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Semidefinite Hankel-type Model Reduction

Based on Frequency Response Matching

Aivar Sootla

Abstract

This paper is dedicated to model order reduction of linear time-invariant systems. The main contribu-

tion of this paper is the derivation of two scalable stability-preserving model reduction algorithms. Both

algorithms constitute a development of a recently proposed model reduction method. The algorithms

perform a curve fitting procedure using frequency response samples of a model and semidefinite

programming methods. Computation of these samples can be done efficiently even for large scale models.

Both algorithms are obtained from a reformulation of the model reduction problem. One proposes a

semidefinite relaxation, while the other is an iterative semidefinite approach. The relaxation approach

is similar to Hankel model reduction, which is a well-known and established method in the control

literature. Due to this resemblance, the accuracy of approximation is also similar to the one of Hankel

model reduction. An appealing quality of the proposed algorithms is the ability to easily perform

extensions, e.g., introduce frequency-weighting, positive-real and bounded-real constraints.

Index Terms

Reduced order modeling, Model/controller reduction, Optimization, Semidefinite programming

I. PROBLEM FORMULATION AND INTRODUCTION

The main subject of this publication is H∞ model reduction. The focus is kept on discrete-time

models, nevertheless, the algorithms can be applied to the continuous time case, as discussed in

Section V. Throughout the paper, it is assumed that the full order model G is an asymptotically
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stable, scalar-valued (SISO), proper, rational transfer function. The reduction problem for such

models can be formulated as:

min
p, q

‖G(z) − p(z)/q(z)‖
H∞

where p(z) =
∑k

i=0 piz
−i and q(z) =

∑k
i=0 qiz

−i (i.e., they are FIR filters of order k), pi. qi are

real scalars, q has a stable inverse and p/q is a reduced order model. It is also assumed that the

order of G is much larger than k. The problem is non-convex, therefore suboptimal methods are

typically used to address it. Most of the existing methods fall into two categories: singular value

decomposition based (for example, balanced truncation and Hankel model reduction) and Krylov

based methods. Balanced truncation ([1]) proposes a simple, yet, very powerful algorithm with

a stability guarantee for the reduced model and the approximation error bounds. Hankel model

reduction ([2]) solves an optimization problem in the Hankel norm:

min
p, q

‖G(z) − p(z)/q(z)‖H

The problem can be rewritten as minimization in the L∞ norm, where an additional variable is

introduced - an anti-stable transfer function ∆ of order less or equal to n + k − 1 (anti-stable

means that all the poles lie outside the unit circle, [3]).

min
p, q, ∆

‖G(z) − p(z)/q(z) − ∆‖
∞

This problem is more complicated than balanced truncation, but it has tighter error bounds. The

problem can be solved analytically, however, the cost is not suitable for large scale systems. On

the other hand, the Krylov based methods (cf. [4], [5]) rely on moment matching techniques.

These methods match the derivatives of the transfer functions at pre-defined frequencies, without

their computation. They provide numerically much cheaper solutions, however, without explicit

error bounds in H∞. It is important to remark that the Krylov based method in [6] provides a

solution which satisfies first order optimality conditions in the H2 norm.

The described above methods compute a reduced order model based on a state-space represen-

tation of the full order one. As an alternative, one can use frequency domain data, i.e., frequency

response samples. Computing a frequency response for particular applications (e.g., modeling of

electro-magnetic structures) can be even cheaper, than inverting a state-space matrix A, as shown

in [7], [8], [9]. One of the main tools for frequency domain approximation is the interpolation

techniques ([10], [11], [12]). Another tool is convex optimization as in the method proposed



in [13], [14]. It is not an interpolation technique, but, the objective is to minimize the distance

between the frequency response samples of the full and reduced order models. Therefore, there

is a bigger degree of flexibility in comparison to interpolation techniques. In [14] it is proposed

to solve:

min
p, q, r

∥
∥G(z) − p(z)/q(z) − zk−1r(z)/q∼(z)

∥
∥
∞

where q∼(z) = q(1/z) and r is an FIR filter of order k−1. In practice the norm is replaced with

a constraint on |G(eω)− p(eω)/q(eω)− e(k−1)ωr(eω)/q∼(eω)| for every frequency on a finite

grid. It can be shown that this problem is finite dimensional and quasi-convex, therefore it can be

addressed with reasonable scalability properties. More importantly the cost of the quasi-convex

program does not depend on the order of the original model G. It can be even argued that [14]

is a scalable version of Hankel model reduction, since [14] is Hankel model reduction with extra

constraints on ∆. A more appealing quality of [14] is the ability to add extra constraints without

affecting the complexity of the algorithm.

