BlueJEP: A Flexible and High-Performance
Java Embedded Processor

Flavius Gruian! Mark Westmijze?

ILund U niversity, Sweden
flavius.gruian@cs.lth.se

2Univers,ity of Twente, The Netherlands
m.westmijze@student.utwente.nl

Java Technologies for Real-time and Embedded Systems, 2007

QOutline

o Introduction

© Design

© Implementation and Experiments
@ Discussion

e Summary and Continuing Work

Introduction
°

Goal

What are we trying to do?

@ Design a Java processor starting from JOP [M. Schoberl]
@ Evaluate BlueSpec System Verilog as a design language

BlueSpec System Verilog (BSV)

Rule based, strongly-typed, declarative hardware specification
language, making use of Term Rewriting Systems to describe
computations as atomic state changes.

© Outperform other existing Java processors in terms of
design time

o flexibility

o execution speed

o device area

BlueJEP
BlueSpec System Verilog Java Embedded Processor

—

Introduction
.

Design parameters

Design features and constraints

Many design features shared between BlueJEP and JOP (VHDL):
@ micro-programmed, stack machine core

predictable rather than high-performance (RT systems)

given instruction set (bytecodes)

fixed micro-instruction set (for ease of programming)

°
o
@ identical executable image (loaded classes)
@ same back-end (synthesis) tools

°

same implementation platform (FPGA)

Design
°

System Architecture

Complete system overview

@ small: system on a FPGA ([Bluejep monitor | [RAM +
. . | Processor & debug bj.hex
o flexible: support exploration : ; ¢ ¢

@ real-time: easily predictable [On-chip Peripheral Bus (OPB)
timing § : t t

@ portable: standard interfaces
for fast integration (OPB, ey wesstiiiesees weoliiisssssssresl :
LMB for Xilinx EDK) t t

BlueJEP Pipeline

Six Stages Micro-Programmed Pipeline

Stage 1 : Stage 2 : Stage3 ! Stage 4 : Stage 5 : Stage 6
' ' ' forward
| g i)
gl £ 2! bypass
2 g !
BC2 ! micro- ! !
microA ROM
Fetch Fetch
Bytecode micro:t -

load cache ™~ =---__ Registers Stack

bus interface (OPB) |

Design
®0

BlueJEP architecture details

Handling data

@ Data dependencies cause stalls (stages 3,4,5):

@ searchable FIFOs are used to look for specific destinations
o stages do not fire if the required sources are destinations in
any of the following SFIFOs

@ Improved performance through forwarding stack words (from
the write-back FIFO — stage 6)

@ Register forwarding seems to yield marginal improvements
only at the expense of more hardware (therefore not used)

@ Bypass Execute (stage 5) for data moving operations
@ External memory accessed via registers (MwA, MRA, MD)

Design
oe

BlueJEP architecture details

Handling control

@ Micro-code branches: Bz, BNz, Bp, BNP, BM, BNM,
GoToO affect PC

@ Java branches are combinations of comparison operations,
JPC load/store and micro-branches.

@ Speculative execution of micro-branches — always " not taken":

@ no need for SFIFOs, no need to stall when PC or JPC changes
— simpler hardware

e context (JPC, PC, SP) must be passed along and restored
when needed in the Writeback stage — wider FIFOs

o flushing FIFOs and restoring context is easy — simpler code
(hard to debug though...)

@ Special register for controlling the load of the method cache
(CACHECTL) on INVOKES and RETURNS.

Micro-code aspects

From assembly to micro-ROM

bluejasm Cgenerator.bsv >_> bsv f;’ir:lp']ef

genrom

BC2microA

@ The encoding of the micro-instructions does not affect the
assembler (bluejasm)!

@ The actual encoding is interesting for optimization purposes
only.

Run-time aspects

From application to run-time environment

UserApp.java

BlueJim image generator
e offline class loading
Native.java and linking

JVM . java String.java

@ replaces native calls
with custom
bytecodes

Lkﬂ—l_’ Bluejim %t’i-hﬁ_ i RAM> @ throws away unused
methods and fields

@ adds GC information

BlueJEP Run-time library

JVM java Java implemented bytecodes.
Native.java Java-hardware interface.
* java Reduced JRE library.

