
Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

BlueJEP: A Flexible and High-Performance
Java Embedded Processor

Flavius Gruian1 Mark Westmijze2

1Lund University, Sweden
flavius.gruian@cs.lth.se

2University of Twente, The Netherlands
m.westmijze@student.utwente.nl

Java Technologies for Real-time and Embedded Systems, 2007



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Outline

1 Introduction

2 Design

3 Implementation and Experiments

4 Discussion

5 Summary and Continuing Work



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Goal

What are we trying to do?

1 Design a Java processor starting from JOP [M. Schöberl]

2 Evaluate BlueSpec System Verilog as a design language

BlueSpec System Verilog (BSV)

Rule based, strongly-typed, declarative hardware specification
language, making use of Term Rewriting Systems to describe
computations as atomic state changes.

3 Outperform other existing Java processors in terms of
design time
flexibility
execution speed
device area

BlueJEP

BlueSpec System Verilog Java Embedded Processor



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Design parameters

Design features and constraints

Many design features shared between BlueJEP and JOP (VHDL):

micro-programmed, stack machine core

predictable rather than high-performance (RT systems)

given instruction set (bytecodes)

fixed micro-instruction set (for ease of programming)

identical executable image (loaded classes)

same back-end (synthesis) tools

same implementation platform (FPGA)



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

System Architecture

Complete system overview

small: system on a FPGA

flexible: support exploration

real-time: easily predictable
timing

portable: standard interfaces
for fast integration (OPB,
LMB for Xilinx EDK)

On-chip Peripheral Bus (OPB)

BlueJEP
Processor

Timer

RAM + 
bj.hex

RS232 GPIO

monitor
& debug



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

BlueJEP Pipeline

Six Stages Micro-Programmed Pipeline

Fetch 
Bytecode

Fetch 
micro-I

Decode
& Fetch 
Register

Fetch 
Stack

Execute Write-
back

micro-
ROM

BC2 
microA

jump 
table

bypass

forward

BC-
Cache

JPC

StackRegisters

bus interface (OPB)

load cache

SP VP

MD MrAMwA

PC

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

bc
fif

o

de
cfi

fo

fs
fif

o

ex
fif

o

w
bfi

fo

OPD

const
CacheCtl

rollb
ack



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

BlueJEP architecture details

Handling data

Data dependencies cause stalls (stages 3,4,5):

searchable fifos are used to look for specific destinations
stages do not fire if the required sources are destinations in
any of the following sfifos

Improved performance through forwarding stack words (from
the write-back fifo – stage 6)

Register forwarding seems to yield marginal improvements
only at the expense of more hardware (therefore not used)

Bypass Execute (stage 5) for data moving operations

External memory accessed via registers (MwA, MrA, MD)



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

BlueJEP architecture details

Handling control

Micro-code branches: Bz, Bnz, Bp, Bnp, Bm, Bnm,
Goto affect pc

Java branches are combinations of comparison operations,
jpc load/store and micro-branches.

Speculative execution of micro-branches – always ”not taken”:

no need for sfifos, no need to stall when pc or jpc changes
→ simpler hardware
context (jpc, pc, sp) must be passed along and restored
when needed in the Writeback stage → wider fifos
flushing fifos and restoring context is easy → simpler code
(hard to debug though...)

Special register for controlling the load of the method cache
(CacheCtl) on invokes and returns.



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Micro-code aspects

From assembly to micro-ROM

microcode.asm types.bsv

bluejasm generator.bsv
bsv compiler

-sim

genrom

BC2microA
Micro-
ROM

jump 
table

stack

The encoding of the micro-instructions does not affect the
assembler (bluejasm)!

The actual encoding is interesting for optimization purposes
only.



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Run-time aspects

From application to run-time environment

Object.javaUserApp.java

javac

Native.java

JVM.java String.java

BlueJEP Run-time library

bjrt.jar BlueJim bj.hex to RAM

BlueJim image generator

offline class loading
and linking

replaces native calls
with custom
bytecodes

throws away unused
methods and fields

adds GC information

JVM.java Java implemented bytecodes.

Native.java Java-hardware interface.

*.java Reduced JRE library.



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Target System and Tools

Target FPGA

Xilinx Virtex-II (XC2V1000, fg456-4)

Tools

BSV compiler 2006.11, BSV → Verilog
Xilinx EDK 9.1i, Verilog + IPs → System
Xilinx ISE 9.1i, System→ FPGA
Chipscope, to monitor and debug



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Experimental Results

Device Area

Synthesis parameters: optimized for speed, distributed RAM.

Resources Taken Available Percentage
Slices 3460 5120 68%

Flip-Flops 756 10240 7%

4LUTs 6858 10240 66%
2422 used as logic
4436 used as RAM

Observations, compared to JOP

Logic takes around the same amount of resources

RAM takes around five times more resources
(the BSV RegFiles are memories with 5 read ports and 1 write port)



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Experimental Results

Clock Speed

Maximum clock speeds for BlueJEP and JOP (with OPB):

Virtex-II Spartan3 Virtex5
XC2V-4 XS3-5 XC5VLX30-3

JOP (OPB) 60 MHz 66 MHz 200 MHz
BlueJEP 85 MHz 76 MHz 221 MHz

φ 1.42 1.15 1.10

Clock factor

φ = fBlueJEP/fJOP

BlueJEP running faster than JOP is partly a consequence of
increasing the number of stages from 4 to 6 !



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Experimental Results

Bytecode Execution Speed

Bytecode(s) JOP BlueJEP
cc cc rs1.42

iload iadd 2 3 0.95
iinc 11 13 1.20
ldc 9 12 1.06
if icmplt taken 6 23 0.37
if icmplt n/taken 6 8 1.06
getfield 23 38 0.86
getstatic 15 18 1.18
iaload 29 45 0.92
invoke 126 166 1.08
invoke static 100 111 1.28

Clock factor

φ = fBlueJEP
fJOP

Relative speedup

rsφ = φ ccJOP
ccBlueJEP

some bytecodes are executed faster, some slower than on JOP

speculative execution takes its toll on taken branches



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

BSV Specifics

BlueSpec System Verilog issues

Coding compared to a VHDL design:

shorter development time (1/2)
fewer lines (1/3)
more readable, maintainable, flexible

Test & Debug along with the classic Verilog/VHDL ways:

easy, software-like test-benches (StmtFSM)
standalone BSV high-level executable
probes, asserts, debug messages...

Results are as expected:

larger area (needs efficient synthesis tools)
OK performance (timing is harder to control)



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Design Choices

The Design Rationale

Follow the classic JOP design (loosely) in order to compare BSV
and VHDL design flows, but exploration led to...

Six pipeline stages instead of four

simpler stages
shorter critical path

Speculative execution

simpler control
no stalls on success

OPB bus interface

easy integration with other OPB cores in the Xilinx EDK
easily replaceable

Micro-instruction set

adapted for our architecture and folding
custom micro-assembler back-end



Introduction Design Implementation and Experiments Discussion Summary and Continuing Work

Finally...

Summary We introduced BlueJEP, which:

is a native Java embedded processor
is specified in BlueSpec System Verilog
has similar performance to existing solutions
proves that BSV is perfect for fast prototyping

Extensions

Micro-instruction Folding [under evaluation]
Memory Management Support [completed]


	Introduction
	Goal
	Design parameters

	Design
	System Architecture
	BlueJEP Pipeline
	BlueJEP architecture details
	Micro-code aspects
	Run-time aspects

	Implementation and Experiments
	Experimental Results

	Discussion
	BSV Specifics
	Design Choices

	Summary and Continuing Work