This paper constitutes a development of the method introduced in [14]. Two algorithms are

presented which result from a reformulation of the single-input-single-output model reduction

problem. The new formulation will be called Hankel-type to stress the connection to Hankel

model reduction. One of the obtained algorithms employs a relaxation, which is related to

both [14] and Hankel model reduction ([2]). The other introduced algorithm uses an iterative

procedure, where a semidefinite program is solved on every iteration. This iterative algorithm is

related to the “central polynomial” framework ([15], [16]) used for low-order controller design.

It cannot be claimed that the proposed algorithms always provide a better model match than

[14]. Nevertheless, their use has a number of advantages:

• While comparing the relaxation algorithm to [14] a better numerical robustness is noticed,

which is illustrated in Example 1. Secondly, results of the parameterized model reduction

extension show a considerable improvement in the quality of approximation (see, [17,

Chapter 3]).

• The presented iterative algorithm is a powerful tool when systems with a structure are con-

sidered, i.e., decentralized structure, plant-controller systems, etc. The algorithm is extended

to such problems in [17, Chapters 4 and 5].

• For particular models, it is possible that the actual approximation error of the relaxation



algorithm is larger than the one of [14]. Nonetheless, the presented iterative algorithm is

able to significantly reduce the loss of approximation quality, if it occurs.

The proofs of some facts are omitted due to space limitations. The proofs are found in [17,

Chapter 2], where an extension to multi-variable (or MIMO) systems, as well as extensions

to the frequency-weighted, passive model reduction, are also outlined. The rest of the paper is

organized as follows: the Hankel-type formulation of model order reduction problem is presented

in Section II. Section III describes the proposed relaxation. Different subsections are devoted to

a system theoretic interpretation, a discussion on relationship to [14] and implementation details

of the algorithm. The iterative algorithm is discussed in Section IV. Numerical examples are

found in Section V.

II. HANKEL-TYPE FORMULATION OF MODEL REDUCTION

First, minimizing the H∞ norm is rewritten as a minimization of an approximation level

γ subject to the stability constraint and the norm constraints enforced only on the unit circle

∂D = {z| |z| = 1}. Therefore, z is often substituted by eω. The resulting program reads:

γmor = min
p, q

γ subject to (1)

|G(eω)q(eω) − p(eω)| < γ|q(eω)| ∀ω ∈ [0, π]

q(z) has a stable inverse

where p(z) =
∑k

i=0 piz
−i and q(z) =

∑k
i=0 qiz

−i and pi, qi are real scalars. Shortly, it will be

shown that (1) is equivalent to:

γhtf = min
γ>0, p, q, ϕ

γ subject to (2)

|(Gq − p)ϕ∼| < γRe (qϕ∼) ∀ω ∈ [0, π]

ϕ(z) has a stable inverse

where the arguments of the functions (eω) are skipped for brevity, the notation ·∼ stands for

ϕ∼(z) = ϕ(1/z) and ϕ(z) is an FIR filter of order k with real coefficients. The program (2)

is called a Hankel-type formulation of model order reduction. The name of the formulation is

explained in detail in Section III. The main benefit of this formulation is the absence of the



absolute value function on the right hand side, which gives two possibilities to obtain convex

programs: a relaxation and an iterative approach, where ϕ is iterated over.

Lemma 1: The optimal values γmor and γhtf are equal. Moreover, (q∗, p∗) is the optimal

solution to (2) for some ϕ∗, if and only if (q∗, p∗) is the optimal solution to (1).

