is kept close to zero despite the
process noise. The schedule shows that the network
load is quite high.

In the second version of the control loop, the ttSendMsg
blocks are event-triggered instead, see Fig. 5. A sam-
ple is generated whenever the magnitude of the pro-
cess output passes 0.25. The arrival of a measurement
sample at the controller node triggers—after a delay—
the computation and sending of the control signal back
to the IO node. The resulting control performance and
network schedule is shown in Fig. 6. It can be seen
that the process is still stabilized, althoughmuch fewer
network messages are sent.



Fig. 3. Time-triggered networked control system using
the stand-alone network interface blocks. The
ttSendMsg blocks are driven by periodic pulse
generators.

0 2 4 6 8 10
−1

0

1

P
ro

c
e
s
s
 O

u
tp

u
t

0 2 4 6 8 10
Time

N
e
tw

o
rk

 S
c
h
e
d
u
le

Fig. 4. Plant output and network schedule for the time-
triggered control system.

3.3 AODV Routing in Wireless Networks

The TrueTime Wireless Network block simulates
communication in an ad-hoc network, i.e., no central-
ized access point or infrastructure exists to coordinate
the traffic across the network. In such networks it is
necessary to implement decentralized functionality to
be able to route the traffic over the network. This
example describes a TrueTime implementation of one
such ad-hoc wireless routing protocol.

AODV (Perkins and Royer, 1999) stands for Ad-hoc
On-Demand Distance Vector routing, and contrary to
most routing mechanisms, it does not rely on periodic
transmission of routing messages between the nodes.
Instead, routes are created on-demand, i.e., only when
actually needed to send traffic between a source and a
destination node. This leads to a substantial decrease
in the amount of network bandwidth consumed to

Fig. 5. Event-triggered networked control system us-
ing the stand-alone network interface blocks.
The process output is sampled by the ttSendMsg
block when the magnitude exceeds a certain
threshold.
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Fig. 6. Plant output and network schedule for the
event-triggered control system.

establish routes. Below follows a brief description of
the functionality of AODV. For a complete definition
of the AODV protocol, see (Perkins and Royer, 2003).

AODV uses three basic types of control messages
in order to build and invalidate routes: route request
(RREQ), route reply (RREP), and route error (RERR)
messages. These control messages contain source and
destination sequence numbers, which are used to en-
sure fresh and loop-free routes.

A node that requires a route to a destination node
initiates route discovery by broadcasting an RREQ
message to its neighbors. A node receiving an RREQ
starts by updating its routing information backwards
towards the source. If the same RREQ has not been
received before, the node then checks its routing table
for a route to the destination. If a route exists with a



sequence number greater than or equal to that con-
tained in the RREQ, an RREP message is sent back
towards the source. Otherwise, the node rebroadcasts
the RREQ. When an RREP has propagated back to
the original source node, the established route may be
used to send data. Periodic hello messages are used
to maintain local connectivity information between
neighboring nodes. A node that detects a link break
will check its routing table to find all routes which use
the broken link as the next hop. In order to propagate
the information about the broken link, an RERR mes-
sage is then sent to each node that constitute a previous
hop on any of these routes.

To implement AODV in TrueTime, two dedicated
tasks are created in each node to handle the AODV
send and receive actions, respectively. The AODV
Send task is activated from the application code as a
data message should be sent to another node in the
network. The AODV Receive task handles incoming
AODV control messages and forwarding of data mes-
sages. Communication between the application layer
and the AODV layer is handled using mailboxes.

The AODV Send task operates according to the fol-
lowing pseudo-code:

if data message received from application then
check the routing table for a route to the destination;
if a valid route exists then
forward data message to next hop on route;
update expiry time of route entry;

else

initiate route discovery by broadcasting RREQ message;
buffer data message until route has been established;

end if

else if notified of established new route then
send all buffered data messages to destination

end if

The AODV Receive task performs the following:

if receiving data message then
update expiry timer for reverse route entry to source;
if this node is the destination then
Pass data message to application;

else

forward data message to next hop on route;
update expiry timer of route entry;

end if

else

if message_type == RREQ then
if first time this RREQ is received then
enter RREQ in cache;
create or update route entry to source;
check the routing table for a route to the destination;
if a route exists then
send RREP message back towards source;

else

update and rebroadcast the RREQ;
end if

end if

else if message_type == RREP then
check the routing table for a route to the destination;
if no route exists then
create route entry to destination;

Fig. 7. Large AODV routing example involving seven
mobile nodes and a wireless network.

else if route entry exists but should be updated then
update route entry to destination;

end if

if this node is the original source then
notify the AODV send task about the new route;

else if route to destination was created or updated then
update reverse route entry towards source;
propagate RREP to next hop towards source;

end if

else if message_type == RERR then
find and invalidate all affected route entries;
propagate the RERR to all previous hops on the routes;

end if

end if

Each node also contains a periodic task, responsible
for broadcasting hello messages and determine local
connectivity based on hello messages received from
neighboring nodes. Finally, each node has a task to
handle timer expiry of route entries.

