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Abstract

In this paper transient electromagnetic wave propagation in a stratified, an-
isotropic, dispersive medium is considered. Specifically, the direct scattering
problem is addressed. The dispersive, anisotropic medium is modeled by con-
stitutive relations (a 3 × 3 matrix-valued susceptibility operator) containing
time convolution integrals. In the general case, nine different susceptibility
kernels characterize the medium. An incident plane wave impinges obliquely
on a finite slab consisting of a stratified anisotropic medium. The scattered
fields are obtained as time convolutions of the incident field with the scatter-
ing kernels. The scattering (reflection and transmission) kernels are uniquely
determined by the slab and are independent of the incident field. The scatter-
ing problem is solved by a wave splitting technique. Two different methods
to determine the scattering kernels are presented; an imbedding and a Green
functions approach. Explicit analytic expressions of the wave front are given
for a special class of media. Some numerical examples illustrate the analysis.

1 Introduction

There is a large variety of applications on electromagnetic wave propagation in
anisotropic media. This has motivated studies since the beginning of this century.
Some recent contributions on scattering by anisotropic media are found in Refs
[6, 7, 18, 21] and on wave propagation in stratified anisotropic media in Refs [12,
19]. The analysis in these publications is made at fixed frequency. However, the
development of, for example, pulse generators motivates a study of electromagnetic
wave propagation problems in the time domain.

The objective of this paper is to develop a time domain formulation of scattering
by an anisotropic, dispersive, stratified slab. It is a generalization of previous results
obtained for transient electromagnetic wave propagation in isotropic dispersive me-
dia [1, 13] and the bi-isotropic case [14, 15]. The non-dispersive anisotropic case has
been treated in Ref. [20].

The constitutive relations for a general linear, dispersive medium are analyzed in
Ref. [9]. In this paper, the medium is modeled by a 3×3 matrix-valued susceptibility
kernel χ, which is a function of time and depth in the medium.

In the direct scattering problem, which is of primary interest in this paper, a
transient electromagnetic plane wave impinges obliquely on a slab of anisotropic
medium, modeled by the known susceptibility kernel χ. The reflected and trans-
mitted fields are the unknowns. These fields are readily calculated through time
convolutions, once the reflection and transmission kernels are known. These kernels
are the kernels of the integral operators that map the incident field to the reflected
and the transmitted fields, respectively.

The basic tool for solving the scattering problem is the concept of wave splitting.
This technique has been widely used during the last decade and a collection of the
latest results is found in Ref. [5]. In free space, the wave splitting decomposes the
field into its right and left moving parts. This concept has recently been generalized
to higher dimensions, see Refs [22–24]. In the dispersive case for electromagnetic
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fields in one spatial dimension, this decomposition becomes particularly simple,
see [15].

Special attention is paid to the propagation of a finite jump discontinuity in
the field, e.g., a wave front. It is proved that the propagation of the finite jump
discontinuity is described by a 2× 2 matrix. This matrix always exists for bounded
susceptibility kernel χ, see Appendix A, and for some media there is an explicit
analytic solution, see Appendix B.

2 Conversion of the Maxwell equations

The basic equations that model the macroscopic electromagnetic fields are the
Maxwell equations. In a sourcefree region they are

∇×E(r, t) = −∂B(r, t)

∂t

∇×H(r, t) =
∂D(r, t)

∂t

(2.1)

The dynamics of the charges in the medium are modeled by the constitutive re-
lations. In this paper constitutive relations with time convolutions are adopted.
Moreover, for simplicity, the medium is assumed to have no optical response. More
details on this model are given in Ref. [9]. Explicitly, the constitutive relations areD(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χ(r, t− t′)E(r, t′) dt′

)
B(r, t) = µ0H(r, t)

(2.2)

where the ith component1 of the time convolution is defined as∫ t

−∞
χ(r, t− t′)E(r, t′) |i dt′ =

3∑
j=1

∫ t

−∞
χij(r, t− t′)Ej(r, t′) dt′

The susceptibility kernel χ is a matrix-valued function, which, due to causality, is
identically zero for t < 0. For simplicity, χ is assumed to be continuously differen-
tiable for t ≥ 0. No additional constraints on the matrix χ, at a given space-time
coordinate, are imposed. A class of media of interest is the reciprocal media which
correspond to a symmetric susceptibility matrix χ, see Ref. [9] and Section 7. The
permittivity and the permeability of vacuum are denoted ε0 and µ0, respectively,
and the phase velocity c0 and the wave impedance η0 of vacuum are

c0 =
1√
ε0µ0

, η0 =

√
µ0

ε0

1Both the notation (x, y, z) and (1, 2, 3) are used, for a right handed cartesian coordinate system,
throughout this paper.
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Figure 1: Geometry of the problem.

respectively. For the more general situation with a general (constant) permittivity
ε and permeability µ inside and outside the medium, simply replace ε0 by εε0 and
µ0 by µµ0.

