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Abstract

Propagation of a transient electromagnetic field in a stratified, dispersive and
anisotropic slab and related direct and inverse problems are investigated. The
field is generated by a transient external 3D source. The analysis relies on the
wave splitting concept and a two-dimensional Fourier transformation in the
transverse spatial coordinates. An investigation of the physical properties of
the split fields is made. To solve the direct and inverse scattering problems,
wave propagators are used. This method is a generalization and a unification
of the previously used imbedding and Green functions methods. The wave
propagator approach provides an exact solution of the transmission operator.
From this solution it is possible to extract the first precursor (the Sommerfeld
forerunner). These results also hold for a bi-anisotropic slab. An inverse prob-
lem is outlined using reflection and transmission data corresponding to four,
two-dimensional Fourier parameters. Due to the stratification of the medium,
the inverse Fourier transformation is not needed in the inverse problem.

1 Introduction

Electromagnetic wave propagation is traditionally treated using fixed frequency
methods. In recent years, however, the use of time domain techniques has increased.
This is due to both new technical development in, e.g. fast computers and generators
of short pulses, as well as new theoretical and mathematical approaches.

The inverse scattering problem of retrieving the parameters of the medium from
scattering data has an attractive formulation in the time domain [1, 2, 4, 8, 10–13,
15, 16, 19–21, 24, 28, 31–37, 39, 41, 44, 46]. Recently, there has also been advances in
the mathematical formulation of the first precursor (the Sommerfeld forerunner)
problem in dispersive and inhomogeneous media [45].

The time domain analysis, as it is presented in this paper, relies on the concept
of wave splitting, see Refs 8, 9. Crudely speaking, the wave splitting is a decompo-
sition of the fields with respect to the position of their sources [47–51]. The one-
dimensional wave splitting technique has been employed for normally or obliquely
incident plane waves and a wide class of media, both spatially inhomogeneous, non-
dispersive media [8, 19–21, 31–34, 39, 46] and temporally dispersive, homogeneous
media [4, 13, 15, 16, 35–37, 41, 44].

In higher dimensions the concept of wave splitting has been developed [47–51].
Moreover, propagation of transient electromagnetic waves in a waveguide with ar-
bitrary cross section has been addressed with wave splitting techniques and in this
case the Klein-Gordon equation is decomposed, see Ref. 30.

This paper is a continuation of previous work for anisotropic media [13, 15, 16].
The major objective is to further develop tools to solve the inverse scattering prob-
lem. The inverse scattering problem can be solved using several plane waves [15].
In this paper these results are generalized in that the incident field is arbitrary and
not necessarily restricted to plane waves. This is accomplished by a Fourier trans-
formation over the two coordinates transverse to the stratification of the medium.
The inverse scattering problem can then be solved using the fields for a discrete set
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Figure 1: The geometry of the problem at τ = 0 and the source located at n = −L.

of Fourier parameters, see also Ref. 20 for a similar treatment for isotropic media.
These fields correspond to only one single excitation of the slab with sources on
one side of the slab only. This is so due to the fact that the anisotropic medium is
invariant under spatial reversion [38, 40]. For a more general bi-anisotropic medium,
the same method applies slightly extended using sources on both sides of the slab.
Note that the solution of the inverse problem does not require any inverse Fourier
transformation of the data and the method is non-iterative.

2 Prerequisites

The transient electromagnetic pulse is generated by a three-dimensional source lo-
cated outside the slab. The slab is assumed to consist of a general, dispersive,
anisotropic medium, which is inhomogeneous with respect to depth, see Figure 1.
Outside the slab the medium is assumed to be vacuum. Hence, the parameters of
the medium vary only with time and depth, due to the temporal dispersion and
the stratification, respectively. Furthermore, no optical response is assumed in the
medium. This implies that the wave front velocity, c0 = (ε0µ0)

−1/2, is constant
everywhere.
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The analysis is based on the Maxwell equations in a source-free region{
∇× E = −c0∂τB,

∇× H = c0∂τD,

where the time unit τ = c0t is used. The constitutive relations used in this paper
are {

D = ε0(E + χe ∗ E),

B = µ0(H + χm ∗ H).

The permittivity and the permeability of vacuum are denoted ε0 and µ0, respectively.
The symbol ∗ denotes causal, temporal convolution, and an underlying scalar prod-
uct for convolution of dyadics A or vectors f , i.e.,

A(τ) ∗ f(τ) =

∫ τ

−∞
A(τ − τ ′) · f(τ ′)dτ ′.

In this paper all vectors are typed in italic boldface and all dyadics are typed in
Roman boldface or Greek boldface.

Furthermore, let the fields E((r, t)) and H((r, t)) be quiescent before τ < −L
where L is the distance between the slab and the source. Hence, by causality, the
fields in the slab are identically zero for τ < 0. The situation at τ = 0 is depicted
in Figure 1.

The constitutive relations model the anisotropic dispersion of the medium [26].
These dispersion effects are represented by the three-dimensional susceptibility dya-
dics χκ with indices κ = e, m for electric or magnetic susceptibility, respectively. Due
to causality, the susceptibility dyadics χe(n, τ) and χm(n, τ) vanish when τ < 0.
Outside the slab the susceptibility dyadics vanish for all time τ , since the medium
there is vacuum.

Elimination of the fields B and D leads to{
∇× E((r, t)) = −∂τ (η0H + χm ∗ η0H)((r, t)),

∇× η0H((r, t)) = ∂τ (E + χe ∗ E)((r, t)).
(2.1)

where the wave impedance of vacuum is denoted η0 = (µ0/ε0)
1/2.

The spatial variable r is decomposed in a normal and a parallel component with
respect to the slab. Explicitly, let n̂ be the constant unit vector normal to the
interface of the slab and decompose

r = ρ + nn̂,

where ρ · n̂ = 0. Hence, the coordinate n measures depth, and in the slab n ∈ [0, d],
see also Figure 1.

