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ABSTRACT
A resource allocation algorithm aimed at embedded multi-
media systems is presented. Particular emphasis is placed
on computational efficiency, suitability for fixed point im-
plementation and being able to solve the allocation at run-
time when parameters or dynamics change. The algorithm
is derived from classic convex optimization theory and the
resulting real time properties are studied in simulations.

1. INTRODUCTION
Modern portable electronics is expected to perform multiple
complex functions simultaneously, while remaining inexpen-
sive, reliable and efficient. Cellular phones are an example
of equipment that operates under these requirements. In
a typical situation, the cellular phone will simultaneously
have to perform audio and video processing, network signal-
ing, user interaction and peripheral device communication.
As the operating condition of these types of devices vary
greatly from situation to situation, feedback techniques be-
come more and more important for optimizing system per-
formance. Very often, resources will be insufficient to guar-
antee maximum performance from every concurrently run-
ning subsystem and a solution must be able to make rational
compromises.

From a resource consumption point of view, the phone soft-
ware is dominated by video and audio processing. These
are both what we consider timing sensitive applications,
by which we mean that while they have real time timing
requirements, they do not fail should these not be met.
Rather, their performance can be expressed as a function
of how well these requirements are met.

A common factor for media applications is that their com-
putational requirements are heavily influenced by the data
stream they process. While some parameters, such as de-
sired playback rate and overall quality settings, are explicitly
encoded in the stream, we are dependent on online parame-
ter estimation for control decisions. The parameters can be

expected to change over time and feedback techniques must
be employed to keep the system performing optimally.

Priority based scheduling is still commonly used in cellular
phone operating systems today but as priorities only specify
relative importance, analysis is difficult unless the param-
eters of the entire system are known beforehand. Modern
scheduling theory provides us with powerful tools for re-
source allocation in the form of reservation-based scheduling
algorithms, such as the Constant Bandwidth Server [1] or
pFair [4] scheduling. These differ perhaps most importantly
from their predecessors in that task behavior depends only
on the reservation it executes inside and not its surround-
ings. This property is called temporal isolation and greatly
simplifies modeling task dynamics.

Techniques for optimal and constrained control are available
today in the form of Model Predictive Control (MPC) based
schemes. In their generalized form, they are unsuited for
embedded systems as they themselves require substantial
computational resources. Optimization algorithms for this
problem domain should

• consume minimal resources

• be deterministic in time

• be numerically suitable for fix-point implementation

This article aims to demonstrate how such an algorithm can
be designed for the cellular phone media use case.

2. RELATED RESEARCH
Resource management is traditionally part of operations re-
search and there applied to a variety of problems such as
optimizing storage utilization. A very known variety of this
is the knapsack problem, which has been treated extensively
in the literature, with books such as [9] covering many vari-
ants and solution techniques. It is, however, predominantly
a combinatorial formulation which can be computationally
expensive to handle. Another classic formulation of alloca-
tion is the water filling problem, which has become a pop-
ular model for resource allocation in wireless networks and
problems of communications theory. Recent contributions
include [15] and [10].

In computer systems, resource allocation problems have been
treated as traditional allocation problems in articles by R. Ra-
jkumar in e.g. [11] and [8]. Several general resource models



are considered here, including both constraints and multi-
ple types of resources. This article instead focuses more on
simple structures and the computational aspects of the al-
location, in order to make that problem feasible to solve on
modest hardware and finite word length.

Scheduling schemes for resource reservations with feedback
has been treated using e.g. the Constant Bandwidth Server
approach by Abeni and Buttazzo [2] [3]. The techniques
have been extended to the resource constrained case with
the elastic task model. Related is the Fair Queuing and
Fair Allocation techniques that have been applied to similar
problems, where [7] is among the earlier works and [13], [14]
more recent contributions.

3. SYSTEM MODEL
3.1 Rate-based processing
For media applications, the quality of the output is strongly
connected to the processing rate. This connection holds true
for all parts of the media processing chain, from encoding
to decoding. It is therefore natural to consider how resource
allocation decisions impact the processing rate of the sys-
tem and thereby indirectly the quality of the service. It is
possible to view media stream processing as a special case of
data flow or stream processing. In these programming mod-
els, data is often contained in packets or tokens which are
then processed by a network of computational elements. The
rate at which data tokens are processed is a very tangible
metric for the application performance. Data flow formula-
tions exist for a large group of software relevant to embedded
situations, ranging from automatic control to 3D-graphics.
This supports making rate an important basis for resource
allocation in heterogenous systems.

