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ABSTRACT 

 
Demands on the quality and reliability of volunteered geographic information have increased 

because of its rising popularity. Due to the less controlled data entry, there is a risk that people 

provide false or inaccurate information to the database. One factor that affects the effect of such 

updates is the structure of the database schema, which in this paper is described by network models. 

By analyzing GIS data models, we have found that their class diagrams have small-world properties 

and long-tailed distributions. Moreover, an analysis of the error and attack tolerance showed that the 

data models were robust against random errors but very fragile against attacks. In a network structure 

perspective, these results indicate that false updates on random tables of a database should usually do 

little harm, but falsely updating the most central cells or tables might cause big damage. 

Consequently, it may be necessary to monitor and constrain sensitive cells and tables in order to 

protect them from attacks. 

 

INTRODUCTION 

 
Geographic information (GI) is copyrighted in many parts of the world, and this restricts the GIS 

users who need cheap, unlicensed spatial data in their projects. GI may also be quickly out of date, 

which raises the need for online up-to-date maps (Haklay and Weber, 2008). The idea of involving 

users in the collection and maintenance of GI is therefore becoming more popular. For example, 

many open map solutions have been created, and there have been discussions about updating national 

databases using crowdsourcing techniques (EuroSDR, 2009). The level of public participation in the 

update and maintenance of GI may vary between solutions. For instance, update of sensitive and 

complex data may be restricted to a smaller group of experts compared to the large groups of users 

that are allowed to update some common open maps. Despite the differences of restrictions, allowing 

more, and sometimes unknown, users to update the map (i.e. the database) will increase the risk of 

having inaccurate data. Reasons may be different types of measurement instruments (Morris et al., 

2004; Sayda, 2005), conflicts with semantics (Matyas, 2007) or that false updates occur (Flanagin and 

Metzger, 2008; Sayda, 2005).The latter may occur because of people‟s biased way of describing the 

world (Flanagin and Metzger, 2008). The inaccurate data causes problems, especially if the service 

has many users or is important in other ways. Current solutions for quality assurance are mainly based 

on models for measuring trust (Bishr and Mantelas, 2008; Sayda, 2005). However, false data may still 

pass through these filters. 

The objective of this paper is to study what impact false updates, or similar harmful occurrences, 

will have on the information in the database. When a user updates a database, one or many tables are 

affected. One factor that then influences the impact is the database schema structure. For instance, 

falsely updating a table with many relationships may do more harm than doing the same on one with 

fewer relationships. A schema specifies among other things the tables, the relationships between them 

and their attributes (columns). In this paper, we describe the schema structure as a network, where the 

tables or attributes are vertices and their relationships are connections between the vertices. Our 

hypothesis is that the network structure may then reveal the database‟s robustness against intentional 

attacks and random errors. Intentional attacks apply to the cases where users maliciously update the
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essential parts of the network. For instance, users who are familiar with the schema‟s network 

structure may attack the table with the most connections in order to do more harm. On the other hand, 

random errors apply to false updates on the nonessential part of the network. Such errors may be 

caused by unintentional acts such as operational mistakes or use of inaccurate measurement 

instruments, or intentional damages by users who are not familiar with the network structure. The 

latter case, although done on purpose, is random with respect to the network structure; thus it is 

classified as random errors. By applying general network descriptors, we can identify, monitor and 

constrain sensitive tables, attributes and cell values. 

Many real-world networks have small-world and scale-free properties. Small-world networks are 

highly clustered (a vertex neighbors are also neighbors of each other), with few steps between any 

two vertices in the network. That is, they have a high clustering coefficient C and a short average path 

length L. The clustering coefficient for vertex  can be defined as  

      ,                 (1.1) 

where  is the degree (number of connections) of vertex .  is the number of edges, i.e. undirected 

connections, among the vertices in a 1-neighborhood of  (Watts and Strogatz, 1998). The average 

clustering coefficient is then defined as 

           ,                 (1.2) 

where n is the number of vertices in the graph. Furthermore, the average path length can be defined as 

                     ,               (1.3) 

in which  is the shortest distance between  and  (Watts and Strogatz, 1998). In scale-free 

networks, the degree is power-law distributed (Barabasi and Albert, 1999). This means that the 

frequency function p(x) can be written as  

        ,               (1.4) 

where the power-law exponent α > 1. As a result, some few vertices will have an extremely high 

degree, whereas most get a very small degree.  