3 Conversion of the Maxwell equations

The objective of this section is to convert the Maxwell equations into a system of first
order equations in the electromagnetic fields parallel to the interfaces of the slab.
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The first step in this procedure is to apply a two-dimensional Fourier transform
perpendicular to n̂. Define λ · n̂ = 0 and |λ| = λ. Recall, due to the stratification
of the medium, χe(r, τ) = χe(n, τ) and χm(r, τ) = χm(n, τ).

Define the two-dimensional Fourier-transform and the inverse transform.


H(λ, n, τ) =

∫∫
R2

H(ρ, n, τ)eiλ·ρdρ,

H(ρ, n, τ) =
1

4π2

∫∫
R2

H(λ, n, τ)e−iλ·ρdλ.

(3.1)

Note that the nabla operator ∇ → −iλ + n̂∂n. In the following, the Fourier para-
meter λ is suppressed, e.g. F (λ, n, τ) = F (n, τ).

Decompose the fields and the dyadics in the normal and parallel components
with respect to the slab.


H = H‖ + Hnn̂, E = E‖ + Enn̂,

χκ = χ‖,κ + n̂aκ + bκn̂ + n̂cκn̂, κ = e, m,

I = I‖ + n̂n̂.

Here the vectors H‖, E‖, aκ, bκ and the dyadics χ‖,κ are two-dimensional in the
plane normal to n̂, e.g. n̂ · H‖ = 0, and n̂ · χ‖,κ = χ‖,κ · n̂ = 0. The normal
components of Eq. (2.1) are{

i(n̂ × λ) · E‖ = ∂τ (η0Hn + am ∗ η0H‖ + cm ∗ η0Hn),

i(n̂ × λ) · η0H‖ = −∂τ (En + ae ∗ E‖ + ce ∗ En).

In order to eliminate En and Hn, introduce the resolvents Le and Lm defined by
the resolvent equations

cκ + Lκ + cκ ∗ Lκ = 0, κ = e, m. (3.2)

This implies that the normal components of the fields can be expressed in the parallel
components of the electric and the magnetic fields.{

En = −(1 + Le∗)[i∂−1
τ (n̂ × λ) · η0H‖ + ae ∗ E‖]

η0Hn = (1 + Lm∗)[i∂−1
τ (n̂ × λ) · E‖ − am ∗ η0H‖]

where the anti-derivative is ∂−1
τ f(τ) =

∫ τ

−∞ f(τ ′)dτ ′. Insert this equation into the
parallel components of Eq. (2.1) given above. The result is an equation in only the
parallel components of the electric and the magnetic fields.

∂n

(
E‖

n̂ × η0H‖

)
=

[(
0 Γ1

Γ2 0

)
+

(
Dee Dem

Dme Dmm

)
∗ ∂τ

] (
E‖

n̂ × η0H‖

)
(3.3)

Here two new dyadics are defined

Γ1 = I‖∂τ + λλ∂−1
τ , Γ2 = I‖∂τ + (n̂ × λ)(n̂ × λ)∂−1

τ ,
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and Dκλ are the two-dimensional dyadics


Dee = i[(1 + Le∗)λae + (1 + Lm∗)(n̂ × bm)(n̂ × λ)]∂−1
τ ,

Dme = [χ‖,e − be ∗ (1 + Le∗)ae] + Lm(n̂ × λ)(n̂ × λ)∂−2
τ ,

Dem = −[n̂ × χ‖,m × n̂ + (n̂ × bm) ∗ (1 + Lm∗)(n̂ × am)] + Leλλ∂−2
τ ,

Dmm = i[(1 + Lm∗)(n̂ × λ)(n̂ × am) + (1 + Le∗)beλ]∂−1
τ .

(3.4)

Notice that in the following all vectors and dyadics are two-dimensional and normal
to n̂.

4 Wave splitting

The wave splitting transformation is a change of the dependent variables E‖ and
H‖ to a new pair of fields F±. Physically, these new fields can be interpreted as a
decomposition of the the original fields with respect to the location of their sources.
Specifically, the wave splitting diagonalizes Eq. (3.3) in vacuum.

The appropriate splitting, used in this paper, is determined by the principal part
of Eq. (3.3). Introduce the Neumann to Dirichlet operator K, cf. [47, 51], that maps
Neumann data on a plane n = n0 to Dirichlet data on this plane, and its inverse
K−1. These operators satisfy the relations


K−1 = [∂2

τ + λ2]K,

(Γ2K)(KΓ1) = I‖,

Γ1 = −n̂ × Γ2 × n̂,

KΓi = ΓiK i = 1, 2.

(4.1)

Note that
Γ1 · Γ2 = Γ2 · Γ1 = I‖[∂

2
τ + λ2].

Explicit integral representations of the operators K, K2 and K−1 are derived in
Ref. 47 in ((r, t)) space, and in Ref. 20 in (λ, n, τ) space. The integral representations
are 


KF = K ∗ F ,

K−1F = (∂τ + L∗)F ,

K2F = M ∗ F ,

(4.2)

Throughout this paper operators are typed in Calligraphic font and the correspond-
ing integral kernels are typed in Italic font. The integral kernels K, L and M are
obtained using either a Laplace transform technique, see Ref. 20, or applying the
two-dimensional Fourier transform to the results in Ref. 47, see Appendix A. The
results are 



K(λ, τ) = H(τ)J0(λτ),

L(λ, τ) = H(τ)λ
J1(λτ)

τ
,

M(λ, τ) = H(τ)
sin(λτ)

λ
,

(4.3)
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where H(τ) denotes the Heaviside step function. The integral representation of the
combined operators KΓ1 and Γ2K are obtained from the rule

∂τK = K(0+) + Kτ ∗ , (4.4)

where Kτ denotes partial differentiation of the kernel K with respect to τ . All
operators act successively from the right to the left, i.e.,

∂τKF = ∂τ (KF ).