Proof. Firstly note, that the inequality Re (qϕ∼) > 0 implies that Re (qϕ−1) > 0 and Re (ϕq−1) >

0. Moreover, if ϕ−1 is stable, then the transfer function qϕ−1 is positive real and q−1 is stable

as well. Therefore the constraint “ϕ−1 is stable” in (2) can be replaced with “q−1 is stable” and

”ϕ 6= 0 for all ω”. Now, since Re (qϕ∼) ≤ |qϕ∼| for all q, ϕ and the frequencies ω in [0, π], we

have:

γhtf ≥ min
γ>0, p, q, ϕ

γ subject to

|(Gq − p)ϕ∼| < γ|qϕ∼| ∀ω ∈ [0, π]

q(z) has a stable inverse and ϕ 6= 0 ∀ω

We can divide both sides of the norm constraint with |ϕ|, and the minimization program reduces

to (1). Therefore, we have γmor ≤ γhtf . To prove the converse, assume p∗q
−1
∗

is the optimal

solution to the model reduction problem (1) with the optimal approximation level γmor. If we

choose ϕ∗ = q∗, it is easy to verify that p∗, q∗, γmor, ϕ∗ satisfy the constraints of (2). Thus

γmor ≥ γhtf .

Now, prove the second statement. If (p∗, q∗, ϕ∗) is the optimal solution to (2), then:

|Gq∗ − p∗| < γhtf
Re (q∗ϕ

∼

∗
)

|ϕ∼

∗
|

≤ γhtf |q∗| ∀ω ∈ [0, π]

Since γhtf = γmor, the pair (p∗, q∗) is also the optimal solution to (1). The converse is easily

shown by choosing ϕ∗ = q∗.

Lemma 1 provides an optimal choice of the auxiliary variable ϕ, which is simply equal to

q. On the other hand, the variable |q| is replaced with Re (q · ϕ∼/|ϕ|). This implies that the

complex vector q is rotated in a way such that Re (qϕ∼) becomes positive, where ϕ∼/|ϕ| is the

angle of such a rotation. In the optimality, this angle is equal to − arg(q), which leaves only the

positive part in the expression qϕ∼.

III. SEMIDEFINITE HANKEL-TYPE MODEL REDUCTION

First, consider the relaxation of the Hankel-type formulation (2). Let a =
∑k

i=−k aie
−iω and

b =
∑k

i=−k bie
−iω, where ai, bi are real scalars and introduce new constraints in the program (2)



as below. Note that p, q and ϕ are also decision variables in the new program, however, they

are skipped in order to avoid confusion in future references.

min
γ>0, a, b

γ subject to (3)

|Ga− b| < γRe (a) ∀ω ∈ [0, π] (4)

b = pϕ∼ ∀z ∈ C (5)

a = qϕ∼ ∀z ∈ C, ϕ has a stable inverse (6)

Removing the constraint (5) constitutes a relaxation. Later, it will be shown that the relaxed

optimal solution will always lie within certain bounds of the original optimal solution. On the

other hand, the constraints (6) can be removed without affecting the solution. These constraints

are equivalent to a has exactly k stable zeros, which is implied by positivity of Re (a):

Lemma 2: Consider a function a =
∑k

i=−k aiz
−i, the unit disc D = {z| |z| < 1} and the unit

circle ∂D. Assume that ak is not equal to zero. If Re (a(∂D)) > 0 then the pseudo-polynomial

a has k zeros in D.

Proof. The function a(z) does not have zeros or poles on the unit circle (since Re (a(∂D)) > 0).

It is also analytic in D except for a set of isolated points. Thus by Cauchy’s argument principle

Nz − k = No, where Nz is the number of zeros in D, k is the number of poles in D (which

is guaranteed, if ak 6= 0) and No is the number of times a(∂D) encircles the origin. Since

Re (a(∂D)) > 0 for all the frequencies ω in [0, π], the curve a(∂D) lies only in the right half

plane and thus No = 0 and Nz = k.

Remark 1: The condition ak 6= 0 is not restrictive. The pseudo-polynomials with ak = 0

constitute a measure zero subspace of the pseudo-polynomials with ak 6= 0. Therefore, numerical

solutions of semidefinite optimization will have ak 6= 0 almost surely.