The medium in this paper extends from z = 0 to z = d and is assumed to be
inhomogeneous wrt depth z, (see Figure 1). The spatial variation in the suscepti-
bility kernel χ is therefore only wrt to depth z, i.e., χ(r, t) = χ(z, t). Furthermore,
there is no phase velocity mismatch at the boundaries of the slab.

An incident field impinges obliquely on the slab. The y-axis is chosen so that the
plane of incidence coincides with the yz-plane and the angle of incidence is denoted
θ, (see Figure 1).

All fields are assumed to vary as functions of space r and time t as

E(r, t) = x̂Ex(z, s) + ŷEy(z, s) + ẑEz(z, s)

H(r, t) = x̂Hx(z, s) + ŷHy(z, s) + ẑHz(z, s)

where θ is the angle of incidence and

s = t− y sin θ

c0

This assumption implies that the fields at a certain point and time (r, t) are identical
to the fields at an earlier time t−y sin θ/c0 at the point y = 0 and depth z. Therefore,
at constant depth z, the history of the fields are translated in time with y sin θ/c0.
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The time convolutions in the constitutive relations, (2.2), are also changed and

3∑
j=1

∫ t

−∞
χij(r, t− t′)Ej(r, t′) dt′ =

3∑
j=1

∫ t

−∞
χij(z, t− t′)Ej(z, t′ − y sin θ/c0) dt

′

=
3∑
j=1

∫ s

−∞
χij(z, s− s′)Ej(z, s′) ds′ = (χ(z, ·) ∗E(z, ·) |i) (s)

With this notation the x-, y- and t-differentiations transform into
∂x = 0

∂y = −sin θ

c0
∂s

∂t = ∂s

In terms of the variables z and s the Maxwell equations are 0 −c0∂z − sin θ∂s
c0∂z 0 0

sin θ∂s 0 0

E(z, s) = −η0∂sH(z, s) (2.3)

 0 −c0∂z − sin θ∂s
c0∂z 0 0

sin θ∂s 0 0

 η0H(z, s) = ∂s (E(z, s) + (χ(z, ·) ∗E(z, ·)) (s))

(2.4)

The objective is now to eliminate the third components of the fields E and H .
To accomplish this, it is convenient to adopt a 2× 2 matrix notation. The first and
second components of (2.3) and (2.4) are

c0∂zJE‖ − sin θ∂s

(
E3

0

)
= −η0∂sH‖

c0η0∂zJH‖ − sin θη0∂s

(
H3

0

)
= ∂s(E‖ + χ‖ ∗E‖) + ∂s

(
χ13 ∗ E3

χ23 ∗ E3

) (2.5)

where J is defined as

J =

(
0 −1
1 0

)
and E‖, H‖ and χ‖ are

E‖ =

(
E1

E2

)
, H‖ =

(
H1

H2

)
, χ‖ =

(
χ11 χ12

χ21 χ22

)
The matrix J represents a right angle rotation around the z-axis. The third com-
ponents of (2.3) and (2.4) are{

η0∂sH3 = − sin θ∂sE1

∂s (E3 + χ33 ∗ E3) = ∂s(sin θη0H1 − χ31 ∗ E1 − χ32 ∗ E2)
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Integration of these equations wrt s implies{
η0H3 = − sin θE1

E3 + χ33 ∗ E3 = sin θη0H1 − χ31 ∗ E1 − χ32 ∗ E2

since the contributions at s → −∞ all vanish. The resolvent L of the kernel χ33 is
defined by the Volterra equation of the second kind

L(z, s) + χ33(z, s) + (L(z, ·) ∗ χ33(z, ·))(s) = 0

This is used to express the third component of the electric and magnetic fields in
terms of their first and second components.{

η0H3 = − sin θE1

E3 = (1 + L∗) (sin θη0H1 − χ31 ∗ E1 − χ32 ∗ E2)
(2.6)