In vacuum, the parallel field components satisfy the Klein-Gordon equations(
∂2

n − ∂2
τ − λ2

)
E‖ =

(
∂2

n − ∂2
τ − λ2

)
(n̂ × η0H‖) = 0.

Consider the canonical half space problem in vacuum with sources to the left (right)
of n0. In the region n > n0 (n < n0) the parallel field components satisfy the
Klein-Gordon equation, and at the boundary n = n0 the fields satisfy the up-going
(down-going) boundary condition

E‖ ±KΓ1n̂ × η0H‖ = 0.

These up-going and down-going conditions are derived in Refs 47,51. Note also that
the relation ∂nE‖ = Γ1 ·(n̂×η0H‖) holds in vacuum. The up-going and down-going
conditions lead to the definition of the wave splitting transformation

F± =
1

2
(E‖ ∓KΓ1n̂ × η0H‖),

with the inverse (
E‖

n̂ × η0H‖

)
=

(
I‖ I‖

−Γ2K Γ2K

) (
F +

F−

)
. (4.5)

Note that F + + F− = E‖. It is easy to verify that the split fields F± satisfy the
PDE (

(∂n + K−1)F +

(∂n −K−1)F−

)
=

(
∆11 ∆12

∆21 ∆22

)
∗ ∂τ

(
F +

F−

)
. (4.6)

and the coefficients are given by


∆11

−∆12

∆21

∆22


 = U




(KΓ1)Dme

Dee

(KΓ1)Dmm(Γ2K)
−Dem(Γ2K)


 (4.7)

where

U = U−1 =
1

2



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 . (4.8)

Due to Eq. (4.8) and the relations satisfied by K, K−1, Γ1 and Γ2, there is a 1–1
correspondence between the coefficients ∆kl of Eq. (4.6) and Dκλ of Eq. (3.3).
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5 Energy flow

In the previous section, the wave splitting transformation was introduced. This
transformation partitions the electromagnetic field with respect to the location of its
sources. For plane waves obliquely impinging on the slab, the split fields correspond
to electromagnetic fields propagating in the ±n̂ directions, respectively. In this
paper, however, the sources are general, and this simple picture breaks down. To
see the effects of the splitting in this case, examine the total electromagnetic energy
flow through the plane n = n0 up to a given time τ .

Calculate the total energy flow W (n0, τ) through the surface n = n0

W (n0, τ) =

∫∫
R2

τ∫
−∞

n̂ · [E × H ](ρ, n0, τ
′)dτ ′dρ

=
1

4π2η0

∫∫
R2

τ∫
−∞

(F + + F−)(λ, n0, τ
′) · (Γ2K)(F

+ − F
−
)(λ, n0, τ

′)dλdτ ′.

Here, the bar denotes complex conjugate. Introduce the dyadic-valued kernel G

G(λ, τ) = δ(τ)I‖ +
1

2
f(λ, |τ |)I‖ +

1

2
g(λ, |τ |)(n̂ × λ)(n̂ × λ),

where (cf. Eqs (4.4) and (4.3))


f(λ, τ) = H(τ)∂τJ0(λτ) = −H(τ)λJ1(λτ),

g(λ, τ) = H(τ)

∫ τ

0

J0(λτ ′) dτ ′,

Note that G is a real and symmetric dyadic, and, furthermore, by construction it is
an even distribution in time. Define the energy flow density w

W (n0, τ) =
1

4π2η0

∫∫
R2

w(λ, n0, τ)dλ.

This energy flow density w is given in terms of the dyadic-valued kernel G as

w(λ, n0, τ) =

τ∫
−∞

τ∫
−∞

F +(λ, n0, τ
′) · G(λ, τ ′ − τ ′′) · F +

(λ, n0, τ
′′)dτ ′dτ ′′

−
τ∫

−∞

τ∫
−∞

F−(λ, n0, τ
′) · G(λ, τ ′ − τ ′′) · F−

(λ, n0, τ
′′)dτ ′dτ ′′

+ wmixed(λ, n0, τ).

The contribution to W (n0, τ) due to wmixed is zero. To see this, apply the inverse
splitting, (4.5), and the inverse Fourier transform back to the electromagnetic fields
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E‖((r, t)) and H‖((r, t)). In (λ, n, τ) space, this leads to the constraint

∫∫
R2

τ∫
−∞

τ ′∫
−∞

F−(λ, n0, τ
′) · G(λ, τ ′ − τ ′′) · F +

(λ, n0, τ
′′)dτ ′dτ ′′dλ

=

∫∫
R2

τ∫
−∞

τ ′∫
−∞

F +(λ, n0, τ
′) · G(λ, τ ′ − τ ′′) · F−

(λ, n0, τ
′′)dτ ′dτ ′′dλ

in the split fields F±(λ, n0, τ). Note, however, that wmixed(λ, n0, τ) is not zero in
general.

To see the effect of the non-vanishing terms study the sign of the integral

τ∫
−∞

τ∫
−∞

F (τ ′) · G(λ, τ ′ − τ ′′) · F (τ ′′)dτ ′dτ ′′

Consider the eigenvalues of G

g1(λ, τ) = δ(τ) +
1

2
f(λ, |τ |),

g2(λ, τ) = δ(τ) +
1

2
f(λ, |τ |) +

λ2

2
g(λ, |τ |),

with eigenvectors λ and n̂×λ, respectively. The eigenvalues are even distributions
in τ . The cosine transforms are

∞∫
0

cos(ξτ)g1(λ, τ)dτ = H(|ξ| − λ)
|ξ|

2
√

ξ2 − λ2
,

∞∫
0

cos(ξτ)g2(λ, τ)dτ = H(|ξ| − λ)

√
ξ2 − λ2

2|ξ| +
πλ

2
δ(ξ),

which are even, positive distributions of ξ. This implies that G is a dyadic of positive
type (slightly generalized Bochner-Schwartz’ theorem, cf. Ref. 43) and therefore

τ∫
−∞

τ∫
−∞

F (τ ′) · G(τ ′ − τ ′′) · F (τ ′′)dτ ′dτ ′′ ≥ 0.

