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A SIMULTANEOUS MAXIMUM LIKELIHOOD ESTIMATOR BASED O N  A 
GENERALIZED MATCHED FILTER 

Jan-Olof Gustavsson' Per Ola Borjesson' 

'University College of Karlskrona/Ronneby, Department of Signal Processing, S-372 25 Ronneby, Sweden 
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ABSTRACT 
This paper discusses parameter estimation and detection in 

laplace distributed noise. The received signal is modeled as 
F(.) = A S ( . , @ )  + n(.), where A is an unknown amplitude, 6 
is t.he parameter vector t o  be estimated and n(.) is indepen- 
dent laplace distributed noise. The simultaneous maximum 
likelihood estimator of (A ,$ )  is derived. The derived es- 
timator is based on a combmation of a weighted median 
filter I and a generaliset1 form of the ordinary matched 
filter121. 

Examples of performance for four different detectors are 
given for a case of binary detection, when the amplitude A 
or the signal shape . ( . , e )  are varied. Simulations indicate 
that the performance of detectors based on the generalized 
matched filter is not particularly dependent on either the 
estimate of the amplitude A or the signal shape. 

INTRODUCTION 
There are many problems where the task is to estimate 
a parameter in an observed signal(31. Examples of such 
problems are those of estimating the numerical value of 
a parameter (e.g. arrival time estimation) or choosing one 
hypothesis out of several hypotheses (e.g. detection or clas- 
sification of a signal). In many cases these problems can 
be dealt with by using a signal model of the form r( . )  = 
As(,, 8) + U(.), where .4 is a known amplitude and 8 is the 
parameter vector to be estimated from the observed sig- 
nal r(.). 

There are a number of studies of how to estimate 6 
in an optimal way according to given optimization crite- 
ria assuming the signal model given above. Examples of 
such criteria are the maximum likelihood (ML), maximum 
a posteriori (MAP) and the minimum mean square error 
(MMSE) criterion[3]. It is usually assumed that the noise, 
IJ(,), is gaussian distributed[3, 4 ,  51. There are at least two 
reasons why this assumption is so comnion. One reason 
is that the noise in many applications is at least approxi- 
mately aussian distributed according to  the central limit 
theorem761, and another reason is that the gaussian assump 
tion is analytically tractable. However, situations also exist 
where the statistical distribution of the uoise in the above 
model is non-gaussian[7, 8, Y Johnson and Rao[B] state 
that "Gaussian processes woul]d seem to be imprecise repre- 
sentations of physical measurements.". During the last few 
years the problem of parameter estimation in non-gaussian 
noise has been an active field of research. and many resnlts 
have been published, e.g. Kassam[lO] including references. 

When the noise is white gaussian, the optimal estimat,es 
of@ according to many difisrent crit,eria can be derived from 
the output from ordinary matched filters[3] when r ( . )  is the 
inp'iit l o  the filters'. This follows from the fact that when 

'The output from filten marclied with s l . . S )  for all possible 

t.he noise is white gaussian, the output from the ordinary 
matched filters is a sufficient statistic for calculating the 
a posteriori distribution for 8, given the observed signal r(.)  
and a known a priori distribution for 8. When the noise is 
independent non-gaussian it can be shown that  the output 
from a modified form of the ordinary matched filter is a suf- 
ficient statistic for calculating the a posteriori distribution 
for 8. Gustavsson and BBrjesson have derived and discussed 
this filter in 121. The modified form of the ordinary matched 
filter can be seen as an ordinary matched filter where the 
multipliers have been replaced by non-linearities. The non- 
linearity is known from several works dealing with the prob- 
lem of detection in non-gaussian noise[lO]. 

The estimation problem generally becomes much more 
difficult if the amplitude A in the model r( .) = As(. ,  @)+U( .) 
is both continuous valued and unknown. A special case 
when the ML estimate of 6 can still be calculated exactly is 
when the noise is gaussian distributed, since the estimator 
then becomes independent of the amplitude A. Another 
case where this can be done is discussed in this paper. The 
simultaneous ML estimator of A and 6 is derived assuming 
independent laplace distributed noise. The ML estimator is 
based on a combination of a matched median filter[l], which 
gives an estimate of the amplitude A, and a modified form 
of the ordinary matched filter[2]. The derivation can easily 
be modified by using Rayes theorem to give a simultaneous 
ML estimator of A and a MAP or MMSE estimator of 8. 
I n  a case of binary detection discussed in this paper, the 
performance of the estimator is calculated by means of sim- 
ulations, and the results are compared to the performance 
of three other estimators. 

