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Experimental Evaluation of a Distributed Kalman Filter Algo rithm

Peter Alriksson and Anders Rantzer

Abstract— This paper evaluates the performance of a dis- neighbors. As opposed to the case where measurements are
tributed Kalman filter applied to an ultrasound based posi-  communicated no routing is required when estimates are used
tioning application with seven sensor nodes. By distributed we as information carriers

mean that all nodes in the network desires an estimate of the full Without direct icati bet I d
state of the observed system and there is no centralized com- Ithout direct communication between all nodes a new

putation center after deployment. Communication only takes Problem is introduced, namely how to combine estimates
place between neighbors and only once each sampling interval. from just neighboring nodes. To optimally combine two

The problem is solved by communicating estimates between estimates one has to know the mutual information between
neighbors and then forming a weighted average as the new yham computing this quantity for a general communication

estimate. The weights are optimized to yield a small estimation . oo -
error covariance in stationarity. The minimization can be done graph is a difficult task, that requires global knowledgenef t

off line thus allowing only estimates to be communicated. In topology. In the case of a loop-free graph the problem was
the experimental setup the distributed solution performs almost  solved in [4] by introduction of a channel filter This apprbac

as good as a centralized solution. The proposed algorithm also was used in a coordinated search strategy applicationS4ee [
proved very robust against packet loss. The problem has also been studied intensively in the dynamic

|. INTRODUCTION consensus literature, see for example [6] and the refesence

As battery and processing power of nodes in sensor neLperein. In [7] a similar problem was studied, but for scalar

works increases the possibility of more intelligent estiora systems. . . . .
schemes become more and more important. The use of sens Ih's paper 1S organized as fOHOWS'. Section Il gnd lll gives
networks was first driven by military applications, but with2 rief overview of the theory used in the rest if the paper.

cheaper technology many other areas could make use I?e main part of the paper constitutes of se_ctions IV, Vand
sensor networks, see for example [1] and [2]. Advantage where the experimental setup together with the results ar

with wireless sensor networks typically include increase&resemed'

flexibility and more robustness, as more than one unit ig Target Tracking

performing the same task. . o .-
However these advantages come with a cost: When Com_In real target tracking applications sophisticated radar

o . syistems are used to take measurements of the position of a
municating over wireless channels packet loss becomes

major problem and decentralized algorithms tend to be mo}grget moving in three dimensions. Here a simplified setup is

complex than centralized solutions used where the target to be tracked is a mobile robot moving
P ' . ... in two dimensions.

To illustrate the pros and cons a target tracking applicatio Localization of mobile robots can be performed with a
will be considered. In simple target tracking applicatidih umber of techniques. In laboratory ex epriments it is com
task is to estimate the position of an external object. Inesom" o 10 USe visionq o ' a ceilin -mguntgd camera combined
situations measurements are taken from spatially semhrat@.th an image- r’ocgé’s'n S s%em Another possibility is
locations and an estimate is needed at each location. ydea\g/I ad-recllonig E)Jsin alh? h-yrecision inertial Fr)neaéulr:at)r/né
all measurements should be used at all locations, howeveﬁit on board gthe rogbot Ag Eoblem with dead reckoning-
this may require high bandwidth communication channel% - AP 9
between all nodes. ased approaches, howev_er, is that they_ do not use f_e_edback

To reduce the required bandwidth a distributed solutioﬁmd thus unmeasurable disturbances will cause position er-

where only the position estimate is communicated amonﬁgitthé;ga\?vgﬁtl dbﬁecgmigfatggsfigirinln an outdoor environ-
neighbors will be considered. P Y-

The problem where estimates are communicated has beenThe Iocalizati(.)n.appr.oach chosep her(_a Is based-on ultra=
given great attention in the literature. In for example [3] aspunltz. The blasm.tlﬁea IS Itto trans:jmt al ww;aless radlho pac;et
decentralized Kalman filter was proposed. However, this ap muftaneously with an uitrasound pulse rom each sender

ode. The receiver nodes measure the difference in time of

gorithm requires every node to be able to communicate with™ | bet the radi ket and the ult d puld
every other node, which might not be possible. An altermatiy?'" V&' DEIWEEN IN€ radio packet and the uitrasound pulde an
an in this way calculate their distance to the sender node.