Several UML class diagrams for Object-oriented (OO) solutions have small-world and scale-free 

properties (Concas et al., 2007; Myers, 2003; Valverde and Solé, 2007). Many spatial data models are 

stored in UML class diagrams, and therefore they may have similar network properties with the ones 

for OO softwares. Scale-free networks are considered to be robust against random vertex removals 

but extremely sensitive to removals of their most central vertices (Albert et al., 2000). The 

information spread is also fast, especially if the spreading starts from highly connected vertices 

(Dezso and Barabási, 2002). Similar results have been found for small-world networks, where the 

information spread is fast because of the short paths between nodes (Watts and Strogatz, 1998). 

However, most studies regarding the characteristics of scale-free and small-world networks have been 

conducted on artificial networks. Robustness tests on the database models are therefore required
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The main objective of this study is to analyze spatial data models with respect to scale-free and 

small-world properties. Moreover, the robustness, in this case the error and attack tolerance, is to be 

analyzed for selected data models. To achieve the objectives, following tasks will be done 

 Graph specification and transformation of data models 

 Small-world and scale-free analysis of the graphs  

 Error and attack tolerance of selected graphs 

 Evaluation of consequences for spatial databases. 

 

THE USE OF NETWORK ANALYSIS ON DATABASE MODELS 

 
As mentioned, one factor that affects the impact of a false update is the database schema 

structure. Below, a false update of a protected area is described. Since protected areas in reality are 

sensitive information, it would usually not be possible for any user to have this kind of access. 

Nevertheless, if a database with such information was editable for some few users, inaccurate data 

could still occur. Moreover, in cases when the database is online, although closed for edits, the risk is 

higher for malicious users to illicitly access the database and provide false information (Litchfield et 

al., 2005). In figure 1a, the protected area “Gysinge” is managed by agency “Lst GB”. It has the 

activity “Fire” specified and the specie “Lynx” lives within it. If then the protected area tuple is 

removed, the agency, activity and specie tuples become isolated (figure 1b). They lose their 

connections to the protected area as well as to each other. However, if instead the activity tuple is 

removed, the other tables would still be related to each other, and only one direct connection would 

be broken. Figure 1c-d illustrates the same operations but using graphs instead. Here, the cell values 

are defined as vertices and their relationships as edges. 

 

Figure 1: False updates on a database. Primary key (PK) and Foreign key (FK) relationships are 

omitted for simplicity reasons. A) A protected area with a related agency, activity and specie, b) the 

same tables being falsely updated, c) graph of the same schema, d) the graph after false updates.
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MATERIALS AND METHODS 

 
In this study, we have analyzed fourteen class diagrams stored in eXtensible Markup Language 

(XML) Metadata Interchange (XMI). They were downloaded from the data model directory of the 

ESRI support centre (ESRI, 2009). We have also studied six diagrams stored as gif and pdf files from 

the Swedish land survey and the Annex 1 application schemas from the INSPIRE Consolidated UML 

Model (INSPIRE, 2009).  

Specification of graphs 
The UML class diagrams used consists of spatial and non-spatial feature classes, abstract classes, 

relationships, attributes, lists of domain constraints and geometry classes. All of these items were 

included in the specifications except the domain constraints. One reason was problems in automation 

of the translations of the diagrams stored in XMI files. Three graphs were specified in order to 

estimate the distribution of classes‟ relationships, classes‟ attributes and attributes‟ relationships. For 

the first graph, the concepts of class graph from Valverde and Sole (2007) were used. Here, the 

feature classes are defined as vertices and their relationships as edges (figure 2a). Thus, there are no 

differences between types of relationships. For the second graph, attribute graph, the classes and 

attributes are specified as vertices. Directed connections, i.e. arcs, are established between each class 

and its attributes, so the number of every class‟ attributes can be measured (figure 2b). 