The field equations in (2.5) can therefore be expressed in just the first and second
(planar) components of the electric and magnetic fields. The result is

c0

(
J 0
0 J

)
∂z

(
E‖
η0H‖

)
=

(
D11 D12

D21 D22

)
∂s

(
E‖
η0H‖

)
(2.7)

where J is given above and Dij are 2× 2 matrices

D11 =− sin θ

(
(1 + L∗)χ31∗ (1 + L∗)χ32∗

0 0

)
D12 =−

(
cos2 θ 0

0 1

)
+ sin2 θ

(
L∗ 0
0 0

)
D21 =

[(
cos2 θ 0

0 1

)
+ χ‖ ∗ −

(
χ13 ∗ (1 + L∗)χ31∗ χ13 ∗ (1 + L∗)χ32∗
χ23 ∗ (1 + L∗)χ31∗ χ23 ∗ (1 + L∗)χ32∗

)]
D22 = sin θ

(
χ13 ∗ (1 + L∗) 0
χ23 ∗ (1 + L∗) 0

)
Equation (2.7) is the basic equation for the wave propagation in the medium. The
solution to this system of equations gives the x- and y-components of the electric
and the magnetic fields. The z-components are then determined by (2.6).

3 Wave splitting

In this section the wave splitting concept is presented. The aim of the wave splitting
is to diagonalize the vacuum terms in the Maxwell equations. Therefore, before the
formal definition of the wave splitting is introduced it is relevant to study the form
of the equations in free space, i.e., vacuum. The observations obtained in vacuum
then motivate the formal definition of the split fields E±. This analysis is analogous
to that in ref. [15].
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In vacuum the Maxwell equations (2.7) simplify to

v∂z

(
E‖

η0JH‖

)
=

(
0 Γ

Γ−1 0

)
∂s

(
E‖

η0JH‖

)
(3.1)

since J2 = −I, where I is the 2× 2 identity matrix and

Γ =

(
1

cos θ
0

0 cos θ

)
, v =

c0
cos θ

Elimination of the magnetic field implies

v2∂2
zE‖ = ∂2

sE‖

or
(v∂z + ∂s)(v∂z − ∂s)E‖ = 0

The general solution for this system of second order equations is

E‖ = E+(z − vs) +E−(z + vs)

For H‖ the same result is obtained. Obviously, v∂z = ∓∂s in free space. A formal
integration wrt s of (3.1) then implies

η0JH
± = ∓Γ−1E±

The x- and y-components of the fields are then related by(
E‖

η0JH‖

)
=

(
I I
−Γ−1 Γ−1

) (
E+

E−

)
with the inverse (

E+

E−

)
= P

(
E‖

η0JH‖

)
(3.2)

where the 4× 4 matrix P is

P =
1

2

(
I −Γ
I Γ

)
Equation (3.2) is the formal definition of the wave splitting. In free space, i.e.,

in vacuum, the transformation projects out the right and left moving parts of the
solution. These parts of the field correspond to fields that have sources to the left
and to the right, respectively, of the point of observation. At a point inside the
dispersive slab, where χ �= 0, the wave splitting, (3.2), is still well defined, but no
interpretation, however, in left and right moving parts can be made. It should also
be noted that the split fields E± are linear combinations of the electric and the
magnetic fields E‖ and H‖. It is, however, convenient to keep the notation of the
electric field, even though they are not purely electric fields.

The new transformed fields E±, defined by (3.2), satisfy a system of first order
hyperbolic equations, equivalent to the Maxwell equations (2.7),

v∂z

(
E+

E−

)
= D∂s

(
E+

E−

)
(3.3)
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where the matrix-valued operator D has the form

D =

(
−I 0
0 I

)
+

(
∆11 ∆12

∆21 ∆22

)
∗

The ∆kl matrices have the explicit form

∆kl = (−1)k∆⊥ + ∆‖,kl

where

∆⊥ =
1

2 cos θ
Γ

[
χ‖ −

(
χ13 ∗ (1 + L∗)χ31 χ13 ∗ (1 + L∗)χ32

χ23 ∗ (1 + L∗)χ31 χ23 ∗ (1 + L∗)χ32

)]
and

∆‖,kl =
tan θ

2 cos θ
Γ

[
(1 + L∗)

(
0 (−1)k+lχ13

χ31 χ32 + (−1)k+lχ23

)
− tan θ(−1)l

(
0 0
0 L

)]

4 Propagation of wave front

The propagation of the wave front in a general anisotropic medium motivates special
attention and treatment. Any finite jump discontinuity in the field, i.e., a wave
front, attenuates and rotates as the wave propagates into the medium. This is a
characteristic property of the medium and in the Appendix A the explicit expressions
of these quantities are presented.

