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Experimental Evaluation of a Distributed Kalman Filter Algo rithm

Peter Alriksson and Anders Rantzer

Abstract— This paper evaluates the performance of a dis-
tributed Kalman filter applied to an ultrasound based posi-
tioning application with seven sensor nodes. By distributed we
mean that all nodes in the network desires an estimate of the full
state of the observed system and there is no centralized com-
putation center after deployment. Communication only takes
place between neighbors and only once each sampling interval.
The problem is solved by communicating estimates between
neighbors and then forming a weighted average as the new
estimate. The weights are optimized to yield a small estimation
error covariance in stationarity. The minimization can be done
off line thus allowing only estimates to be communicated. In
the experimental setup the distributed solution performs almost
as good as a centralized solution. The proposed algorithm also
proved very robust against packet loss.

I. I NTRODUCTION

As battery and processing power of nodes in sensor net-
works increases the possibility of more intelligent estimation
schemes become more and more important. The use of sensor
networks was first driven by military applications, but with
cheaper technology many other areas could make use of
sensor networks, see for example [1] and [2]. Advantages
with wireless sensor networks typically include increased
flexibility and more robustness, as more than one unit is
performing the same task.

However these advantages come with a cost: When com-
municating over wireless channels packet loss becomes a
major problem and decentralized algorithms tend to be more
complex than centralized solutions.

To illustrate the pros and cons a target tracking application
will be considered. In simple target tracking applications, the
task is to estimate the position of an external object. In some
situations measurements are taken from spatially separated
locations and an estimate is needed at each location. Ideally
all measurements should be used at all locations, however
this may require high bandwidth communication channels
between all nodes.

To reduce the required bandwidth a distributed solution
where only the position estimate is communicated among
neighbors will be considered.

The problem where estimates are communicated has been
given great attention in the literature. In for example [3] a
decentralized Kalman filter was proposed. However, this al-
gorithm requires every node to be able to communicate with
every other node, which might not be possible. An alternative
approach is to only allow nodes to communicate with their
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neighbors. As opposed to the case where measurements are
communicated no routing is required when estimates are used
as information carriers.

Without direct communication between all nodes a new
problem is introduced, namely how to combine estimates
from just neighboring nodes. To optimally combine two
estimates one has to know the mutual information between
them. Computing this quantity for a general communication
graph is a difficult task, that requires global knowledge of the
topology. In the case of a loop-free graph the problem was
solved in [4] by introduction of a channel filter This approach
was used in a coordinated search strategy application, see [5].
The problem has also been studied intensively in the dynamic
consensus literature, see for example [6] and the references
therein. In [7] a similar problem was studied, but for scalar
systems.

This paper is organized as follows. Section II and III gives
a brief overview of the theory used in the rest if the paper.
The main part of the paper constitutes of sections IV, V and
VI where the experimental setup together with the results are
presented.

A. Target Tracking

In real target tracking applications sophisticated radar
systems are used to take measurements of the position of a
target moving in three dimensions. Here a simplified setup is
used where the target to be tracked is a mobile robot moving
in two dimensions.

Localization of mobile robots can be performed with a
number of techniques. In laboratory experiments it is com-
mon to use vision, e.g., a ceiling-mounted camera combined
with an image-processing system. Another possibility is
dead-reckoning using a high-precision inertial measurement
unit on board the robot. A problem with dead reckoning-
based approaches, however, is that they do not use feedback
and thus unmeasurable disturbances will cause position er-
rors that cannot be compensated for. In an outdoor environ-
ment GPS would be another possibility.

The localization approach chosen here is based on ultra-
sound. The basic idea is to transmit a wireless radio packet
simultaneously with an ultrasound pulse from each sender
node. The receiver nodes measure the difference in time of
arrival between the radio packet and the ultrasound pulse and
can in this way calculate their distance to the sender node.
By combining, or fusing, several distance measurements an
estimate of the position can be obtained.

Two main approaches exist, [8]. In anactive mobile
system the infrastructure, in this case the sensor network,
has receivers at known locations, which estimate distances



to a mobile device based on active transmissions from the
device. These distances are then reported to a central node
for processing. Examples of this approach are the Active
Badge [9], and the Ubisense [10] systems. In apassive
mobile system, instead, the infrastructure has active beacons
at known positions that periodically transmits signals to a
passive mobile device. The mobile device then use these
signals to compute its current location. The most famous
example of this is the Cricket system [11].