 

Figure 2: Graph specification. A) Class diagram transformed to a class graph, b) class diagram 

transformed to an attribute graph 

The third graph, schema graph, tries to better model the physical implementation (figure 3). 

Hence, the vertices consist of attributes, and edges illustrate the Primary Key (PK)-Foreign Key (FK) 

relationships. Attributes in same tables are considered as connected. Moreover, due to the database 

normalization rules, vertices and edges representing relation tables are created between two classes 

that have the cardinality many-to-many. Many data models, however, do not describe the PK-FK 

relationships, which complicate the transformation process. An alternative way is then to specify the 

classes as artificial PKs and FKs. Then, the classes‟ relationships can illustrate the relationships 

between the PKs and FKs. A table with many FKs, however, may with this specification get an 

inaccurate degree. 
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Figure 3: Class diagram specified as a graph with classes and attributes as vertices. 

 

When analyzing the schema graphs for scale-free properties, the betweenness distribution is 

studied. De Nooy et al. (2005) define the betweenness for vertex  as 

 .              (3.1) 

This parameter plays a more important role in the schema graph since many vertices will have similar 

degree due to the high clustering. Moreover, small-world analysis was considered relevant for the 

schema graphs since they intend to represent the actual database structure of the implementation. 

Transformation and network analysis 
The diagrams stored in XMI were transformed with eXtensible Stylesheet Language 

Transformations (XSLT) to graphs, in this case the ASCII-based Pajek .net format (figure 4). For the 

six class diagrams stored in graphic formats, the degree, related to class graphs and attribute graphs, 

were manually counted. No schema graphs were created for the diagrams in graphic formats since 

doing it manually would be too time-consuming. 

 

Figure 4: Example of a class diagram transformed to a schema graph. A) Schema graph of an ESRI 

data model for transportation viewed in Pajek, b) zoomed in view of the graph.
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Compared to random networks, small-worlds are much more clustered and have similar or 

slightly larger separation between the vertices, i.e.  and 

. This is a small-world indication (Watts and Strogatz ,1998), and therefore  and  were 

measured for each schema graph and then compared with  and  for equal sized random Erdős–

Rényi (ER) graphs with the same average degree. During the scale-free analysis, the degree 

distribution for class graphs and attribute graphs, and the betweenness distribution for the schema 

graphs were estimated. For this, the estimation methods from Clauset et al. (2009) were used. These 

methods use ML estimators, K-S Goodness-of-Fit Tests, and Likelihood-ratio tests for comparing the 

fit of different models. The networks‟ error and attack tolerance were also analyzed. In this analysis, 

an error is defined as the removal of randomly chosen vertices, whereas an attack is the removal of 

the most central ones (Albert et al., 2000). In our study, an attack may illustrate a false update (for 

example, deletions) on the most central tables or cell values, whereas an error would be a randomly 

performed update. During the analysis, the vertices were removed one by one and as an indicator of 

the robustness, the drop in the relative size  of the largest connected network was observed. Class 

and schema graphs were analyzed, and their results were compared with the error and attack tolerance 

for ER graphs with the same size and average degree. 

 

RESULTS 

 
Fourteen schema graphs were analyzed for small-world properties. The results show that for 

around half of the schema graphs, , and , which is a clear 

indication of small-world properties. However, for the other half,  was around twice as large 

as . Many schema graphs had small-world properties, but because all attributes in the same 

classes were defined as clustered vertices, most graphs would naturally be highly clustered. 