The dynamics of the plus and minus fields E± satisfy the system of equations
in (3.3), which is a non-local hyperbolic PDE. Weak solutions can therefore occur
along the characteristics s ∓ z/v = ξ± = constant. The coordinates ξ± are the
characteristic coordinates of the system (3.3). Any finite jump discontinuity in a
field is denoted by a square bracket, i.e.,[

E+(z, s)
]

= E+(z, s+)−E+(z, s−) (4.1)

Propagation of singularity arguments show that the finite jump discontinuities sat-
isfy the following system of first order equations

d

dz

[
E±(z, ξ± ± z/v)

]
+ a±(z)

[
E±(z, ξ± ± z/v)

]
= 0 (4.2)

where 
a+(z) = −1

v
∆11(z, 0

+)

a−(z) = −1

v
∆22(z, 0

+)

The other components of the matrix-valued operator, ∆12 and ∆21, do not affect
the propagation of the finite jump discontinuity.
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The physical interpretation of this result becomes simpler if the following equiv-
alent representation of the solution is used.[

E±(z2, ξ± ± z2/v)
]

= Q±(z1, z2)
[
E±(z1, ξ± ± z1/v)

]
where the matrices Q±(z1, z2) satisfy

d

dz2
Q±(z1, z2) + a±(z2)Q

±(z1, z2) = 0

Q±(z1, z1) = I

(4.3)

The unique solubility and equivalence of these equations are examined in, e.g., [3, 8].
The main results for general χ are found in Appendix A. Note the structure of the
differentiation rules (A.2) of the Q matrices. This is exactly what is needed to
construct the imbedding and Green functions equations. For some media there is
an exact solution of Q± in terms of the exponential function of a 2× 2 matrix. This
solution is further developed in Appendix B. It is pointed out in Appendix B that
the wave front may be decomposed (for some media) as an attenuation factor times
an element in SL(2,R) (the two-dimensional Lorentz group), which may be viewed
as 2 rotations and between them a contraction/dilation term. With the notation

−
∫ z2

z1

a+(z)dz =

(
α+ β γ + δ
γ − δ α− β

)
the result is

Q+(z1, z2) = eα
(

cosϕ2 sinϕ2

− sinϕ2 cosϕ2

) (
eη 0
0 e−η

) (
cosϕ1 sinϕ1

− sinϕ1 cosϕ1

)
with 

sinh η cos(ϕ1 − ϕ2) = β
sinh ξ

ξ

sinh η sin(ϕ1 − ϕ2) = γ
sinh ξ

ξ

cosh η sin(ϕ1 + ϕ2) = δ
sinh ξ

ξ

where
ξ =

√
β2 + γ2 − δ2

A similar result holds for the Q− matrix.

5 Imbedding equations

The imbedding approach uses the idea of studying a one-parameter family of scatter-
ing problems. Specifically a subsection [z, d] of the physical slab [0, d] is considered
(see Figure 2). As the parameter z varies from 0 to d, the subsection varies from the
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0 z d
z

Figure 2: The imbedding geometry.

full physical slab to the case where no slab is present. At one endpoint of the para-
meter (z = d), the scattering problem is trivial, while at the other endpoint (z = 0),
the full scattering problem is solved. This approach has been used extensively during
the last decade, see [1, 4, 20].

For a subsection [z, d] the 2×2 matrix-valued reflection and transmission kernels
R(z, s) and T(z, s), respectively, are defined as (z ∈ (0, d), s > 0)

E−(z, s) = R(z, ·) ∗E+(z, ·)(s)
E+(d, s+ (d− z)/v) = Q+(z, d)

{
E+(z, s) + T(z, ·) ∗E+(z, ·)(s)

}
The physical reflection and transmission kernels are R(0, s) and T(0, s), respectively.
Due to causality, R and T are identically zero for s < 0.