An advantage of the active approach is that it is more likely
to perform accurate tracking than the passive approach. The
passive approach, on the other hand, scales better with the
number of mobile devices. Since the main objective here is
for the sensor network to handle the localization, an approach
similar to the active one was chosen. However here no central
computation center is used.

As the robot has a practically unlimited power supply com-
pared to the nodes in the sensor network, it is reasonable to
assume that the robot can reach all nodes in the network with
high probability. Thus all nodes can measure the distance to
the robot at each sampling time and the robot can transmit
its expected movement to the sensor network. The nodes
however operate under severe power restrictions, thus only
neighbor to neighbor communication is possible.

II. M ATHEMATICAL FORMULATION

The motion of the robot is described by a discrete-time
linear model of the following form, derived in [12].

x(k + 1) = Ax(k) + Bu(k) + v(k) (1)

Herex(k) ∈ R
n denotes the state of the system,u(k) ∈ R

m

a known input andv(k) ∈ R
n a stochastic disturbance. The

disturbance is assumed to be a white zero mean Gaussian
process with covariance defined below. Note that in this
simplified setup, it is assumed that the external inputu(k)
is known to all nodes. As mentioned in Section I-A this
assumption is satisfied in the experimental setup.

The process is observed byN agents each with some pro-
cessing and communication capability. The agents are labeled
i = 1, 2, . . . , N and form the setV . The communication
topology is modeled as a graphG = (V,E), where the edge
(i, j) is in E if and only if nodei and nodej can exchange
messages. The nodes to which a node communicates are
called neighbors and are contained in the setNi. Note that
nodei is also included in the setNi.

Each node observes the process (1) by a measurement
yi(k) ∈ R

pi of the following form

yi(k) = Cix(k) + ei(k) (2)

whereei(k) ∈ R
pi is a white zero mean Gaussian process.

The measurement- and process disturbances are correlated
according to
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whereδkl = 1 only if k = l. Note that this is a heterogeneous
setup where each agent is allowed to to take measurements of
arbitrary size and precision. Further the disturbances acting
on the measurements are allowed to be correlated.

Each node is only allowed to communicate with its neigh-
bors and only once between each measurement. Further the
only assumption made on the graph structure is that it is
connected, other assumptions such as requiring it to be loop
free are not necessary. No node is superior to any other and
thus after deployment no central processing is allowed.

The goal is to make sure that every node in the network
has a good estimatêxi(k) of the statex(k).

III. D ISTRIBUTED KALMAN FILTER

When constructing an algorithm based on estimates in-
stead of measurements care must be taken on how to combine
estimates in a good way. The problem is that estimates
in different nodes are not independent, as they contain the
same process noise, and possibly also the same measurement
information. To optimally combine two estimates the mutual
information must be subtracted.

For a graph with loops, two nodes can not compute
the mutual information by just using local information.
Information can for example travel from node A to node C
and then to node B. When node A and B are to compute their
mutual information they may not be aware of the coupling
through C.

To solve the problem for a general communication topol-
ogy neighboring estimates are weighted so that the error co-
variance of the merged estimate is minimized. This approach
will not give the optimal solution in general, but is applicable
to graphs with loops. Weighted averaging can be seen as
a generalization of the two-sensor track-fusion algorithm
presented in [13]. There is great freedom when choosing both
how to weigh local measurements and neighboring estimates.
In [14] a procedure aimed at minimizing the covariance of
the estimation error is presented, but other objectives such
as minimizing the amount of communication for a given
accuracy could also be considered.

A. On-Line Computations

The algorithm consists of the two traditional estimation
steps, measurement update and prediction together with an
additional step where the nodes communicate and merge
estimates. We will refer to an estimate after measurement
update as local and after the communication step as regional.

1) Measurement update
The local estimatêxlocal

i (k|k) is formed by the pre-
dicted regional estimatêxreg

i (k|k − 1) and the local
measurementyi(k)

x̂local
i (k|k) = x̂

reg
i (k|k − 1)+

Ki[yi(k) − Cix̂
reg
i (k|k − 1)]. (4)

whereKi is computed off-line using for example the
procedure presented in [14]. The predicted estimate at
time zero is defined aŝxreg

i (0| − 1) = x̂0 wherex̂0 is
the initial estimate ofx(0).



2) Merging
First the agents exchange their estimates over the com-
munication channel. This communication is assumed to
be error and delay free. The merged estimatex̂

reg
i (k|k)

in node i is defined as a linear combination of the
estimates in the neighboring nodesNi.

x̂
reg
i (k|k) =

∑

j∈Ni

Wij x̂
local
j (k|k) (5)

The weighting matricesWij could for example be
chosen using the procedure described in [14].