Hence, positive or negative contributions to w(λ, n0, τ) and W (n0, τ) arise from F +

or F−, respectively, irrespective of the excitation of the slab and the time τ .

6 Wave propagators

Both the direct and the inverse problem are solved using scattering operators [13, 15].
These operators map the incident field to the scattered transmitted and reflected
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field, respectively. One important property of these operators is that they de-
pend only on the material of the slab and not on the incident field. In previous
work [16, 35, 37], the scattering operators are calculated using Green functions or
the imbedding method. In the imbedding method the basic tool is the scattering
operators for a sub-slab. A variation of one of the edges of the sub-slab leads to
the imbedding equations for the scattering operators. Both the Green functions ap-
proach and the imbedding method are connected to each other via Volterra equations
of the second kind [16, 37]. This suggests a unified approach and the corresponding
scattering operators are called wave propagators [25, 27].

Consider the case when the sources of the field is in the region n < 0. Let
n ∈ [n1, n2] ⊆ [0, d] and define for the field F +(n1, τ) the propagators P++ and P−+

{
F +(n2, τ + (n2 − n1)) = P++(n2, n1)F

+(n1, τ),

F−(n2, τ + (n2 − n1)) = P−+(n2, n1)F
+(n1, τ).

(6.1)

If the sources are located in the region n > d propagators for F−(n2, τ) are defined
analogously. Note that for n1 > n2 the field is propagated backwards in time. In
this case the wave propagators are analogous to the Green functions used in Ref. 18.

The propagators satisfy the composition rules (+-case)


P++(n2, n1) = P++(n2, n)P++(n, n1)

P−+(n2, n1) = P−+(n2, n2)P++(n2, n1)

P++(n1, n1) = I
(6.2)

for all n, and where I is the identity operator. The middle rule motivates the
introduction of a reflection operator

R+(n) = P−+(n, n).

Note that the sub-slab [n1, n2] is imbedded in the physical slab, i.e., the sub-slab
[n1, n2] is sandwiched between [0, mini ni] and [maxi ni, d]. This assumption is cru-
cial for the simplicity of the composition rules, (6.2), cf. the Redheffer star product
technique wherein the scattering operators are defined for a sub-slab imbedded in
vacuum [42]. The composition rules (6.2) are generalizations of the previously ob-
tained relations between the imbedding and Green functions methods, see Ref. 16
and Appendix B.

6.1 Alternative dynamics

Introduce F− = R+F + on the right hand side in Eq. (4.6). Formally, the result is

(∂n ± ∂τ )F
± = A±+F +, (6.3)

where A±+ = ∂τA
±+∗, cf. (4.4), and

A++ = −∂−1
τ L + ∆11 + ∆12 ∗ R+,

A−+ = ∂−1
τ L + ∆21 + ∆22 ∗ R+.
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Here the representation1 R+ = R+∗ is used and L = LI‖, see Eqs. (4.2) and (4.3).

6.2 Reflection operator

If n1 = n2 = n in the second equation of (6.1), the following PDE for the reflection
operator R+ is obtained by differentiating wrt n and repeated use of (6.3):

R+
n − 2∂τR+ = A−+ −R+A++.

Balancing multiplicative and convolution parts in this equation, cf. Eq (4.4), yields

R+(n, 0+) = −1

2
∆21(n, 0+), (6.4)

(∂n − 2K−1)R+ = ∂τ (∆21 + ∆22 ∗ R+ − R+ ∗ ∆11 − R+ ∗ ∆12 ∗ R+). (6.5)

For a finite slab the reflection kernel vanishes on the rear side, i.e.,

R+(d, τ) ≡ 0. (6.6)

Therefore a finite jump-discontinuity propagates along the characteristic of the PDE
in (6.5). The exact form is derived in Ref. 16

[R+(n, 2(d − n))]+− =
1

2
Q−(d, n)∆21(d, 0+)Q+(n, d). (6.7)

Here, the dyadics Q± are the wave front propagators, see Appendix B or Ref. 16.

6.3 Transmission operator

The following PDEs are obtained from Eqs (6.1) and (6.3)2:{
P++

n2
(n2, n1) = A++(n2)P++(n2, n1),

P++
n1

(n2, n1) = −P++(n2, n1)A++(n1).
(6.8)

Integration of these equations gives integral equations of the following kind:

P++(n2, n1) = I +

∫ n2

n1

A++(n)P++(n, n1)dn = I +

∫ n2

n1

P++(n2, n)A++(n)dn.

The unique solution to these integral equations is [5, p. 177-178]

P++(n2, n1) = S exp

(∫ n2

n1

A++(n)dn

)
, (6.9)

Here a spatial ordering operator S is used. By definition

S[A(n1)A(n2) . . .A(nk)] = A(max
i

ni) . . .A(min
i

ni),

1This representation is justified from the absence of jump-discontinuities in F− along the char-
acteristic of F +.

2Note that ∂τ commutes with ∂τA++∗.
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where the operators on the right hand side have been arranged in order of decreasing
arguments ni. Note that the operator A++ is the generator of a semi-group.

The solution (6.9) comprises the wave front propagator and the transmission
kernel or the Green function used in Refs 15, 16. For the connection to these tech-
niques, see Appendix B. An analogous result using fixed frequency methods is found
in Ref. 3.

To further analyze the properties of the solution (6.9) define the generator A
and the corresponding propagator P , i.e.,

P(n2, n1) = S exp

(∫ n2

n1

A(n, τ)dn

)
.

It is useful to decompose the generator as A(n) = B(n) + C(n) and define

PB(n2, n1) = S exp

(∫ n2

n1

B(n, τ)dn

)
.

The propagator P(n2, n1) can be factored in two ways

P(n2, n1) = PB(n2, n1)PR(n2, n1) = PL(n2, n1)PB(n2, n1).