These definitions in combination with the equations (3.3) give

v∂zR− 2∂sR = ∂s∆21 + ∂s {∆22 ∗R−R ∗∆11 −R ∗∆12 ∗R}
v∂zT = −∂s∆11 − va+T− ∂s {(I + T∗)∆12 ∗R + T ∗∆11}

The initial values satisfy

R(z, 0+) = −1

2
∆21(z, 0

+)

d

dz
T(z, 0+) = T(z, 0+)a+(z)− a+(z)T(z, 0+)

− 1

v
∂s∆11(z, 0

+) +
1

2v
∆12(z, 0

+)∆21(z, 0
+)

where the second equation is obtained from the imbedding equation of the trans-
mission kernel. At z = d the boundary values are

R(d, s) = 0

T(d, s) = 0

which corresponds to the absence of scattering. The reflection kernel has a finite
jump discontinuity on the characteristic s = 2(d − z)/v in the t-z-plane. Using
the notation (4.1) the governing equation for the propagation of the finite jump
discontinuity is

d

dz
[R(z, 2(d− z)/v)] = [R(z, 2(d− z)/v)] a+(z)− a−(z) [R(z, 2(d− z)/v)]
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The equations for the finite jump discontinuity in R and the initial value in T are
solved using the differentiation rules for the Q± matrices (see (A.2)). The results
are

[R(z, 2(d− z)/v)] =
1

2
Q−(d, z)∆21(d, 0

+)Q+(z, d)

T(z, 0+) =
1

v

∫ d

z

Q+(z′, z)

{
∂s∆11(z

′, 0+)− 1

2
∆12(z

′, 0+)∆21(z
′, 0+)

}
Q+(z, z′) dz′

It must be stressed that R(0, t) and T(0, t) of the above equations are the re-
flection and the transmission kernels for the components of the electromagnetic field
along the plane of stratification. The total scattered fields may be constructed by
noting that the reflected electric field at the left edge of the slab is

Er(0−, t) = x̂E−x (0, t) + ŷE−y (0, t) + ẑ tan θE−y (0, t)

and that the transmitted electric field at the right edge of the slab is

Et(d+, t) = x̂E+
x (d, t) + ŷE+

y (d, t)− ẑ tan θE+
y (d, t)

5.1 Homogeneous semi-infinite slab, normal incidence

In the case of a homogeneous, χ(z, t) = χ(t), semi-infinite slab (d→∞) the reflec-
tion kernel is independent of z and the imbedding equation simplifies. Only total
time derivatives remain. Integrating wrt time the R-equation for normal incidence
becomes

2R + ∆⊥ + ∆⊥ ∗R + R ∗∆⊥ + R ∗∆⊥ ∗R = 0

This equation, which is similar to the Riccati equation, has some interesting sym-
metries. The transpose of R satisfies the same equation with ∆⊥ replaced by its
transpose ∆T

⊥. For a reciprocal medium and normal incidence ∆⊥ = ∆T
⊥. Hence,

in this special case, R is a symmetric matrix-valued function. Another symmetry is
realized by taking the Laplace transform of the above equation. The matrix inverse
{R̃}−1 satisfies the same equation as R̃ (tilde denotes Laplace transform).

6 The Green functions

In the imbedding approach integral operators are derived that map, for a subsec-
tion, the incoming field E+(z, s) to the scattered fields E−(z, s) and E+(d, s). The
equations are obtained by varying the left endpoint of the subsection. Another ap-
proach is to introduce Green operators which map the incoming field E+(0, s) to
the split internal fields E±(z, s) at an arbitrary depth z, see Refs [13, 16]. The def-
inition of the Green operators, represented in integral form with kernels G±(z, s′),
respectively, are

E+(z, s′ + z/v) = Q+(0, z)E+(0, s′) + G+(z, ·) ∗Q+(0, z)E+(0, ·)(s′)
E−(z, s′ + z/v) = G−(z, ·) ∗Q+(0, z)E+(0, ·)(s′)
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Here s′ is time measured from the arrival of the wave front at z, i.e. s′ = s − z/v,
(z ∈ (0, d), s′ > 0). This change of time coordinate simplifies the comparison with
the results of the imbedding method. The first term in the right going field is the
direct response of the medium (the wave front propagating at vacuum light speed)
and the other terms give the split components of the delayed response of the medium
at z. For a delta function excitation, G±(z, s)Q+(0, z) give the two split components
of the delayed response.