Given its central position in this work, the term rate deserves
a clear definition.

Definition 1. Rate signifies the number of occurrences of
a pre-specified event during a counting time-period.

The pertinent choice of event and counting period is strongly
situational. Consider for instance the difference between dig-
ital audio and video. The ear is much more sensitive to audio
jitter than the eye is to frame jitter. The audio stream is also
sampled at a significantly higher rate than the typical video
stream (16 kHz vs 25 Hz). While loosing a single or several
movie frames during a second might not even be noticeable
for the viewer, loosing the same percentage of audio sam-
ples will make the audio sound very distorted. In order to
make resource allocations in time to preserve quality, the au-
dio stream will need to be monitored using a much shorter
counting period than necessary for the movie stream. As
computations and changing scheduling parameters tend to
introduce latency in the control loop, it might even be neces-
sary to introduce predictive filters. In both the case of audio
and video, the events are expected to be evenly distributed
over the counting period. This in not required in general,
but non-uniform distributions will make the rate estimator
more complex to design. This article will not go deeper into
the design of such estimators, but will instead assume that
it is possible to design one for each type task of in the set.

3.2 Task model
For the purposes of this article, a rate-based processing task
is modeled by the following parameters:

• r - desired execution rate

• y - actual execution rate

• ρ - assigned CPU share (bandwidth)

Depending on the application, the units of these parameter
vary. For a video playback system running on a Constant
Bandwidth Server (CBS) resource scheduler, r and y would
be the desired and actual frame rate of the video stream
respectively, and ρ would be a real number in the interval
[0, 1]. If instead the resource scheduler would be the Com-
pletely Fair Scheduler (CFS) now part of the Linux kernel,
ρ would be an unsigned integer value. This article will make
the assumption that the processing system consists of a set
τ1, ..., τN of independent CPU-bound tasks, which means
that the stationary or mean execution rate yi of the task
τi can be approximated by a function fi(ρi). This corre-
sponds to what is in resource management called the utility
function and is a positive monotonically increasing function
with parameter domain R

+. For most rate-based applica-
tions, utility gains will decrease when the amount of afforded
resource grows very large and it is reasonable to assume that
fi is a concave function. In the case where the task repeats
the same calculation over and over again, a simple piecewise
linear (PWL) model such as (1) is often sufficient.

fi(ρi) = yi =

{

kiρi 0 ≤ ρi ≤ ri/ki,

ri ρi ≥ ri/ki
(1)

For tasks with real-time requirements, this leads to the ne-
cessity of adaptation to insufficient resources. For a control
task, it can mean down sampling (that is reducing ri) or us-
ing less complicated calculations (increasing ki). Conversely,
for a media playback task it will mean either reducing post-
processing (increasing ki) or skipping frames (reducing ri).
It is important to note that the self adaptation depends
greatly on the application at hand (dynamics of the con-
trolled plant or the specific encoding scheme used). Exper-
imental validation indicates however that the model holds
even for choices of media streams and decoders which were
not optimized for self adaptation. Figure 1 shows two cases
which were produced using MPEG-4 video streams and the
free MPlayer software. The video streams are encoded at
a fixed rate, in this case 30 frames per second (fps). When
throttling the CPU bandwidth available to the player be-
low what is required for full rate playback, it starts to skip
frames to keep up.

The parameter ki must be assumed to be unknown at design
time and is also likely to be time varying. Online estimation
is therefore necessary and the resulting control structure is
shown in Figure 2. A discussion of structural elements fol-
low.

3.3 Task Set block
From a control perspective, the resource consuming tasks
together with the resource scheduler makes up the plant. It
is assumed that the number of tasks will change over time
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Figure 1: Experimental results of throttling CPU-
share for the MPlayer decoder using Linux 2.6.27
and Control Groups. The diagrams show how the
frame rate per second (fps) depends on the amount
of CPU share allocated to the decoder. The rate
increases linearly with share until the movie can be
played back at encoded rate.