3) Prediction
Because the measurement- and process noises are
independent the prediction step only includes

x̂
reg
i (k + 1|k) = Ax̂

reg
i (k|k) + Bu(k) (6)

IV. EXPERIMENTAL SETUP

To generate measurements, corresponding to (2), an ultra-
sound based system together with trilateration will be used.

The stationary sensor nodes are each equipped with an
ultrasound receiver and the mobile robot is equipped with
an ultrasound transmitter. The stationary sensor nodes are
implemented as Tmote Sky sensor network nodes together
with a small ultrasound receiver circuit interfaced to the node
via an AD converter, see Fig. 1.

Both the ultrasound transmitters and receivers are designed
to be isometric, i.e., to transmit and receive in the full3600

degree plane.
The robot used in the experiments is a dual-drive robot

developed in Lund. It is equipped with three Atmel AVR
Mega16 processors and one TMote Sky node, see Fig. 1.
Two AVR processors are used to control the wheel speeds
using PI-controllers. The remaining AVR is used to generate
ultrasound. For a detailed description of the hardware see
[15]. Throughout all experiments the robot is controlled
using a wireless joystick.

A. Ultrasound Based Localization

The implemented localization method works according to
the following principles. At the beginning of each measure-
ment cycle, the robot transmits a broadcast radio message
to alert the nodes of the incoming ultrasound pulse. After a
fixed time the robot then emits an ultrasound pulse. When
the radio message reaches the node, it starts to sample the
ultrasound microphone. Then the stationary nodes detect the
beginning of the pulse using a moving median filter of length
three.

The sample index where the pulse was detected is pro-
portional to the distance between the stationary nodes and
the robot when the pulse was emitted. If the speed of
sound, the sampling interval in the nodes and the fixed delay
between ultrasound- and radio transmission are known the
actual distance can be computed. The position can then be
computed using trilateration.

Fig. 1. Stationary sensor network node with ultrasound receiver circuit
and robot with ultrasound sender. The nodes are packaged in aplastic box
to reduce wear.

B. Trilateration

Trilateration is a method to find the position of an object
based on distance measurements to three objects with known
positions. In three dimensions the problem has two solutions,
however the correct one can usually be determined from
physical considerations. The basic problem is to find a
solution

[

px py pz

]T
to the following three nonlinear

equations

(px − px1)
2 + (py − py1)

2 + (pz − pz1)
2 = d2

1

(px − px2)
2 + (py − py2)

2 + (pz − pz2)
2 = d2

2

(px − px3)
2 + (py − py3)

2 + (pz − pz3)
2 = d2

3
.

wherepxi, pyi andpzi are known positions of the nodes and
di is the distance from nodei to the object to be positioned.
The problem can be transformed to a system of two linear
equations and one quadratic equation by e.g subtracting the
second and third equation from the first, see [16] for a
detailed analysis.

An alternative more geometric approach was taken in
[17] where the problem is solved using Cayley-Menger
determinants. This approach has the benefit of a geometric
interpretation of the solution in terms of volumes, areas and
distances. Also the error analysis with respect to e.g distance
errors is simplified.

As the robot is assumed to only move in thexy-plane,
the problem can be reduced to a set of two linear equations.
The two linear equations will always have a solution unless
all three known points are positioned on a line. The two
linear equations define two lines, see Fig. 2, which can be
represented as

a0y = a1 + a2x (7)

b0y = b1 + b2x (8)

where

a0 = 2(py2 − py1)

a1 = d2

1
− d2

2
+ p2

y2
− p2

y1
+ p2

x2
− p2

x1
− 2pz(pz2 − pz1)

a2 = 2(px1 − px2)

b0 = 2(py3 − py1)

b1 = d2

1
− d2

3
+ p2

y3
− p2

y1
+ p2

x3
− p2

x1
− 2pz(pz3 − pz1)

b2 = 2(px1 − px3).



Fig. 2. Two lines defining the solution to the trilateration problem. Each line
corresponds to one pair of circles. For clarity only two of the three possible
lines are shown. This setup shows both overlapping and non-overlapping
circles. Sensor nodes are located at the center of each circle.

Note that the z-coordinatepz of the robot is assumed to be
known, as it is only moving in thexy-plane. The intersection
point of these two lines constitute the trilaterated position
[

ptri
x ptri

y

]T
. Even though the three circles do not intersect

in one point, the algorithm still provides a reasonable result.
For a detailed discussion on how errors both in distance
measurements and node positions influence the trilateration
result, see [16] and [17].