A TrueTime model with seven nodes connected to
a wireless network is shown in Fig. 7. Each node
contains a kernel block that runs the AODV algorithm
and integrators that represent the x and y positions of
the node, see Fig. 8. The analog outputs of the kernel
are used to move the node, and the analog inputs can
be used to sense the current location. In the model,
there is also a block that animates the position of
the nodes as the simulation progresses, see Fig. 9.
In the example, node 1 wants to periodically send
data to node 7. The initial route that is established
is 1 → 3 → 5 → 7. However, at one point in time,



Fig. 8. Mobile node containing a TrueTime kernel and
two integrators representing the x and y positions
of the node.

Fig. 9. Animation in the AODV example showing
the positions and communication radius of the
mobile nodes.

node 5 starts to move, which leads to the route being
broken. Eventually, node 6 repairs the route bymoving
in between node 4 and 7.

4. RELATEDWORK

Today there exists a number of general network sim-
ulators. One of the most well-known is ns-2 (The
VINT Project, 2004), which is a discrete-event sim-
ulator for both wired and wireless networks with
support for, e.g., TCP, UDP, routing, and multi-cast
protocols. It also supports simple movement models
for mobile applications. The channel model in ns-
2 is quite simple (Dricot and Doncker, 2004). ns-
2 makes the assumption that messages are received
without errors if the power level is above a certain
threshold. Packets with power levels below the same
threshold are simply dropped. The packet with the
largest power level is received if two transmissions
occur at the same time, and the difference in power

level between them is larger than 10 dB. Otherwise
both packets are dropped. Three different path-loss
models are available, two of them are deterministic
and form ideal circles where the messages are received
perfectly inside and dropped outside. The third model
is called the shadowing model and adds some proba-
bilistic changes to the path-loss by using a zero mean
Gaussian variable.

Another discrete-event computer network simulator is
OMNeT++ (OMNeT++ Community, 2004). It con-
tains detailed IP, TCP, and FDDI protocol models and
several other simulation models (file system simulator,
Ethernet, framework for simulation of mobility, etc.).
It uses the same path-loss function as the TrueTime
wireless block, errors are however treated in a more
detailed manner. It distinguishes between header and
data part of packages and also between different mod-
ulation techniques. Compared to these simulators, the
network simulation part in TrueTime is in some cases
more simplistic. However, the strength of TrueTime
is the co-simulation facilities that make it possible
to simulate the latency-related aspects of the network
communication in combination with the node compu-
tations and the dynamics of the physical environment.
Rather than basing the co-simulation tool on a general
network simulator and then try to extend this with ad-
ditional co-simulation facilities, the approach has been
to base the co-simulation tool on a powerful simula-
tor for general dynamical systems, i.e., Simulink, and
then add support for simulation of real-time kernels
and the latency aspects of network communication to
this. An additional advantage of this approach is the
possibility to make use of the wide range of toolboxes
that are available for MATLAB/Simulink. For exam-
ple, support for virtual reality animation.

There are also some network simulators geared to-
wards the sensor network domain. TOSSIM (Levis et
al., 2003) compiles directly from TinyOS code and
scales very well. Its radio and interference model is
however very simplistic, with either perfect transmis-
sions or predefined error rates which can be changed
at runtime. COOJA (Österlind, 2006) is similar to
TOSSIM but simulates the Contiki OS instead. Net-
work in a box (NAB) (NAB, 2004) is another simu-
lator for large-scale sensor networks. Another exam-
ple is J-Sim, a general compositional simulation en-
vironment that includes a generalized packet switched
network model that may be used to simulate wireless
LANs and sensor network (Tyan, 2002). Again, these
types of simulators generally lack the possibility to
simulate continuous-time dynamics and to simulate
the inner workings of the nodes at the thread and
interrupt handler level, features that have been present
in TrueTime since the early versions.

A few other tools have been developed that support co-
simulation of real-time computing systems and control
systems. RTSIM (Palopoli et al., 2000) has a module



that allows system dynamics to be simulated in par-
allel with scheduling algorithms. XILO (El-Khoury
and Törngren, 2001) supports the simulation of system
dynamics, CAN networks, and priority-preemptive
scheduling. Ptolemy II is a general purpose multi-
domain modeling and simulation environment that in-
cludes a continuous-time domain, and a simple RTOS
domain. Recently it has been extended in the sensor
network direction (Baldwin et al., 2004). In (Branicky
et al., 2003) a co-simulation environment based on ns-
2 is presented. The ns-2 simulator has been extended
with an ODE-solver for dynamical simulations of the
controller units and the environment. However, this
tool lacks support for real-time kernel simulation.

5. CONCLUSION

TrueTime is a flexible tool for simulation of networked
control systems. Using TrueTime, it is possible to do
co-simulation of

• the computations inside computer nodes, includ-
ing tasks and interrupt handlers,

• the scheduling algorithm in the nodes,
• the wired/wireless communication between nodes,
• the dynamics of the physical plant under control,
• the sensor and actuator dynamics,
• the dynamics of mobile robots/nodes,
• the dynamics of the environment, and
• the energy consumption in the nodes.

One general limitation of TrueTime is that it has been
developed as a research tool rather than as a tool for
system developers. The special code function format
is another limitation, which makes it hard to directly
simulate production code. Finally, the tool is based on
commercial software. We are currently developing a
version of TrueTime for Scilab/Scicos. We would also
like to develop a multi-threaded version in which it
would be simpler to directly simulate production code.
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