Given a∗ a solution of (3) subject only to (4), the denominator q∗ is obtained by solving the

equation:

a∗ = q∗ϕ
∼

∗
(7)

where ϕ∗, q∗ have only stable zeroes and are the solutions to the non-symmetric spectral

factorization problem (see, [18]). The reduced order model is simply p∗/q∗, where the numerator

p∗ is obtained from:

p∗ = argmin
p

‖G− p/q∗‖H∞ (8)



Algorithm 1 Semidefinite Hankel-type Model Reduction

Inputs: Frequency grid Ω = {ωi}
N
i=1 ∈ [0, π], reduction order k.

Outputs: Reduced order model p∗/q∗, suboptimal approximation level γN
shmr

1) Compute G(eω) for all ω ∈ Ω

2) Solve

γN
shmr = min

γ>0, ai∈R , bi∈R

γ subject to (9)

|Ga− b| < γRe (a) ∀ω ∈ Ω (10)

Re (a) > 0 ∀ ω ∈ [0, π] (11)

a =

k∑

i=−k

aie
−iω b =

k∑

i=−k

bie
−iω (12)

3) Given a solution a∗, solve a∗ = q∗ϕ
∼

∗
, where ϕ∗, q∗ have only stable zeros and poles

4) Solve for p =
∑k

i=0 pie
−iω and pi ∈ R

p∗ = argmin
p

max
ω∈Ω

|G− p/q∗| (13)

Finally, the semidefinite Hankel-type model reduction reads as solving (3) subject only to (4),

and then solving (7), (8) consecutively.

A. Tractable Algorithm and its Computational Complexity

The programs (3) subject to (4) and (8) have an infinite number of constraints, one for each

frequency ω in [0, π]. Therefore, these are not tractable problems. However, since G is a rational

transfer function, its frequency response cannot change infinitely fast. It means that it is sufficient

to impose the constraints (4) on a finite number of frequencies {ωi}
N
i=1 ∈ [0, π]. This is outlined

in Algorithm 1, where γN
shmr is defined. The frequency griding is also a relaxation, as discussed

in [13]. Let {ωi}
N
i=1 be an N element subset of a countable set {ωi}

∞

i=1, which is dense in

[0, π], and γc
shmr be the solution to (3) subject only to (4). Then by construction γN

shmr ≤ γc
shmr

for any positive integer N . Moreover, lim
N→∞

γN
shmr = γc

shmr, therefore, with a large enough N the

theoretical value γc
shmr is approximated by γN

shmr. To avoid over-fit, the number of points N in the

grid should be at least O(k2), where k is the order of the reduced model. This griding approach



may create unstable approximations, therefore the positivity constraint (11) is enforced for all

the frequencies ω in [0, π] using the Kalman-Yakubovitch-Popov lemma (see, e.g. [19]). Note

that use of this lemma will add an LMI constraint with k rows and O(k2) decision variables.

There are two main contributors to complexity of the algorithm: the computation of frequency

response samples and the solution of (9-10) and (13). Note that spectral factorization in the

step 3 of Algorithm 1 is performed over the variables describing the reduced model, therefore,

the cost is not substantial and equal to O(k3). Computing the frequency response samples costs

in general O(n3) and can be lowered to O(n2) or O(n log(n)) in certain relevant cases ([7], [8],

[9]), where n is the order of G. The computational costs of (9-10) and (13) when solved with a

cutting plane method are O(k4) (see, [14]). Based on numerical simulations, the computationally

heaviest part for large scale systems (n > 10000) is the computation of frequency response

samples. If Ω = [0, π], Algorithm 1 is not tractable (the cost of optimization depends on n), but

can be theoretically solved, while enforcing all constraints with the KYP lemma.