Combined use of the definitions above and (3.3) give

v∂zG
+ = G+va+ + ∂s′

{
∆11 + ∆11 ∗G+ + ∆12 ∗G−

}
v∂zG

− − 2∂s′G
− = G−va+ + ∂s′

{
∆21 + ∆21 ∗G+ + ∆22 ∗G−

}
Due to causality, G± are identically zero for s′ < 0. The initial values satisfy

G−(z, 0+) = −1

2
∆21(z, 0

+)

d

dz
G+(z, 0+) = G+(z, 0+)a+(z)− a+(z)G+(z, 0+)

+
1

v
∂s′∆11(z, 0

+)− 1

2v
∆12(z, 0

+)∆21(z, 0
+)

and the boundary values are

G+(0, s′) = 0

G−(d, s′) = 0

The first boundary value is due to the definition of the Green operators and the
second one corresponds to the absence of sources for z ∈ (d,∞). G− has a finite
jump discontinuity, propagating along the characteristic s′ = 2(d − z)/v, which
satisfies the equation

d

dz

[
G−(z, 2(d− z)/v)

]
=

[
G−(z, 2(d− z)/v)

]
a+(z)− a−(z)

[
G−(z, 2(d− z)/v)

]
The equations for G+(z, 0+) and [G−] are similar to those for T(z, 0+) and [R].
Thus, the differentiation rules (A.2) are used again to get

[
G−(z, 2(d− z)/v)

]
=

1

2
Q−(d, z)∆21(d, 0

+)Q+(z, d)

G+(z, 0+) =
1

v

∫ z

0

Q+(z′, z)

{
∂s∆11(z

′, 0+)− 1

2
∆12(z

′, 0+)∆21(z
′, 0+)

}
Q+(z, z′) dz′

6.1 Relations between scattering operators

The imbedding operators and the Green operators are related to each other. This is
realized by dividing the slab in two regions [0, z] and [z, d]. Using Green operators
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Figure 3: The kernels g1(t) and g(t) for the Lorentz medium in Example 1. The
time scale is given in units of d/c0, and the vertical axis in units of c0/d.

in the left and imbedding operators in the right region the following equations are
obtained

G−(z, s) = R(z, s) + R(z, ·) ∗G+(z, ·)(s)
Q+(d, z)G+(d, s)Q+(z, d) = G+(z, s) + T(z, s) + T(z, ·) ∗G+(z, ·)(s)

The boundary values at z = 0 are

G−(0, s) = R(0, s)

G+(d, s) = Q+(0, d)T(0, s)Q+(d, 0)

These equations can be used to obtain efficient numerical algorithms (see Ref. [11]).

7 Numerical experiment

In this section some numerical examples of the direct scattering problem are pre-
sented. Given a specific dispersive medium, χ(z, s), the reflection and transmission
kernels are calculated. The first examples, 1-3, are all uniaxial, homogeneous media
which correspond to trigonal, tetragonal and hexagonal crystal structure respec-
tively (see Ref. [2]). These media are all reciprocal. In Example 4 scattering by a
non-reciprocal, homogeneous medium is presented, see also Ref. [10].

Example 1

The first example illustrates scattering by a uniaxial medium at normal incidence,
θ = 0. The susceptibility kernel along the optical axis is denoted g1(t), and along the
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The time scale is given in units of d/c0, and the vertical axis in units of c0/d.

other two axis the kernels are denoted g(t). The optical axis of the uniaxial medium
lies in the x-y-plane and the angle between the optical axis and the x-direction is φ,
i.e., the susceptibility matrix in the rectangular coordinate system is

χ(t) =

g1(t) cos2 φ+ g(t) sin2 φ (g1(t)− g(t)) cosφ sinφ 0
(g1(t)− g(t)) cosφ sinφ g1(t) sin2 φ+ g(t) cos2 φ 0

0 0 g(t)


The functions g1(t) and g(t), which model a Lorentz medium, are (see also Figure 3){

g1(t) = 8e−.2t sin 5t+ 4e−.5t sin 10t+ 2e−.5t sin 25t

g(t) = 10e−.2t sin 4t+ 4e−.5t sin 8t+ 3e−.5t sin 20t

In Figure 4 the reflection kernels R11(t), R22(t) and R12(t) are depicted and in
Figure 5 the corresponding transmission kernels when the angle φ = π/6. Since the
uniaxial medium is reciprocal and normal incidence case is considered, both kernels
are symmetric, i.e, R12(t) = R21(t) and T12(t) = T21(t).