The operators PR,L are obtained by using Equations (6.8) and (6.2). The solutions
are 


PR(n2, n1) = S exp

(∫ n2

n1

PB(n1, n)C(n)PB(n, n1)dn

)
,

PL(n2, n1) = S exp

(∫ n2

n1

PB(n2, n)C(n)PB(n, n2)dn

)
.

(6.10)

6.4 The Sommerfeld forerunner

On a small enough time scale after the arrival of the wave front, it is possible to
approximate the response of the medium, and to derive an explicit expression of the
transmission operator. The associated propagator is, by definition, the Sommerfeld
propagator and the related field is the Sommerfeld precursor or forerunner [7].

The early time behavior of the field is approximated by evaluating the generator
at τ = 0+. This defines the generator A++

A++
S (n) = A++(n, 0+) + A++

τ (n, 0+) ∗ ,

which, by definition, is the generator of the Sommerfeld propagator, i.e.,

P++
S (n2, n1) = S exp

(∫ n2

n1

A++
S (n)dn

)
.

This expression can be rewritten using Eq. (6.10). The result is

P++
S (n2, n1) = Q+(n1, n2)S exp (−B(n2, n1)∗) ,
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where

B(n2, n1) = −
∫ n2

n1

Q+(n1, n)A++
τ (n, 0+)Q+(n, n1)dn (6.11)

and Q+ is the wave front propagator, cf. Appendix B. The convolution part of the
Sommerfeld propagator simplifies according to the formal rule

(1∗)k =
τ k−1

(k − 1)!
∗ .

This implies then

P++
S (n2, n1) = Q+(n2, n1)

[
I‖ − S

√
B(n2, n1)

τ
J1

(
2
√

τB(n2, n1)
)
∗
]

,

where the power series expansion of the Bessel function of first order J1 has been
employed. Clearly this result is a generalization of previously obtained results for
isotropic and bi-isotropic media [45]. Note that the above result holds for any
medium where the combined Maxwell equations and constitutive relations can be
cast in the form of Eq. (4.6). Therefore, it is a straightforward procedure to cal-
culate the forerunner in the plane wave case [15] or for a bi-anisotropic dispersive
medium [14]. In Appendix C, the Sommerfeld forerunner is further investigated and
the exact conditions, under which the forerunner is the dominant contribution to
the electromagnetic field, are given.

7 The inverse problem for homogeneous media

The inverse scattering problem for homogeneous anisotropic media can be solved
using plane waves [15]. The inversion algorithm is based upon a technique similar
to solving a Volterra integral equation of the second kind. This method uses the
Green functions evaluated at all points n ∈ [0, d]. However, by employing the
exact solution, (6.9), the use of Green functions becomes obsolete and the inversion
algorithm only requires reflection data R+(n, τ) at n ∈ [0, d]. An even simpler
algorithm is obtained for susceptibility dyadics with homogeneous initial values,
i.e., χe(0

+) = χm(0+) = 0. This implies that ∆kl(0
+) = 0. This is a relevant and

physical assumption, cf. Ref. 23, and an example of such a medium is the Lorentz
medium, see Ref. 6, where each component of the susceptibility dyadics χe and χm

is a sum of exponentially attenuated sinusoidal functions of time. In the subsections
7.1 and 7.2 it is assumed that the susceptibility dyadics have homogeneous initial
values, i.e., χe(0

+) = χm(0+) = 0, or ∆kl(0
+) = 0.

7.1 Reflection data inversion

Consider the triangular region in space-time, n-τ , bounded by the lines τ = 0, n = 0
and τ = 2(d− n). In this region the reflection kernel R+ is independent of n, since,
due to causality, the medium is effectively semi-infinite, and the effects of the back
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wall have not arrived yet. Therefore, in this region the reflection kernel R+(n, τ) is
identical to the reflection kernel R∞(τ) of the semi-infinite slab (d → ∞). To make
use of this property of the reflection kernel R+, the time delay operator is used.
Explicitly

δaA(τ) = δ(τ − a) ∗ A(τ) = A(τ − a).

Here, δa denotes the time delay operator with delay a and the delta function δ(τ−a)
is the kernel in the integral representation. Now decompose the reflection kernel as

R+(n, τ) = R∞(τ) − δ2(d−n)R∞(τ) + R0(n, τ).

The first kernel R∞(τ) comprises only pure medium response, i.e., no scattering
effects from the back wall which are contained in the second and third kernels in
this decomposition. Due to causality{

R∞(τ) = 0 for τ < 0,

R0(n, τ) = 0 for τ < 2(d − n).

By definition the kernel R∞ satisfies

2R∞ + ∆21 = −∂−1
τ 2L ∗ R∞ − ∆22 ∗ R∞ + R∞ ∗ ∆11 + R∞ ∗ ∆12 ∗ R∞, (7.1)

which implies that the kernel R0 satisfies

(∂n − 2∂τ )R0 = Σ21 + Σ22 ∗ R0 − R0 ∗ Σ11 − R0 ∗ Σ12 ∗ R0, (7.2)

cf. Eq. (6.5). The explicit forms of the kernels Σkl are


Σ21 = − δ2(d−n)

[
(∆′

22 + 2L) ∗ R∞ − R∞ ∗ ∆′
11

− (2 − δ2(d−n))R∞ ∗ ∆′
12 ∗ R∞

]
,

Σ22 =∆′
22 + 2L − (1 − δ2(d−n))R∞ ∗ ∆′

12,

Σ11 =∆′
11 + (1 − δ2(d−n))∆

′
12 ∗ R∞,

Σ12 =∆′
12.

The initial and boundary values are

R∞(0+) = 0, (7.3)

R0(d, τ) = 0, (7.4)

R0(n, 2(d − n)+) = 0. (7.5)

Here Eqs (7.3) and (7.4) follow from Eqs (6.4) and (6.6), respectively, and Eq. (6.7)
implies Eq. (7.5).