B. Error Bounds and System Theoretic Interpretation of the Relaxation

The presented relaxation is interesting due to its connection to Hankel model reduction. Recall

that a and b are pseudo-polynomials in z with degrees spanning from −k to k. Rewrite the

constraints in (3) with a norm constraint and note that |a/Re (a)| is larger or equal to one for

all the frequencies ω, since |a| ≥ |Re (a)|. This yields:

min
Re (a)>0, b

∥
∥
∥
∥

(

G−
b

a

)
a

Re (a)

∥
∥
∥
∥
∞

≥ min
Re (a)>0, b

∥
∥
∥
∥
G−

b

a

∥
∥
∥
∥
∞

In the right part of the inequality, we have an optimization program over a transfer function

b/a, which has k stable poles and it has an anti-stable part. This resembles optimization in the

Hankel norm, however, in the presented optimization program there are extra constraints on the

decision variables. Foremost, it is a positive real constraint on a. All in all, we can deduce that:

min
Re (a)>0, b

∥
∥
∥
∥

(

G−
b

a

)
a

Re (a)

∥
∥
∥
∥
∞

≥ min
p, q

∥
∥
∥
∥
G−

p

q

∥
∥
∥
∥

H

It means that Hankel model reduction is a relaxation of our algorithm, without a weight in the

objective (a/Re (a)). Now we are ready to formulate the main theorem of the section.

Theorem 1: Let γc
shmr and p∗/q∗ denote the output of Algorithm 1 with inputs Ω = [0, π] and

k, γmor denote the optimal approximation level from (1) and σk+1(G) denote k + 1-st largest



Hankel singular value of G. Then the following error bounds hold:

σk+1(G) ≤ γc
shmr ≤ γmor ≤ ‖G− p∗/q∗‖H∞ (14)

‖G− p∗/q∗‖H∞ ≤ (k + 1)γc
shmr (15)

The proof of the theorem is based on [13] and is found in [17]. The obtained upper bounds

are conservative, since no information about the full order model G is used. However, an upper

bound is required as a guarantee, that the employed relaxation will not create unreasonable

approximations. The quality of a relaxation is estimated on numerical examples.

The quasi-convex optimization (QCO) approach [14] is Algorithm 1 with an extra symmetry

constraint a(z) = a(1/z). It is straightforward to show that if a(z) = a(1/z), then Im (a(eω)) is

equal to zero and Re (a(eω)) is equal to a. Thus, the following chain of inequalities is available,

where γc
qco is the solution to the relaxed problem in [14], defined similarly to γc

shmr:

(k + 1)γc
qco ≥ (k + 1)γc

shmr ≥ γmor ≥ min
a>0,b

∥
∥
∥
∥
G−

b

a

∥
∥
∥
∥
∞

︸ ︷︷ ︸

=γc
qco

≥

min
Re (a)>0,b

∥
∥
∥
∥

(

G−
b

a

)
a

Re (a)

∥
∥
∥
∥
∞

︸ ︷︷ ︸

=γc

shmr

≥ min
p/q∈H∞

∥
∥
∥
∥
G−

p

q

∥
∥
∥
∥

H
︸ ︷︷ ︸

=σk+1(G)

IV. AN ITERATIVE APPROACH TO HANKEL-TYPE FORMULATION

The iterative algorithm is obtained from (2) simply by choosing an FIR filter ψ with a stable

inverse in advance and solving (2) with a fixed ϕ = ψ:

min
γ>0,p,q

γ subject to (16)

|(Gq − p)ψ| < γRe (q∼ψ) ∀ω ∈ [0, π]

This program slightly differs from (2). However, |(Gq − p)ψ| = |(Gq − p)ψ∼| and Re (q∼ψ) =

Re (qψ∼). This form is taken to simplify the notation. Note that the stability constraint on q

is satisfied given a stable ψ−1. It is possible to iterate this program by setting ψ = q on the

next step. The proposed approach is summarized in Algorithm 2, where the sequences ψj and

γj are defined. Its implementation is similar to the one of Algorithm 1. The same remarks

about the number of samples and computational complexity are valid for Algorithm 2, as well.

Convergence of the algorithm is shown in the following lemma, which is proved in [17].