THE MAXIMUM LIKELIHOOD ESTIMATOR 
Consider the problem of how to  estimate a parameter 
vector 6 from an observed signal r ( . ) ,  where r(.)  is mod- 
eled as 

In the model, s ( . , 8  is a signal dependent on the unknown 
parameter vector d, '  A is an unknown amplitude factor, 
A > 0, A E R, U(.) is independent laplace distributed noise 
with probability density function f"(.), k is a discrete 'time' 
variable and I the observation interval. The probability 
density function f v ( . )  is given by 

r ( k )  = A s ( k ,  e) + ~ ( k ) ,  k E I .  (1) 

where u2 is the variance of the noise. For all 8, the signal 
s (k ,8)  = 0 for all k outside the interval 10 : [m(8), m(8) + 
.(e)] and outside the observation interval I, i.e. the signal 
s(., 8) is of finite length, n(6 -t 1, and completley contained 
ill the observation interval 1. The parameter 8, which can 

values of 0 are necessary 
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only assume a countable number of values, is either a ran- 
dom or non-random vector independent of the noise .I(.). g 
and a denote estimates of the unknown parameters 0 and 
A. 

A structure of a filter for estimating 8 according to the 
ML, MAP or the MMSE criterion is proposed in [Z] and 
shown in figure 1.  This filter is built up of two parts. The 
first part, the preprocessor, processes the observed signal 
r ) and gives as output L(6(r(.) , for all possible values of 0. 
deally, the preprocessor should be chosen so that these 
outputs are a (minimal) sufficient statistic for calculating 
the a posteriori distribution of 6, provided that the a priori 
distribution of 0 is known. The  second part, the estimator, 
uses this information about 6 to make an estimate of 6 
according to a desired criterion. + Pre-processor 1 - 4  &timator + 
Figure 1. A geneml block-structure of a two-step process for 
estimating9. The output from the pw-processor i s  L(Olr( .)), 
for all possible values of 6 .  
The ML estimate of the parameters ( A , B )  is achieved 
by maximizing the likelihood function for the parame- 
ters ( A , # ) .  The likelihood function is 

L i ( A , B )  = n f v ( d E )  - A ~ ( k . 0 ) )  
* € I  

= exp { &ln(f.(r(k) - A.q(k,@))} 

Maximizing L l ( A , 6 )  is equivalent to maximizin the 
exponent in (3). The exponent can be rewritten as[2e) 

laplace distributed, the maximum likelihood estimate A s  of 
A given 0 is the weighted median of the observations, P(.), 
normalized by the signal s(., O ) ,  where the weights are given 
by the absolute values of the signal s(.,6)[1]. That  is, A e  is 
given by 

Since the parameter vector 0 can assume only a finite num- 
ber of values, & can be calculated for all possible val- 
ues of 0.  Denote the value L,(Ae,O) with L ( 6 ) .  A block 
structure illustrating the calculation procedure IS shown in 
figure 2. In the figure the weighted median filter is based 
on equation (8) and the generalized matched filter is based 
on equation (7) wit,li A replaced by A e .  This structure has 
to be repeated for all possible values of 0 to give L(O),VO. 
The simultaneous maximum likelihood estimate of ( A ,  6) is 
then (Ai, i) ,  where 

8 = arg { n1;x L ( 6 ) )  , 

c.f. the generalized likelihood ratio test in [3]. With the 
aid of Bayes theorem the estimation procedure can easily 
be modified to give a simultaneous ML estimate of A and 
a maximum a posteriori or minimum mean square error 
estimate of 6 given that 0 is a stocastic vector with known 
a priori distribution. 

Figure 2 A block structure for calculating L ( 0 )  when the 
signal amplitude 18 unknown and the noise is indepen- 
dent laplace distributed. WMF: Weighted median filter, 
GMF: Generalized matched filter 

EXAMPLES OF PERFORMANCE 

[lenote the second sum on the hand side of by 
Lz(A 6 and note that tlle first sum is independellt, of botll 
A an6 Q, ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ,  the likelihood functioll 
L ~ ( A , ~ )  is equivalent to , r 2 ( A , q ,  B~ using 
s ( k ,  6) = 0, E 6 [m(6), m(6) + n(8)] and by defining 

Consider the classical problem of deciding if a signal is 
Present Or not, to exemplify the perfornlance of the simulta- 
neous maximum likelihood estimator. The noise is indepen- 
dent laplace distributed with zero mean and unit variance. 
In this example. the prohlmi consists of cho'osing between 
the hypotheses 

bk(A,6) = As(m(B) + 4 6 )  - k , 6 )  

and where 

= I n  { -} = 2(Iz1 - 1' - *I)* (')) 

s ( k , O  = 0 , V k  
s ( k , 1 {  = 1 , k  E [1,5] och s(k,l) = 0,k [1 ,5]  

For this case the performance of four different detectors, 
D1 - D4, has been calculated by means of simulations. In 
the different detectors, the pre-processor in figure 1 is based 
on: 

L2(A,6) can be written 

D1 the generalized matched filter assuming that the am- 
plitude A is kriown[?], that is, As = A. 