Evidently, the PDE for R0 is coupled to the PDE for R∞. To decouple them,
numerically and time step by time step, use an equidistant time discretization and
an integration quadrature that includes the end points of the time interval. Consider
the inverse problem and the reconstruction of ∆21(τ0) using R+(0, τ0). Due to the
initial values ∆kl(0

+) = 0, only the left hand side members of Eqs (7.1) and (7.2)
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depend on τ0, and the right hand side members are known. Here, it is assumed
that the medium parameters are recovered for all earlier times, i.e., τ < τ0. This
implies that R0(0, τ0) can be recovered and therefore, by using the indata R+(0, τ0)
the kernel R∞(τ0) can be recovered. Thence, the kernel R∞(τ0) and Eq. (7.1) can
be used to recover ∆21(τ0). To proceed to the next time step more indata is needed,
see Subsection 7.2, since the kernels ∆22(τ0), ∆11(τ0) and ∆12(τ0) are needed in the
next time step. Note that the kernel R∞ corresponding to a semi-infinite medium is
used to recover ∆21. Physically, the kernels δ2(d−n)R∞(τ) and R0(n, τ) comprise the
reflections due to the back wall and these effects obscure the response of the medium.
By using the above decomposition, it is possible to identify and to eliminate this
problem.

Note, in this subsection it is demonstrated that the kernel ∆′
21 can be recon-

structed time step by time step if the kernels ∆′
11, ∆′

12 and ∆′
22 can be recovered

using other equations.

7.2 Transmission data inversion

In any slab with a homogeneous medium, the propagator P++(n2, n1) depends only
on the distance of propagation n2 − n1, and the distance to the back wall d −
n2. This is so, since the propagators are independent of the excitation F +(n1, τ),
and therefore any change of the medium in the region n ∈ [0, n1] does not affect
P++(n2, n1). Note that the propagator is invariant under spatial translations if
d = ∞ and, in that case, R+ = R∞ which implies that S = I. However, in a finite
slab the spatial ordering operator is not an identity, since R+ is a dyadic-valued
function of n, and therefore

A++(n′)A++(n′′) �= A++(n′′)A++(n′),

in general. In order to use the solution (6.9), extract the commuting part of the
generator A++(n) and factor the propagator using Eq. (6.10). Explicitly,



P++(n2, n1) = P++
sd (n2, n1)P++

nr (n2, n1)P++
r (n2, n1),

P++
sd (n2, n1) = exp (−(n2 − n1)L∗) ,

P++
nr (n2, n1) = exp ((n2 − n1)∆

′
11∗) ,

P++
r (n2, n1) = S exp

(∫ n2

n1

A++
r (n1, n) dn

)
,

where

A++
r (n1, n) = exp ((n1 − n)∆′

11∗)∆′
12 ∗ R+(n, ·) ∗ exp ((n − n1)∆

′
11∗) .

Recall the initial values ∆kl(0
+) = 0. This is a decomposition of the propagator

P++ in a scalar part due to spatial dispersion (subscript sd), a reflection-independent
part (subscript nr), and a third part containing the reflection kernel R+. To solve
this equation for ∆′

11, use an equidistant time discretization and an integration
quadrature that includes the end points of the time interval. Due to the initial
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value of ∆′
12 ∗ R+, the generator of the propagator P++

r depends only on ∆kl at
earlier time steps. Hence, at each time step, the generators of P++

r and P++
sd are

known. The inverses of P++
r and P++

sd then yield

P++
nr (n2, n1) = P++

sd (n1, n2)P++(n2, n1)P++
r (n1, n2).

The right hand side terms contain known operators, time step by time step. This
result can now be used to recover ∆′

11(τ0). The formal inverse is

∆′
11∗ =

1

n2 − n1

logP++
nr (n2, n1).

The logarithm on the right hand side is defined via the representation

P++
nr = I‖ + P(τ)∗

and the power series expansion of the function log(1 + x).
Note, in this subsection it is demonstrated that the kernel ∆′

11 can be recon-
structed time step by time step if the kernels ∆′

21, ∆′
12 and ∆′

22 can be recovered
using other equations.

7.3 Mirror images and the DIP

In the previous sections, the reconstruction of ∆21(λ; τ) and ∆11(λ; τ) is investi-
gated. The reconstruction is only possible if the kernels ∆12(λ; τ) and ∆22(λ; τ)
can be reconstructed simultaneously. This can be accomplished by the mirror image
transformation3, see Eqs (3.4) and (4.7)

∆kl(−λ, τ) = −∆k l(λ, τ). (7.6)

Alternatively, use sources in the region n > d, and keep the Fourier parameter λ
the same. However, the mirror image transformation suggested here uses the same
sources, and it is therefore more advantageous from an experimental point of view.

Hence, all four kernels ∆kl can be reconstructed by using the scattering data

R+(±λ; 0), P++(±λ; d, 0).

and the algorithm given in Sections (7.1) and (7.2). This is the Dynamics Inverse
Problem (DIP) [15].

7.4 RIP

In the RIP (Retrieval of Internal Parameters) the DIP is assumed to be solved for
two non-parallel λ. The output of the DIP are the kernels ∆′

kl(λi, τ) for i = 1, 2.

3The notation of dual indices, i.e., 1 = 2 and 2 = 1, is used here.
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Using Eqs (4.7), (4.8) and the operator algebra (4.1), D′
κλ(λi, τ) for i = 1, 2, are

obtained. The dyadics D′
ee × n̂, n̂ × D′

me × n̂, D′
em and n̂ × D′

mm are on the form

D′(λ) =




βLλ + λβR

or

α + γλλ.