Algorithm 2 Iterative Approach to Model Reduction

Inputs: Frequency grid Ω = {ωi}
N
i=1 ∈ [0, π], ψ1(z) =

∑k
i=0 ψ

1
i z

−i, where (ψ1)−1 is stable

Outputs: Sequences γj , ψj, reduced models pj/qj

Compute G(eω) for all ω ∈ Ω, let j = 1, γ0 = maxω∈Ω |G(eω| and

q = 1 +

k∑

i=1

qie
−iω and p =

k∑

i=0

pie
−iω

repeat

Given ψj, solve

γj = min
γ>0,p,q

γ subject to Re (q∼ψj) > 0 ∀ω ∈ [0, π]

∣
∣(Gq − p)ψj

∣
∣ < γRe

(
q∼ψj

)
∀ω ∈ Ω

Let qj and pj denote the solution. Set ψj+1 = qj and j = j + 1.

until |γj−1 − γj−2| ≤ ε

Lemma 3: If the constraints are enforced for all the frequencies ω in the interval [0, π], then

{γj}∞j=1 is a bounded, non-increasing sequence and there exist such a γ∞ that lim
j→∞

γj = γ∞.

Note, convergence in variables pj , qj and ψj is not shown in this paper. Nevertheless, in all

numerical examples the convergence is achieved, if the stopping criterion is changed to ‖ψj −

ψj−1‖∞, for example. The results for the converged approximation levels γ∞ are the same in

both cases.

The properties of the limit function p∞/q∞ is an intriguing topic, however, such analysis is

difficult since the behavior of the limit is dependent on the initial point. If minimized over ψ

as well, the program (16) becomes non-convex and non-smooth, and can have numerous local

minima. Any iterative approach to solve the problem does not, generally, converge to the globally

optimal solution.

V. EXAMPLES

Hankel model reduction and balanced truncation are implemented by MATLABTM routines

HANKELMR and BALANCMR respectively. Algorithm 1 and [14] are implemented using a cutting

plane method (for more details, see [14]). Continuous-time models are discretized first, while



pre-warping around a specified frequency ωp. Discretization is performed by mapping continuous-

time frequencies ωc to discrete-time ones as ωd = 2 atan (ωc/ωp) (or a MATLABTM code

C2D(G,π/ωp ,’PREWARP’,ωp). Note that frequency responses of the discrete-time model at ωd

and of the continuous time one at ωc are the same. The parameter ωp is a tuning parameter for

numerical conditioning. For example, if the biggest resonant peak occurs around a frequency

ωp, then pre-warping around ωp creates a better numerically conditioned problem.

Example 1 (Reconstruction of all-pass systems): This toy example is created to show better

numerical robustness of Algorithm 1 in comparison to [14]. Specify two all-pass models (i.e.,

their H∞ norms are equal to one) as:

Gi =
12∏

j=1

1 − zξ∼j
z − ξj

, where |ξj| = 0.96 ∀i, j

and the arguments for the complex conjugate poles are:

G1 : arg (ξj) = ±[0.11, 0.13, 0.14, 3.1, 3.11, 3.14]

G2 : arg (ξj) = ±[0.11, 0.13, 0.14, 1.57, 1.57, 1.57]

Our goal is to reconstruct the models G1 and G2 from the frequency response data using [14]

and Algorithm 1. It means that the reduction order k is equal to the orders of Gi, which are equal

to 12. Theoretically both methods are able to do this with the approximation error 0 for any

frequency grid Ω. Algorithm 1 provided reduced order models with approximation errors less

than 0.01 (recall that ‖Gi‖H∞ = 1). However, [14] failed in both cases providing approximation

errors around 0.10. The reason for such a behavior is the large ratio between maximal and

minimal coefficients in the denominators of the models Gi. Since the goal is the reconstruction

of Gi, the variables q should be equal to the denominators of Gi. The algorithm from [14] is

obliged to preserve the relationship a = qq∼, therefore the ratio between maximal and minimal

coefficients of q is squared in a. On the other hand, Algorithm 1 is able to choose ϕ freely in

a = qϕ∼, which ensures better numerical robustness.

Such numerical issues occur due to the choice of the polynomial basis for parametrization of

a and b, i.e. the functions z−i. One possible treatment for these problems is choosing a different

basis (see, for details [20]). Note that theoretical results do not depend on the choice of a basis.