Furthermore, the results from the scale-free analysis show that the majority of the 20 analyzed graphs 

have power-law distributions, while the others are more likely to be at least heavy-tailed distributed 

instead of Poisson or exponentials (table 1). The latter two are common distributions for random 

networks. 

Table 1: Most probable distributions for the graphs. 

Graph na PLb PL + cut-offc Heavy-tailsd Poisson/Exp. None 

Class graph 40-370 8 0 8 0 1 

Attribute graph 

Graphs 
40-370 11 0 5 0 0 

Schema graph 170-1700 9 5 0 0 0 
a Number of vertices 
b Power-law 
c Power-law with exponential cut-off 
d Lognormal or Discrete Weibull 

 

Although more than half of the distributions for the different graphs got support for power-laws, 

the populations in the tests were small, which made the estimations less accurate. In addition, some of 

the distributions got power-law support only for a few percentages of the population. Nevertheless, 

around 20 – 30% of the vertices in the class graphs and attribute graphs, and 10 – 25% of the vertices 

in the schema graphs, had a degree or betweenness above the mean value. This is an indication that 

most connections belong to some few vertices, and therefore the distributions are considered long-

tailed but not strict power-laws (see figure 5 for examples). 
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Figure 5: Degree and betweenness distributions plotted on double logarithmic scales. A) Class 

graphs, b) attribute graphs, c) schema graphs. Straight, diagonal lines indicate power-law 

distributions. 

 

For the error and attack tolerance, the analyzed class graphs and schema graphs broke down much 

faster than the corresponding ER graphs during betweenness and degree attack (figure 6). 

Betweenness attack was most efficient for all class diagrams. For error, there were no differences 

between the robustness of the diagrams and their corresponding ER graphs. The results indicate that 

the class graphs and schema graphs are stable against errors but very fragile against attack, especially 

betweenness attack. 

 
Figure 6: Example of a class graph‟s error and attack tolerance, in this case the ESRI data model of a 

Sewer system. Every point represents one vertex removal.  = relative size, n = relative number of 

removed vertices, B = betweenness attack, D = degree attack, R = error, ER = Erdős–Rényi random 

graph. The symbols for D-ER and B-ER are hidden under the ones for R-ER and R-Sewer.
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CONCLUSIONS AND FUTURE PROSPECTS 

 
The small-world analysis show highly clustered schema graphs and short average paths between 

the vertices. From the scale-free analysis we can see that many graphs got support for power-laws on 

parts of their populations, but there were no strict power-laws for all vertices. Nonetheless, there were 

long-tailed distributions of classes‟ relationships, attributes and attributes‟ betweenness. Moreover, 

selected class graphs and schema graphs were robust against errors but fragile against attack, in which 

betweenness attack was most efficient. 

The above characteristics explain the robustness of the GIS data models, and thus their physical 

implementation. For example, attributes that connect to other clusters of attributes are sensitive 

against attacks, and short average paths in the graphs may indicate large spread of false information. 

Furthermore, when a false update occurs in a randomly chosen table, the information in the whole 

database will be slightly affected. However, it may be very large impacts due to false updates in one 

of the few sensitive tables with extremely many attributes or relationships. Moreover, removals of 

sensitive tables or cell values will quickly disconnect the network. It is important, however, to 

mention that this study only deals with the linkage of attributes and tables; the spatial and topological 

dimensions are not studied. For example, a road segment may be considered unimportant with respect 

to its network position in the database schema; nevertheless, for many users the correctness of this 

information may be crucial. 

It may be necessary to pay attention to sensitive attributes and tables when modeling and 

managing spatial databases, especially when the databases are open to the public. Examples of actions 

are additional monitoring, and topological or non-topological constraints on sensitive features. Such 

strategies may be a complement to trust systems such as the ones from Sayda (2005) and Bishr and 

Mantelas (2008). To better protect the databases, topological constraints can be added. For instance, 

when a road touches the boundary of a land parcel, the corresponding nodes are connected to each 

other in the graph. Such a procedure improves the protection against false alterations or inserts. 
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