C. Camera Based Localization

To evaluate the distributed ultrasound based localization
system an independent localization system is needed. In
the experimental setup a camera based system was used.
The robot was equipped with two markers to aid the vision
system. The camera system consists of one fixed mounted
camera with a resolution of640 × 480 pixels. Each marker
is located in the image using an algorithm based on a Harris
corner detector, see [18]. If the robot is assumed to move
in a plane, an image coordinate can be transformed to a
point pcam in the plane using a linear transformation. The
heading can then be computed using the two markers. In the
experimental setup used, the vision based localization system
had an accuracy of approximately1cm.

D. Choice of Noise Covariance Matrices

The choice of measurement- and process covariance ma-
trices (Rv and Re) are crucial to the performance of the
algorithm. The process noise covariance matrix determines
the confidence in the model. HereRv will be used as a tuning
parameter to trade off between noise rejection and trust in
the model.

The measurement noise covariance matrixRe in the
experimental setup is a symmetric14 × 14 matrix, thus it
has105 free parameters. The somewhat standard choice of
a diagonal matrix does not apply here as the trilaterated
position measurements are highly correlated. Instead, using
a test trajectory,Re was estimated as a normalized version
of

(R̂e)ij =
1

T

T−1
∑

k=0

(ptri
i (k) − pcam(k))(ptri

j (k) − pcam(k))T

(9)
where ptri

i (k) is the trilaterated position in nodei at time
k and pcam(k) is the position generated from the vision
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Fig. 3. Elements of the RMS-correlation matrixρ associated with the
x-position for measurements (left) and simulations (right). The correlation
pattern introduced by trilateration is clearly visible.

system. The diagonal elements ofR̂e are thus the squared
RMS-value of the trilateration error. The advantage of using
squared RMS-values instead of for example the variance is
that systematic errors are reflected in the RMS-value. As
trilateration is a nonlinear operation, the error is dependent
of the position. Thus the result of (9) is dependent on the
specific trajectory the the robot has followed. Ideally one
would want to allowRe to vary with time, however this
would make the weightsW time varying thus making it
more complicated to compute them off-line.

To illustrate the correlation pattern let us define the RMS-
correlation matrix as

ρij =
(R̂e)ij

√

(R̂e)ii(R̂e)jj

(10)

In Fig. 3 elements associated with thex-position for a
typical trajectory are shown for both measurements (left)
and simulations (right). The correlation pattern caused by
trilateration is clearly visible both in the experimental and
simulated data.

V. COMMUNICATION PROTOCOL

As discussed in Section I-A it is assumed that the robot
can reach all nodes in the network with radio packets. Thus
the robot constitutes a global clock which simplifies the
communication protocol.

As a single node can only measure the distance to the
robot, nodes need to form groups of three to be able
to perform trilateration. One node in each group collects
distance measurements from the other two and then computes
the position of the robot using trilateration. To reduce utilized
bandwidth, distance measurements and position estimates are
transmitted in the same package.

The protocol implemented is illustrated by the schedule in
Fig. 4.

1) At the beginning of each period the robot asks the
wheel controllers for the current wheel velocities.

2) The robot sends a broadcast message to all nodes
with its expected movement, that is previous heading
estimate and wheel velocities. This corresponds to the
term Bu(k) in (1).

3) After sending the packet the robot updates its heading
estimate based on wheel speeds and position estimates
received from the network at step 7.



Fig. 4. Communication schedule used in experiments.

4) When the packet transmitted at step 2 reaches a node,
it starts to sample the incoming ultrasound pulse. The
sampling is interrupted when the edge of the pulse is
reached.

5) The nodes compute their new estimate based on infor-
mation received during the previous time interval.

6) Each node logs data using a wired network to reduce
interference.

7) After a specified time based on its identity number the
nodes broadcast their new position estimate together
with the distance measurement taken at step 4. These
messages are then received by neighboring nodes,
including the robot if it is in range.

8) Finally the robot receives commands from a joystick
used to control it.

In the implementation, data is transmitted after the predic-
tion step instead of between the update- and prediction step
as described in Section III. However it is straightforward to
modify the algorithm for this scenario.

VI. EXPERIMENTAL RESULTS

To evaluate performance, the root mean square (RMS) of
the difference to the position estimated by the vision system
pcam will be used.