Implementation and Experiments

Target System and Tools

Target FPGA

Tools

o Xilinx Virtex-1l (XC2V1000, fg456-4)

@ BSV compiler 2006.11, BSV — Verilog
o Xilinx EDK 9.1i, Verilog 4+ IPs — System
o Xilinx ISE 9.1i, System — FPGA

@ Chipscope, to monitor and debug

Implementation and Experiments
®00

Experimental Results

Device Area

Synthesis parameters: optimized for speed, distributed RAM.

Resources | Taken | Available | Percentage
Slices 3460 5120 68%
Flip-Flops 756 10240 7%
4LUTs 6858 10240 66%

2422 | used as logic
4436 | used as RAM

Observations, compared to JOP

@ Logic takes around the same amount of resources

@ RAM takes around five times more resources
(the BSV RegFiles are memories with 5 read ports and 1 write port)

Implementation and Experiments
oeo

Experimental Results

Clock Speed

Maximum clock speeds for BlueJEP and JOP (with OPB):

Virtex-1l | Spartan3 Virtexb
XC2V-4 XS83-5 | XC5VLX30-3
JOP (OPB) | 60 MHz | 66 MHz 200 MHz
BLUEJEP 85 MHz | 76 MHz 221 MHz
1) 1.42 1.15 1.10

¢ = feLurser/fiop I

@ BLUEJEP running faster than JOP is partly a consequence of
increasing the number of stages from 4 to 6 !

Implementation and Experiments
ooe

Experimental Results

Bytecode Execution Speed

Bytecode(s) JOP | BluelEP

CC CC RS1.40
iload iadd 2 3 095
iinc 11| 13 1.20
Idc 9 12 1.06 ¢ — fBLurJEP
if icmplt taken 6| 23 037 fiop
if_icmplt n/taken 6 8 1.06
getfield 23| 38 0.86 Relative speedup
getstatic 15 18 1.18 . CC jop
iaload 20| 45 0.92 RS¢ = @ opmmer
invoke 126 | 166 1.08
invoke static 100 | 111 1.28

@ some bytecodes are executed faster, some slower than on JOP

@ speculative execution takes its toll on taken branches

Discussion
°

BSV Specifics

BlueSpec System Verilog issues

Coding compared to a VHDL design:
@ shorter development time (1/2)
o fewer lines (1/3)
@ more readable, maintainable, flexible

Test & Debug along with the classic Verilog/VHDL ways:

@ easy, software-like test-benches (StmtFSM)
@ standalone BSV high-level executable
@ probes, asserts, debug messages...

Results are as expected:

@ larger area (needs efficient synthesis tools)
@ OK performance (timing is harder to control)

Discussion
°

Design Choices

The Design Rationale

Follow the classic JOP design (loosely) in order to compare BSV
and VHDL design flows, but exploration led to...

@ Six pipeline stages instead of four

o simpler stages
o shorter critical path

@ Speculative execution

o simpler control
e no stalls on success

@ OPB bus interface
o easy integration with other OPB cores in the Xilinx EDK
o easily replaceable

@ Micro-instruction set

o adapted for our architecture and folding
e custom micro-assembler back-end

Summary and Continuing Work

Finally...

Summary We

Extensions

introduced BLUEJEDP, which:

is a native Java embedded processor

is specified in BlueSpec System Verilog

has similar performance to existing solutions
proves that BSV is perfect for fast prototyping

@ Micro-instruction Folding [under evaluation]
@ Memory Management Support [completed|

	Introduction
	Goal
	Design parameters

	Design
	System Architecture
	BlueJEP Pipeline
	BlueJEP architecture details
	Micro-code aspects
	Run-time aspects

	Implementation and Experiments
	Experimental Results

	Discussion
	BSV Specifics
	Design Choices

	Summary and Continuing Work