D2 the proposed simultaneous M L  estimator of A and 
6,  which is the generalized matched filter with the 
amplitude A estimated using the weighted median[]], 
that is. A e  is given by (8 Henceforth, this detector 
will be referred to as e ide r  D2 or the simultaneous 

( 7 )  

= 2 1 ( b 4 A , B ) , r ( r n ( O )  + n(6) - k)). 
k=O 

maximum likelihood detector. 
D3 the generalized matched filter with A e  := 1 
D4 t,he ordinary niatclied filter[3]. 

A filter structure for calculating L z ( A . 0 )  for a given am- 
plitude A is , ~ ~ ~ ~ ~ ~ ~ ~ d  in [2], N~~ for each @, maxilnize 
L2(A,0)  with respect to A. Since the noise is independent 
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Note that the detectors D1 - D3 have in common that 
they all are based on the generalized matched filter. D1 is 
assumed to know the amplitude A,  while D2 tries to esti- 
mate the amplitude A from the received signal r ( . )  using 
( 8 ) .  Since A > 0 in ( I ) ,  an estimate A s  < 0 of A is changed 

I t  follows from (7) that under the hypothesis Ho : B = 0, 
the output from the pre-processor L el.(.)) = 0, VF(.). Con- 
sequently, the estimator must base t i e  decision between Ha 
and HI solely on the output from the pre-processor in fig- 
ure 2, L(O), with 0 = 1, that is L(1). 

In the four different detectors, the estimator used is based 
on a Neyman-Pearson test[3]. The  estimator compares L(1)  
to a threshold A, where X is chosen so that a given proba- 
bility of false alarm, p, (that is, to decide HI when HO is 
true), is achieved. The decision rule is: 

to Ae = 0. 

< X : decide Ho. { - > X : decide H I  

Let p d  denote the probability of detection, that is, to decide 
H I  when H I  is true. 

In figures 3 and 4, the simulated results of the prob- 
ability of detection, pd, respectively the probability of 

,,, - 1 - pd,  are shown as a function of the amplitude 
A in 1) for - the detectors D1 - D4, when the probability of 
false alarm, p f ,  is 0.1 and 0.01. To facilitate comparison of 
the different detectors, figures 5 and 6 show the quotient 
between pd for D2 - D4 and p d  for the detector D1, when 
p ,  = 0.01 and pf = 0.1 respectively. In  figures 3 - 8 t.hr 
following can be observed: 

the probability of detection is not part.icularly drpen- 
dent on the estimate A, of A. 
for small values of A ,  the detector based on the or- 
dinary matched filter, D4, h a s  a lower probability of 
detection than the other detectors used. 
for large values of A, the detector based on the ordinary 
matched filter, D4, has a higher probability of detection 
than the other detectors, i.e. D2 and D3, when the true 
value of the amplitude A is unknown. 

In figure 7 the pulse shape of s ( k ,  I ) ,  k E [1.5] varies 
instead of t.he amplitude. The pulse shapes are given h) 

s ( . , 1 ) =  z , - - , l , - ,x  I 2 I 
where x varies from 0.1 to 3. c.f. [I]. All signals are scaled 
so t.hat the signal energy becomes 5. This signal energy 
corresponds to A = 1 in figures 3 -- 6. In figure 7 the 
following can be observed: 

the probability of detection is not. particularly depen- 
dent on the signal shape. 
the detector based on the ordinary matched filter, 114, 
has a lower probabi1it.y of detection than the other de- 
tectors simulated for all signal shapes used. 

CONCLUSIONS 
The simultaneous maximum likelihood estimator has been 
derived for estimating a parameter vector B and an unknown 
signal amplitude A in independent laplace distributed noise. 
This estimator consists of a combination of a weighted me- 
dian filter and a generalized form of the ordinary matched 
filter. The estimator can easily be modified to become an 
ML estimator of the amplitude and a MAP or MMSE esti- 
mator of the parameter vector. 

Simulations have been made for a cast of binary detec- 
tion discussed in this paper, where the performance of fonr 

Amplitude, A 

Figure 3. The probability of detection, pd, for four diflerent 
detectors when the prolubility of false alarm is 0.1 and 0.01 
as a function of the signal amplitude. The noise is laplace 
distributed. 

0.5 I 1.5 2 2 5  3 

Amplitude. A 

Figure 4.  The probability of  miss, pm = 1 - p d ,  for four 
different detectors when the probability of false alarm i s  0.1 
and 0.01 as a function of the signal amplitude. The noise 
is laplace distributed. 

different detectors has been compared. The simulations in- 
dicate that, in general, the performance of the simultane- 
ous maximum likelihood detector is better than the per- 
formance of other detectors used, when the received signal 
amplitude is unknown. 

The simulations also indicate that the performance of 
detectors based on the generalized matched filter are not 
particularly dependent on either the estimate of the ampli- 
tude ,4 or the signal shape. 
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