When evaluating the impact of different parameters and
design choices it is crucial that experiments are repeatable.
However, as the radio environment where the experiments
were performed is highly non-stationary, repeatability was a
big problem. This issue was resolved by studying estimates
generated in Matlab using logged trilateration-, wheel speed-
and packet arrival data as input. The average RMS difference
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cam) for different types of estimation schemes.

Global refers to a Kalman filter that has access to all information without
any delay. Distributed is the proposed distributed Kalman filter and Local
refers to a Kalman filter that only uses local trilateration information.
As a comparison raw trilateration is also plotted. The big difference in
trilateration accuracy among nodes is due to the relative position of a node
compared to the robot trajectory.

for estimates generated in Matlab compared to real experi-
ments is approximately1 cm. This error is mostly due to
quantization effects in the logging of wheel speeds.

The main results of the experiments are summarized in
Fig. 5 where the RMS error for different types of estima-
tion schemes are shown. Global Kalman filter means that
the filter has access to trilateration information from all
nodes without any delay. Distributed denotes the proposed
algorithm, whereas in the local case only local trilateration
information is used. As a comparison the raw trilaterated
estimate is also plotted. Note that even in the local case
a node needs to communicate with two of its neighbors
to be able to perform trilateration. The big difference in
trilateration accuracy among nodes is due to the relative
position of a node compared to the robot trajectory.

For both the global- and distributed Kalman filter to
perform well it is crucial that the relation between the
diagonal elements ofRe is correct. To achieve this,̂Re was
computed based on the same trajectory as the RMS errors
in Fig. 5.

Examining the results, we can draw the conclusion that the
distributed algorithm performs almost as good as a global
solution. One can also note that the performance of the
local estimator is very close to that of both the global
and distributed schemes in e.g nodes 6 and 7 where the
measurement accuracy is high. Using a permutation test
[19] differences between the global- and distributed Kalman
filter could only be verified at a95% confidence level
in node 1. Using the same test, differences between the
local- and distributed Kalman filter could not be verified in
nodes 6 and 7. The permutation test used here is somewhat
conservative as it does not utilize the correlation between
different estimates generated from the same data.

One critical issue for an algorithm that utilizes a wireless
communication channel is sensitivity to packet loss. In the
results presented in Fig. 5 the average packet loss probability



was approximately10%. To further investigate how sensitive
the proposed algorithm is to packet loss, a number of
simulations were performed. In this study two different ways
of handling lost packets were investigated: to use the last
received packet and to use the local estimate. In Fig. 6 the
average RMS error among the seven nodes is plotted as a
function of packet loss for the two different methods. As
a comparison the average RMS error for raw trilateration
and local estimation are also shown. To isolate the errors
caused by the distributed Kalman filter algorithm, packets
used in the trilateration computations were left unaffected by
the increased packet loss probability. Therefore, the errors
for raw trilateration and local estimation is unaffected by
the packet loss. From Fig. 6 it is apparent that using the
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Fig. 6. Average RMS error (̂p − p
cam) as a function of packet loss for

the distributed Kalman filter when the last received packet isused when
a packet is lost (solid) and when the local estimate is used (dashed). As a
comparison the average RMS error for raw trilateration and local estimation
is also shown.

local estimate when a packet is lost is preferable. If this
approach is used the performance of the distributed solution
approaches the local solution as the packet loss approaches
one for this example.

VII. CONCLUSIONS

In this paper an optimization based algorithm for dis-
tributed estimation is evaluated experimentally. The algo-
rithm is based on standard Kalman filtering results and then
extended with one step where nodes merge their estimates.
The estimates are merged by a weighted average approach.

The algorithm applies to a broad category of communi-
cation topologies, including graphs with loops. The weights
are optimized off-line allowing only estimates to be commu-
nicated among the nodes. All communication is restricted to
neighboring nodes, which allows the algorithm to scale.

An experimental evaluation was done to demonstrate how
the proposed algorithm performs in an uncertain environment
where, for example packets are lost and different nodes are
not perfectly synchronized in time. The scenario chosen is
one where seven nodes in a sensor network estimate the
position of a mobile robot using ultrasound. It was concluded
that the performance in RMS sense of the proposed algorithm

was very close to the performance of a optimal global
solution. Also the distributed Kalman filter proved to be very
insensitive to packet loss, which is of great importance when
dealing with wireless communication links. As presented in
Fig. 6 the performance degradation at for example10% and
50% packet loss are only1.1% and9.4% respectively.
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