These dyadic polynomials are uniquely determined, see Ref. 14, by two λi such that
λ1×λ2 �= 0. This means that D′

κλ(λi) (κ, λ = e, m and i = 1, 2) uniquely determine
the parameters γ, βL/R and α. The explicit forms of these parameters are given
by Eq. (3.4). Hence, by direct identification, the following quantities are uniquely
determined 



∂−1
τ Lκ,

(1 + Lκ∗)aκ,

(1 + Lκ∗)bκ,

∂τ

[
χ‖,κ − bκ(1 + Lκ∗)aκ

]
,

κ = e, m. (7.7)

To continue, take the time derivative of the top line to recover Lκ and use the
resolvent equation (3.2) to recover cκ. Operate then with 1+cκ∗ on the middle lines
to retrieve the vectors aκ and bκ. Finally, the components χ‖,κ can be recovered
by integrating the bottom line and subtracting the—by now known—contributions
from Lκ, aκ and bκ. This completes the algorithm.

8 Reciprocal media

A constraint on the scattering data for reciprocal media is derived. Reciprocity
implies that χ‖,κ are symmetric, which implies aκ = bκ. Hence, see (3.4)

DT
κκ = Dκ κ,

DT
κκ = Dκκ.

Here, T denotes the transpose. This implies, see (4.1) and (4.7)

T = ∆kk,

[(Γ2K)∆kk(KΓ1)]
T = −∆kk.

Now apply the transformation in the above left hand side to Eq. (6.5). By noting
that ∂n and K−1 commutes with Γ2K and KΓ1 it is straightforward to obtain a
PDE for the transformed reflection kernel. This PDE is identical to the PDE for
the kernel R+(−λ; n, τ), see (7.6). Therefore

R+(−λ; n, τ) = [(Γ2K)R+(KΓ1)]
T (λ; n, τ).
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9 Conclusions

The inverse problem of reconstructing the material parameters of a homogeneous,
dispersive and anisotropic slab is investigated. This can be done using several plane
waves, see Ref. 15. However, in the technique developed here, the inverse problem
can be solved by using only one single excitation of the slab, and scattering data
corresponding to a finite number of Fourier parameters λ. The prize paid for this
is the need for time differentiation of reconstructed data in order to obtain the
susceptibility kernels, see (7.7). Note, however, that the reconstruction does not
need the inverse Fourier transformation.

The use of wave propagators provides an exact solution for the transmission
operator. Hence, the reconstruction of internal transmission data is obsolete, and
the Karlsson method used in Ref. 15 can be further optimized. The wave propagators
also provide the Sommerfeld forerunner in a straightforward manner. Note that all
the results for the wave propagators, developed in this paper, can be applied to the
plane wave case with simple modifications.

The Neumann to Dirichlet operator K and its inverse provide the exact absorbing
boundary conditions for the wave propagation problem. Moreover, an alternative
and more direct technique is employed to calculate the explicit form for these oper-
ators, see Appendix A.

Furthermore, the physical meaning of the wave splitting has been made clear by
an investigation of the contribution from the split fields to the flow of energy.
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Appendix A Explicit forms for operators

The explicit form of the operators K, K−1 and K2 in (ρ, n, τ)-space is derived in
Ref. 47. Here, the sign of K is changed to be consistent with later work [20, 30, 49, 51].
In (λ, n, τ)-space the operators can be calculated directly by applying the two-
dimensional Fourier transform. In ((r, t))-space the K operator is

Kv(ρ, n, τ) =
1

2π

∫∫
U(ρ,τ)

v(ρ′, n, τ − R)

R
dρ′.

Here R = |ρ − ρ′| and U(ρ, σ) is a disc in the ρ′-plane centered around ρ and with
radius σ. A two-dimensional Fourier transform (3.1) and local polar coordinates
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ρ′ − ρ = R then lead to

Kv(λ, n, τ) =

τ∫
0

v(λ, n, τ − R)
1

2π

2π∫
0

e−iλR cos αdαdR =

τ∫
0

v(λ, n, τ − R)J0(λR)dR.

where α is the angle between λ and R. This implies that the kernel K(λ, τ) =
H(τ)J0(λτ).

The Dirichlet to Neumann operator, see Ref. 47, can be represented as

K−1w = [∂τ + L]w,

where

Lw(ρ, n, τ) = − 1

2π

∫∫
U(ρ,τ)

∇′w(ρ′, n, τ − R) · (ρ′ − ρ)

R3
dρ′.

Using the above technique

Lw(λ, n, τ) = − 1

2π

∫∫
R2

dρ

∫∫
U(ρ,τ)

dρ′∇′w(ρ + R, n, τ − R) · R
R3

eiλ·ρ

=

τ∫
0

w(λ, n, τ − R)L(λ, R)dR.

The kernel L is obtained by direct identification

L(λ, R) = − 1

R

d

dR


 1

2π

2π∫
0

e−iλR cos αdα


 = λJ1(λR)/R

For K2 Weston [47] derived

K2v(ρ, n, τ) =
1

2π

τ∫
0

ds

∫∫
U(ρ,τ−s)

dρ′ v(ρ′, n, s)

[(τ − s)2 − R2]1/2
.

The application of the Fourier transformation and the introduction of the local polar
coordinates then lead to

K2v(λ, n, τ) =
1

2π

∫∫
R2

dρ

τ∫
0

ds

∫∫
U(ρ,τ−s)

dρ′ v(ρ + R, s)

[(τ − s)2 − R2]1/2
eiλ·ρ

=

τ∫
0

v(λ, n, s)M(λ, τ − s)ds.
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As expected, cf. Ref. [20]

M(λ, τ) =
1

2π

τ∫
0

RdR

2π∫
0

dα
e−iλR cos α

[τ 2 − R2]1/2

=τ

1∫
0

sJ0(λτs)
ds√

1 − s2
=

1

λ
sin(λτ),

where the last integral is given by Ref. 17, formula 6.554.2. From these results it
is clear that the split fields in the present paper are the two-dimensional Fourier
transforms of the physical split fields defined by Weston [47].