Example 2

This example illustrates scattering by a uniaxial medium at normal incidence, θ = 0.
The susceptibility kernel along the optical axis is denoted g3(t), and along the other
two axis they are denoted g(t). The optical axis of the uniaxial medium lies in the
y-z-plane and the angle between the optical axis and the z-direction is φ, i.e., the
susceptibility matrix in the rectangular coordinate system is

χ(t) =

g(t) 0 0
0 g(t) cos2 φ+ g3(t) sin2 φ (g3(t)− g(t)) cosφ sinφ
0 (g3(t)− g(t)) cosφ sinφ g(t) sin2 φ+ g3(t) cos2 φ
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In this example the g and g3 functions model a Debye-Lorentz medium. They are
(see also Figure 6){

g(t) = e−.5t + .5e−.5t sin 10t+ .2e−.5t sin 25t

g3(t) = 2e−.5t + .7e−.5t sin 8t+ .3e−.5t sin 20t

The scattering kernels are depicted in Figures 7 and 8, respectively, for an angle
φ = π/4. The finite jump discontinuities at t = 2 are due to scattering from the
back wall and to the fact that χ‖(t = 0+) �= 0. Due to the special form of χ‖, no
cross polarization effects appear.

Example 3

The effect of the g3 function on the reflection kernel R is illustrated in this example.
The orientation of the optical axis is the same as in Example 2, but φ = 0 and the
angle of incidence θ varies. The functions g and g3 are chosen as a superposition of
terms with well distinguished frequencies,{

g(t) = e−.5t + .5e−.5t sin 2t

g3(t) = 2e−.5t + .2e−.5t sin 10t

For normal incidence, the response is that of an isotropic medium with kernel g(t).
As the angle θ increases, the anisotropic properties (g �= g3) enter. The reflection
kernels R11 and R22 are depicted in Figures 9 and 10, respectively, for four different
angles of incidence, θ = 0, π/6, π/4, π/3. Finite jump discontinuities appear at
different times corresponding to varying travel time through the slab.
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Example 4

Scattering by a plasma with a constant magnetic induction B0 along the z-axis, i.e.,
a non-reciprocal medium (gyrotropic medium), is illustrated in this last example
(see Ref. [10]). Conversion of the analysis presented in Ref. [10] gives the non-zero
components of χ.

χ11(t) = χ22(t) = ω2
p

ν

ν2 + ω2
g

(
1− e−νt(cosωgt−

ωg
ν

sinωgt)
)

χ12(t) = −χ21(t) = ω2
p

ωg
ν2 + ω2

g

(
1− e−νt(cosωgt+

ν

ωg
sinωgt)

)
χ33(t) =

ω2
p

ν

(
1− e−νt

)
The plasma frequency ωp and the gyrotropic frequency ωg are given by

ω2
p =

Nq2

ε0m
, ωg =

qB0

m

where N , q and m are the electron density of the plasma and the charge and mass of
the electron, respectively. Losses in the plasma are modeled by an effective collision
frequency ν. The following parameters are used

ωp = 2, ωg = 5, ν = .5

In Figures 11 and 12, the scattering kernels, for normal incidence (θ = 0), are
depicted. Symmetries of χ and normal incidence imply that R12(t) = −R21(t),
T12(t) = −T21(t), R11(t) = R22(t) and T11(t) = T22(t).
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Appendix A Solution of the wave front matrix

equation

It suffices to solve the equation for the matrix Q+. The solution to the equation for
Q− uses similar arguments. The Q+-equation has the explicit form, see (4.3).

d

dz2
Q+(z1, z2) + a+(z2)Q

+(z1, z2) = 0

Q+(z1, z1) = I

(A.1)

where

a+(z) =
1

2c0
Γ

[
χ‖ − tan θ

(
0 χ13

χ31 χ32 + χ23

)
+ tan2 θ

(
0 0
0 χ33

)]
(z, 0+)

This equation is analyzed in, e.g., [3, 8]. Transforming (A.1) into an integral equation
gives

Q+(z1, z2) = I−
∫ z2

z1

a+(z′)Q+(z1, z
′) dz′

Notice that the matrices Q+(z1, z
′) and a+(z′) in general do not commute. The

unique solution to this integral equation exists on any compact interval I in z pro-
vided the matrix a+ is bounded, i.e.,

‖a+‖ = sup
z∈I
‖a+

ij(z)‖ <∞

where ‖a+
ij(z)‖ is any matrix norm, e.g., ‖aij‖ = maxi

∑
j |aij|. The solution is

obtained as the limit

Q+(z1, z2) = Q+
0 (z1, z2) +

∞∑
n=1

(Q+
n (z1, z2)−Q+

n−1(z1, z2)) = lim
n→∞

Q+
n (z1, z2)

where {Q+
n (z1, z2)}∞n=0 are defined by the iteration

Q+
0 (z1, z2) =I

Q+
n (z1, z2) =I−

∫ z2

z1

a+(z′)Q+
n−1(z1, z

′) dz′, n = 1, 2, . . .