TASKSETALLOCATOR

PARAMETER
ESTIMATOR

PSfrag replacements

r ρ

y

k

Figure 2: Proposed control structure.

and that the dynamics of each task is both time varying
and mostly unknown. Neither is any assumption about the
actual resource allocation algorithm made. It is possible to
keep the model this abstract through the use of a suitable
parameter estimator. As discussed in previous sections, it
is assumed that it is possible to formulate an estimator for
each task and that this gives a current and correct estimate
of execution rate and resource consumption.

It is entirely possible that the task set represents just that
subset of tasks in the system which can be described as rate-
based. However, it is assumed that they can be isolated from
the remaining system through RBS techniques and that the
amount of resources allocated to the subsystem is known at
all times (though possibly time varying).

3.4 Parameter Estimator block
This block represent some algorithm (or algorithms) that
can from real-time measurements estimate the processing
rate of the task set and the corresponding resource use.
From this it calculates the task CPU gain ki. The estima-
tor can be tailored for different forms of applications, which
can be seen as an added degree of flexibility, as there is no
assumption on the execution pattern (such as periodicity).
It is also possible to handle different counting periods. For
normal periodic tasks, counting events during a sliding time
window is a straight forward and intuitive approach. It has
been experimentally verified to work well if the rate of al-
location decisions is sufficiently lower than the event arrival
rate.

3.5 Allocator block
The allocator is responsible for deciding how the resources
should be allocated to the tasks in the task set so to max-
imize the global performance of the system. It will make
decisions based on the estimates supplied by the parameter
estimator and the desired execution rates as set by user or
supervising applications. Physically, it can be assumed to be
a task in itself and therefore needs to consume resources to
perform its function. A simple approach is to make a static
reservation for the allocator and have it execute outside the
task set over which it presides. It can also be included in the
task set, but the interaction between its own resource allo-
cation and the overall system behavior then becomes much
more complex.

4. CONSTRAINED ONLINE ALLOCATION
Allocating resources under constrained conditions requires
a compromise in performance for the task set. To evaluate
such a compromise, a global performance metric is needed.
For the set of independent tasks, a natural choice would
be an aggregate of the individual utility functions. Finding
such an aggregate which represents the system performance
that the user subjectively perceives is a non-trivial task and
beyond the scope of this paper. It is however possible to
simplify utility tradeoff comparisons by observing that per-
formance is typically only tolerable when yi is close to ri. For
this purpose a lower rate bound y′

i is introduced, which rep-
resents the lowest execution rate at which the performance
can be considered acceptable. It would then be desirable
to allocate resources so that all tasks (if possible) are within
their respective good regions of performance. To reformulate



this as a classic optimization problem, we introduce the rate
error e = r − y. We can now pose the convex optimization
problem

min J = ||e||∞w
N
∑

i=1

ρi ≤ ρtot

ρi ≥ f−1

i (y′
i), ∀i

(2)

or in other words, find the allocation which minimizes the
worst weighted rate error under the constraint that all tasks
should perform with some minimum performance. The weights
w can be used to balance a problem where rates are very dif-
ferent in size. Compare for instance audio vs video where
they differ by a factor 103. Inversely, it can also be used to
model how certain tasks are more sensitive to rate errors.

If the posed optimization problem is feasible, all tasks can
have acceptable performance. Testing for feasibility is merely
checking that

N
∑

i=1

f−1

i (y′
i) ≤ ρtot. (3)

Should the test fail, the problem must either be relaxed (e.g.
through increasing ρtot) or some task be deactivated.

Another possible choice of utility aggregation is

J = ||e||2w (4)

How (4) compares to (2) as a measure of overall system
performance is not possible to say in the general case, but
solving them is strongly related as will be shown, and the
choice can be left to the system designer.