Appendix B Invariant imbedding and Green func-

tions

To see the relation between the imbedding and Green functions formulations, use
the representation, cf. (4.4)

∂τA
++(n, τ)∗ = A++(n, 0+) + A++

τ (n, τ) ∗ .

The part of P++ corresponding to A++(n, 0+) is then identified as the wave front
propagator

Q+(n2, n1) = Q+(n2, n1) = S exp

(∫ n2

n1

A++(n, 0+)dn

)
,

with
A++(n, 0+) = ∆11(n, 0+).

Define propagators T + and G++ which factor the propagator P++(n2, n1) as

P++(n2, n1) = Q+(n2, n1)T +(n2, n1) = G++(n2, n1)Q+(n2, n1).

These factors have the explicit solutions, see (6.10)

T +(n2, n1) = S exp

(∫ n2

n1

Q+(n1, n)A++
τ (n, τ)Q+(n, n1)dn∗

)
,

G++(n2, n1) = S exp

(∫ n2

n1

Q+(n2, n)A++
τ (n, τ)Q+(n, n2)dn∗

)
.

By inspection, it is possible to represent the propagators T + and G++ as integral
operators with kernels T+ and G++ defined by

T +(n2, n1) = I‖ + T+(n2, n1, τ) ∗ ,

G++(n2, n1) = I‖ + G++(n2, n1, τ) ∗ .
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From the composition rules (6.2) it is then easy to see that T+(n1, n2, τ) is the
resolvent to G++(n2, n1, τ) from the left, i.e.,

T+(n1, n2, τ) + G++(n2, n1, τ) + T+(n1, n2, τ) ∗ G++(n2, n1, τ) = 0.

Moreover, these kernels are generalizations of the traditional transmission kernel and
the corresponding Green function [4, 16, 29]. The imbedding and Green functions
technique correspond to the fixed endpoints n2 = d and n1 = 0, respectively, i.e.,
the propagator T +(d, n) and G++(n, 0).

Appendix C Domain for the Sommerfeld forerun-

ner

The objective of this appendix is to investigate when the Sommerfeld forerunner is
the dominant contribution to the early time behavior of the propagator. To do this,
factor the propagator P++ using the decomposition A++(n) = A++

S (n) + A++
rest(n)

where {
A++

S (n) = A++(n, 0+) + A++
τ (n, 0+) ∗ ,

A++
rest = Y(n, τ)∗ = [A++

τ (n, τ) − A++
τ (n, 0+)] ∗ .

Rewrite the propagator as a product, see Subsection 6.3, i.e.,

P++(n2, n1) = P++
L (n2, n1)P++

rest(n2, n1),

where 


P++
rest(n2, n1) = S exp

(∫ n2

n1

Y(n, τ)dn∗
)

,

P++
L (n2, n1) = S exp

(∫ n2

n1

P++
rest(n2, n)A++

S (n)P++
rest(n, n2)dn

)
.

In order to investigate the contribution from the last term, define the kernel Prest

by
P++

rest − I = Prest(n2, n1, τ) ∗ .

The kernels Prest and Y(n, τ) satisfy the integral equation

Prest(n2, n1, τ) =

∫ n2

n1

Y(n, τ)dn +

∫ n2

n1

Y(n, τ) ∗ Prest(n, n1, τ)dn.

Define the iteration scheme, k = 0, 1, 2, . . .

P
(k+1)
rest (n2, n1, τ) =

∫ n2

n1

Y(n, τ)dn +

∫ n2

n1

Y(n, τ) ∗ P
(k)
rest(n, n1, τ)dn

with initial value P
(0)
rest ≡ 0. The solution is then obtained as the series

Prest =
∞∑

k=0

(
P

(k+1)
rest − P

(k)
rest

)
,
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provided the series converges. Define the norm

‖A‖ = sup
n∈[n1,n2]
τ∈[0,T ]

‖A(n, τ)‖D,

where ‖ · ‖D is any dyadic norm that satisfies the Schwartz inequality, i.e.,

‖A · B‖D ≤ ‖A‖D‖B‖D.

The above series gives a unique solution for all bounded ‖Y‖, |n2−n1|, and T since,
by induction, the following estimate holds [22]

‖P(k+1)
rest (n2, n1, τ) − P

(k)
rest(n2, n1, τ)‖D ≤ ‖Y‖k+1|n2 − n1|k+1T k

k!(k + 1)!
.

Thus

‖Prest(n2, n1, τ)‖D ≤
√

‖Y‖|n2 − n1|
T

I1

(
2
√

‖Y‖|n2 − n1|T
)

.

Here, the modified Bessel function I1 is used.
Recall the standard definition of operator norm

‖U‖ = sup
F

‖UF ‖
‖F ‖ .

Using operator norm
‖P++

rest − I‖ = T‖Prest‖.
This result implies that the rest term can be neglected for ‖Y‖|n2 − n1|T � 1.
Note that ‖Y‖ can be made arbitrarily small, if T is sufficiently small provided
A++

τ (n, τ) is right-continuous at τ = 0. Therefore, |n2 − n1| can be made large and
simultaneously ‖Y‖ |n2 − n1| is held constant.

The rule (6.10) implies that

P++
L = S exp

(∫ n2

n1

P++
rest(n2, n)A++

S (n)P++
rest(n, n2)dn

)

which is close to the Sommerfeld propagator since P++
rest ≈ I. Now, factor the

Sommerfeld propagator (the propagator with P++
rest = I) as a product, i.e., P++

S =
Q+P++

R where Q+ = Q+· is the wave front propagator, cf. Appendix B. Using the
above technique it is straightforward to obtain

‖P++
R − I‖ ≤

√
ξI1

(
2
√

ξ
)

,

ξ = ‖Q+‖2‖A++
τ (n, 0+)‖ |n2 − n1|T .

From this expression, it is obvious that if the parameter ξ is small, then the Som-
merfeld forerunner is close to the wave front propagator Q+, and no precursor effects
are seen.
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