Cauchy’s convergence test implies that the series converges, since by induction the
following estimate holds

‖Q+
n (z1, z2)−Q+

n−1(z1, z2)‖ ≤
1

n!
‖a+‖n|z2 − z1|n

This solution can also be obtained by using a spatial-ordering operator S defined by

S[a+(z′)a+(z′′) . . . a+(z(n))] = a+(max
i
z(i)) . . . a+(min

i
z(i))
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where the matrices a+ on the right hand side have been arranged in order of de-
creasing arguments. The solution in terms of the spatial-ordering operator then
becomes

Q+(z1, z2) = S exp(−
∫ z2

z1

a+(z′) dz′)

The unique solubility of the problem (4.2) also implies that

Q+(z1, z2) = Q+(z, z2)Q
+(z1, z)

which gives the inverse (
Q+(z1, z2)

)−1
= Q+(z2, z1)

These relations can be used to obtain the expression of differentiation wrt the first
argument. The rules for differentiation of the wave front matrix are then

d

dz1
Q+(z1, z2) =Q+(z1, z2)a

+(z1)

d

dz2
Q+(z1, z2) =− a+(z2)Q

+(z1, z2)

(A.2)

In some special cases one can find analytical solutions, for example if the matrix
a+(z) commutes in the argument, i.e.,.[

a+(z′), a+(z′′)
]

= 0, z′, z′′ ∈ [z1, z2]

The solution is then

Q+(z1, z2) = exp(−
∫ z2

z1

a+(z′) dz′)

where the exponential function of the matrix is defined by its Taylor series. This
form of the wave front matrix can then be further decomposed by means of an
Iwasawa decomposition (see Appendix B).

Several special cases that satisfy this assumption are of interest. The symmetric
or antisymmetric cases

a+(z) =

(
aco(z) across(z)
±across(z) aco(z)

)
are relevant models for normal incidence. The separable case

a+(z) =

(
a11 a12

a21 a22

)
g(z)

is valid for any incident angle and contains the homogeneous media.
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Appendix B Decomposition of the wave front ma-

trix

In Appendix A an exact solution of the wave front matrix equation is obtained. This
solution is valid in the class of media constrained by[

a+(z′), a+(z′′)
]

= 0, z′, z′′ ∈ [z1, z2]

The result is the exponential function of a 2 × 2 matrix. It is convenient to
denote the matrix

A = −
∫ z2

z1

a+(z)dz =

(
α+ β γ + δ
γ − δ α− β

)
where α, β, γ and δ are real numbers.

With the notation
ξ =

√
β2 + γ2 − δ2

the exponent of the matrix A can be written as

eA =eα
[
sinh ξ

(
β

ξ

(
1 0
0 −1

)
+
γ

ξ

(
0 1
1 0

)
+
δ

ξ

(
0 1
−1 0

))
+ cosh ξ

(
1 0
0 1

)]

This result is a decomposition of Q into an attenuation factor exp(α) and an
element in the 2-dimensional Lorentz-group SL(2,R). This group is an Iwasawa
group and hence there are Iwasawa decompositions [17]. One possibility is

eA = eα
(

cosϕ2 sinϕ2

− sinϕ2 cosϕ2

) (
eη 0
0 e−η

) (
cosϕ1 sinϕ1

− sinϕ1 cosϕ1

)
Matrix multiplication and a comparison of the above equations give

sinh η cos(ϕ1 − ϕ2) = β
sinh ξ

ξ

sinh η sin(ϕ1 − ϕ2) = γ
sinh ξ

ξ

cosh η sin(ϕ1 + ϕ2) = δ
sinh ξ

ξ

For reciprocal media at normal incidence (θ = 0) δ = 0, since a reciprocal medium
implies that a± are symmetric at normal incidence (follows from the symmetry of
χ). The triple (ϕ2, η, ϕ1) then degenerates to (η, ϕ) determined by

ϕ1 = −ϕ2 = ϕ

η = sign(β)ξ = sign(β)
√
β2 + γ2

tan(2ϕ) =
γ

β
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This defines, for each z, a coordinate system rotated an angle ϕ(z) around the z-
axis. In this coordinate system, the wave front is a pure contraction/dilation (the

elements on the diagonal are eα(z)±
√
β(z)2+γ(z)2) of the incoming wave front.
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