Though parameters in this system might not change often,
events such as the reconfiguration of an application, the ar-
rival or deactivation of a new task or the change in CPU
resource availability in response to risk of overheating might
require that we quickly redistribute resources. Therefore, an
algorithm suitable to solving this online with limited compu-
tational resources and numerical precision is needed. More
specifically, it is desirable that it

1. takes minimal system resources,

2. accounts for changing parameters as quickly as possi-
ble,

3. produces results in deterministic time and memory,

4. can improve upon a previous allocation even if aborted
before optimum was computed and

5. is suitable for implementation in fixed point arithmetics

5. INCREMENTAL OPTIMIZATION
This section proposes an algorithm which can solve (2) or
(4) efficiently and with desirable time and memory charac-
teristics. The central idea of the algorithm is to see the so-
lution as a sequence of resource transfers between two tasks,
in effect solving the problem as a series of one-dimensional

problems. The benefit of this approach is that each step is
computationally inexpensive, predictable in execution time
and has numerical properties well suited for fixed point im-
plementations.

Assume that two tasks τi, τj are picked from the set during
th k:th step of the algorithm. Let J(k) be the cost at the
beginning of the step and Ji,j(k) denote the contribution by
τi, τj to J(k). Specifically, if

v = (ei, ej) = (ri − fi(ρi + δ), rj − fj(ρj − δ)) (5)

then we have

Ji,j(k + 1) = ||v||w (6)

By solving the subproblem

min
δ

Ji,j(k + 1) (7)

s.t.− ρi ≤ δ ≤ ρj (8)

the relation

J(k + 1) ≤ J(k) (9)

is ensured. In other words, by in each step solving a sub-
problem to the original allocation problem, performance will
improve incrementally. Solving this minimization problem
for general concave utility functions can be done by simple
modifications to unconstrained methods such as Newton-
Rhapson. In the case of tasks modeled by (1), near closed
form expressions can be obtained for the costs (4) and (2).
In the unconstrained case, ||v||∞ is minimized when the el-
ements are equal, that is

ri − ki(ρi + δ) = rj − kj(ρj − δ) (10)

while ||v||2 is minimized when d||e||2

dδ
= 0, which corresponds

to

ki(ri − ki(ρi + δ)) = kj(rj − kj(ρj − δ)) (11)

A unified expression

ci(ri − ki(ρi + δ)) = cj(rj − kj(ρj − δ)) (12)

could then represent both optimum points. The terms on the
left- and right hand side will be referred to as the potentials
for τi, and τj respectively. The optimal transfer can then be
written as

δ =
ciri − cikiρi + cjkjρj − cjrj

ciki + cjkj
(13)

to which we apply the limitation in (7). From a numeri-
cal point of view, this expression is structurally simple and
allows for easy fixed point implementation.

Selecting the pair τi, τj for each step is the last element of
the algorithm. From (7) and (12) it follows that a transfer
will occur if potentials are not already balanced and and
ρ ≥ 0 for the task with highest potential. As long as τi, τj
are chosen so, (9) will hold. If there is no such pair, the
Karush-Kuhn-Tucker (KKT) conditions show that the cur-
rent allocation is optimal (see e.g. [5]). It is thus proven
that the algorithm will converge to the optimum. The con-
vergence speed will obviously depend on the specific transfer
sequence. As the intended domain is real-time allocations,
an efficient strategy is needed. It is desirable that each step
reduces J(k) as much as possible and from (7) and (12) it is
evident that the size of the gain depends on
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Figure 3: Incremental QP Optimization compared
with QP and the default fair allocation. The cost has
been normalized with the optimal allocation error
eqp which is given by solving the QP problem with
eg. quadprog in MATLAB.

• the difference in potentials between the two tasks and

• the amount of resource available to redistribute.

The two criteria can be in conflict, but it will be assumed
that the allocation is not too skewed and that therefore the
tasks have resource allocations of roughly the same size. A
reasonable strategy would then be to select a pair with an as
large potential difference as possible, where the high poten-
tial task has non-zero resources. The proposed implementa-
tion uses a red-black tree to keep the tasks sorted according
to potential, which makes finding the pair an O(1) opera-
tion and inserting them back after the transfer an O(log n)
operation (see e.g. [6] for complexity analysis of red-black
trees). As the algorithm uses an iterative loop and the per-
sistent data allocated scales linearly with the task set size,
memory need for a system with a known max size can easily
be calculated.

6. SIMULATION RESULTS
A series of simulations were run where the algorithm was
used to find an allocation for a random task set under over-
load conditions (i.e.