Example 2 (Transmission Line Modeling): This example is described in [21] and the refer-

ences therein. This is a 2-input-2-output transmission line model with 256 states. In this example,



TABLE I

RELATIVE APPROXIMATION ERRORS 100 ·
‖G− bG‖H∞

max
ω∈Ω

|G(eω)|
IN EXAMPLE 2

Reduction order k 8 13 18

σk+1(G) 10.83 3.16 0.31

HMR 21.72 6.35 0.63

BT 21.72 6.41 0.63

[6] 21.21 6.23 0.62

HMR+Algorithm 2 12.07 3.92 0.43

[14] 11.61 3.92 0.43

Algorithm 1 11.27 3.47 0.42

only the {2, 2}-entry of the transfer function is being reduced. The main goal of this example is

to evaluate the best possible performance in terms of accuracy of Algorithms 1 and 2. For this

reason the number of computed frequency samples is large (around 900) and the frequencies are

spread in the interval [0,+∞). The algorithms are compared to [14], [6], balanced truncation

(BT) and Hankel model reduction (HMR). Recall that [6] computes a model, which satisfies the

first order optimality conditions in H2, if this model is stable. In order to apply [6] one needs

to specify initial shift points, which are chosen randomly according to [6]. Therefore [6] is run

numerous times and the best results are presented in Table I. The notation HMR+Algorithm 2

means that algorithms are run consecutively. That is, the initial φ1 for Algorithm 2 is computed

based on the Hankel approximation.

As shown in Table I, HMR, BT and [6] perform similarly to each other for all the orders.

The optimization-based approaches ([14], Algorithm 1 and HMR+Algorithm 2) show similar

to each other performance. Note that the behavior of HMR+Algorithm 2 is more consistent

with [14] and Algorithm 1, than HMR. Moreover, Algorithm 2 is able to significantly reduce

the HMR approximation errors. It is also reasonable to apply Algorithm 2 with ψ1 = q∗ from

Algorithm 1. There is a gain in the approximation quality in this case as well, however, our

goal is to evaluate the algorithms separately. An advantage of the proposed algorithms, which

explains such a behavior, is a better choice of the numerator. This can be better understood

by referring to Figure 1. The order 8 Hankel approximation (blue dashed line) cuts off the

high-frequency peaks of the full order model (thin black line). Similar behavior is exhibited by

the 8-th order models obtained by balanced truncation and [6], which are not depicted due to



10
10

10
11

10
12

10
1

10
2

10
3

10
4

M
a

g
n

it
u

d
e

 (
a

b
s
)

Frequency responses. Transmission lines

Frequency  (rad/sec)

Fig. 1. Bode magnitude plots in Example 2. Thin black line - the full order model, blue dashed line - HMR approximation

of order 8, thick black and red dash-dotted lines are obtained with Algorithm 1 and are approximations of order 8 and 18

respectively.

overlapping. On the other hand, the optimization techniques succeed in improving the H∞ error

by choosing a nearly constant gain for high frequencies. The 8-th order approximation resulting

from Algorithm 1 is depicted in Figure 1 (thick black line). To conclude, the minimization

objectives in the presented algorithms reflect the H∞ error better than the reduction criteria in

the discussed state-space approaches. If one desires to cut off the high-frequency peaks as state-

space methods do, then this can be incorporated into model reduction objective using frequency

weights or simply by choosing appropriately the frequency grid Ω.

An important question is choosing the order of the reduced model. Guided by this example

and Table I a lower bound on the order can be deduced by inspecting the frequency response

of the full order model. In Figure 1 the Bode magnitude plot has 8 peaks with large magnitude,



which are contributed by at least 16 complex conjugate poles. Therefore, the reduced order

models would provide a decent match if the order is at least 16.

VI. CONCLUSION AND DISCUSSION

The examples show that the presented algorithms can provide more accurate models in H∞

than other model reduction techniques. They are more flexible in terms of adding constraints

on reduced order model and/or modifying the objective function of model reduction problem.

However, in the current state the presented methods require more computational effort to obtain

reduced order models than Krylov methods. At the same time the optimization programs them-

selves do not depend on the order of the original model. Therefore, for large scale systems the

computational time for Krylov methods and the presented algorithms is comparable. Other issues

of the optimization programs are of numerical nature. These are associated with the choice of

a basis and a frequency grid. Both have heuristic solutions in the literature, which can improve

numerical robustness of the optimization program. For example, randomized methods can be used

to choose the grid, when a larger number of samples is generated around peaks in magnitude.
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