∑N

i=0
ri/ki ≥ ρtot). The aim with the

simulations were to show the computational efficiency and
get a feel for the convergence rate. The simulations were
run on an 2.40 Ghz Intel Pentium(R) 4 based computer with
512Mb memory which was running Linux 2.6.27. The com-
piler used was gcc 4.3.2 using the -O3 compiler flag. For
the experiments, the ||e||2 case was chosen as this uses more
calculations.

In Figure 3 we can see the algorithm work on a random task
set with 6 tasks of which one is the idle task. The task set
is initialized with all the resources being allocated to the
idle task. The plot compares the aggregate utility function
with the fair allocation, as defined by [7] and a baseline
allocation calculated using the Quadratic Programming [5]
(QP) solver quadprog in MATLAB. The values have been
normalized using the optimal cost as calculated by the QP
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Figure 4: Measurements of iteration times during
simulations. Each random taskset was run 10 times.
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Figure 5: Measurements of optimization termina-
tion time. Each taskset was run 10 times. Variance
is due to sorting artifacts and cache dynamics.

solver, so that an optimal cost i 1. The fair allocation can be
seen as nominal as it is effected automatically by the current
Linux scheduler. The algorithm converges rapidly in the
beginning, which is a result of selecting the task with highest
potential for the transfer. This is a desirable property as
parameters might change over time and the optimization
might not have time to finish.

Figure 4 shows the iteration time as function of the num-
ber of tasks and in Figure 5 we see the termination time of
the optimization. The variance come primarily from sort-
ing artifacts and cache dynamics. Task sets were generated
randomly and run 10 times in succession.

As a comparison number, a 2 variable QP problem with
the structure of (4) took 500 ms to solve with a general QP
solver written in C++ using the same computer as the above
simulations. The generic solver also has a large overhead
for initializing the algorithm, something which will make it
resource expensive to use for a problem where parameters
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change over time.

In Figure 6 the algorithm allocates resources to 3 tasks
(4 if you include the idle task) with r = (30, 40, 40), k =
(80, 90, 100). In this scenario, the available resources change
from 1 to 0.8 at time 20 and task 2 has a mode change
where r2 changes from 40 to 60 at time 40. Reduction of
resource availability could result from CPU-voltage scaling
to deal with heat dissipation problems. This sudden change
requires a fast reallocation and for this particular case we
can expect the optimization to terminate within a handful
of iterations. For the experiment setup this would be about
20 µs. If we assume that task 2 is a video encoder task, the
mode change could be a result of a user switching to a higher
frame rate. The transients in the figure are exaggerated to
visualize the changing allocation better.

7. CONCLUSIONS
As a normal operating system will have tasks numbering in
the range of 100 to 300, solving the allocation problem will
be fairly efficient. In fact, even when taking into account
that a typical cellular phone CPU will run perhaps 10-50
times slower, a 100 task system will take a about 50 ms to
solve. This makes the solver feasible to run periodically at
runtime which could then respond to dynamically changing
parameters of the tasks or resource availability.

The expressions used in the algorithm are simple and there-
fore suited to implementation in fixed point arithmetic. This
is seen as a necessary property of an embedded resource allo-
cator as floating point support is rare and the use of library
functions can make the size and memory usage of binaries
undesirably large.

8. FURTHER WORK
A fixed point implementation of the algorithm targeted at
ARM-type processors is underway. These are frequently
seen in cellular phones and other types of consumer media
devices. While smaller CPUs normally will not run com-
plex task sets, allocation problems often arise for resources
external to the CPU. It would there for be interesting to
study how the these types of algorithms could be applied to

such things as control allocation problems [12]. This class
of problems deal with distributing control action between a
number of actuators where the total amount of control au-
thority is constrained, such as emergency breaking systems.
In this particular case, control allocation can require fast
adjustments should the vehicle suddenly drive over a spot of
ice. This would mean extending the algorithm to deal with
more complex dynamics and constraints. Multiple resource
problems are also a natural extension as embedded CPUs
are likely to be multi-core in the future. This could open up
for parallel implementations. As the information structure
becomes more and more complex and distributed, the cost
of communication and information aggregation grows. This
will likely lead the need for distributed algorithms were local
decisions can be made.
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