approach is to only allow nodes to communicate with theiE . ) )
y combining, or fusing, several distance measurements an

This work was partially funded by the RUNES Integrated Ribgntract ~ estimate of the position can be obtained.
1ST-2004-004536. o _ Two main approaches exist, [8]. In aactive mobile
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{peter,rantzer }@ontrol.lth.se has receivers at known locations, which estimate distances



to a mobile device based on active transmissions from thehered,; = 1 only if £ = [. Note that this is a heterogeneous
device. These distances are then reported to a central natup where each agent is allowed to to take measurements of
for processing. Examples of this approach are the Activarbitrary size and precision. Further the disturbancemauct
Badge [9], and the Ubisense [10] systems. Imassive on the measurements are allowed to be correlated.
mobile system, instead, the infrastructure has active beaconsEach node is only allowed to communicate with its neigh-
at known positions that periodically transmits signals to #ors and only once between each measurement. Further the
passive mobile device. The mobile device then use thesaly assumption made on the graph structure is that it is
signals to compute its current location. The most famousonnected, other assumptions such as requiring it to be loop
example of this is the Cricket system [11]. free are not necessary. No node is superior to any other and
An advantage of the active approach is that it is more likelthus after deployment no central processing is allowed.
to perform accurate tracking than the passive approach. TheThe goal is to make sure that every node in the network
passive approach, on the other hand, scales better with thas a good estimatg; (k) of the stater(k).
number of mobile devices. Since the main objective here is
for the sensor network to handle the localization, an apgroa ) _ ) )
similar to the active one was chosen. However here no centralWhen constructing an algorithm based on estimates in-
computation center is used. stead of measurements care must be taken on how to combine
As the robot has a practically unlimited power supply comestimates in a good way. The problem is that estimates
pared to the nodes in the sensor network, it is reasonable ifb different nodes are not independent, as they contain the
assume that the robot can reach all nodes in the network wigMme process noise, and possibly also the same measurement
high probability. Thus all nodes can measure the distance #formation. To optimally combine two estimates the mutual
the robot at each sampling time and the robot can transniitformation must be subtracted.
its expected movement to the sensor network. The nodesFor @ graph with loops, two nodes can not compute

however operate under severe power restrictions, thus orffy¢ mutual information by just using local information.
neighbor to neighbor communication is possible. Information can for example travel from node A to node C

and then to node B. When node A and B are to compute their
IIl. MATHEMATICAL FORMULATION mutual information they may not be aware of the coupling
The motion of the robot is described by a discrete-timg¢nhrough C.
linear model of the following form, derived in [12]. To solve the problem for a general communication topol-
r(k+1) = Az(k) + Bu(k) + v(k) (1) 0gy neighboring estimates are weighted so that the error co-
variance of the merged estimate is minimized. This approach
Herex(k) € R" denotes the state of the systemik) € R™ i not give the optimal solution in general, but is applia
a known mpgt and)(k) € R" a stocha}stlc disturbance. The_to graphs with loops. Weighted averaging can be seen as
disturbance is assumed to be a white zero mean Gaussiaryeneralization of the two-sensor track-fusion algorithm
process with covariance defined below. Note that in thigresented in [13]. There is great freedom when choosing both
simplified setup, it is assumed that the external inplt) oy 1o weigh local measurements and neighboring estimates.
is known to all nodes. As mentioned in Section I-A this), [14] a procedure aimed at minimizing the covariance of

assumption is satisfied in the experimental setup. the estimation error is presented, but other objectives suc
Th_e Process Is obsgrvgd By age.n_ts each with some pro- as minimizing the amount of communication for a given
cessing and communication capability. The agents areddbelaccuracy could also be considered.

i = 1,2,...,N and form the sefi’. The communication

topology is modeled as a gragh= (V, E), where the edge A. On-Line Computations

(i,4) is in E if and only if nodei and nodej can exchange  The algorithm consists of the two traditional estimation
messages. The nodes to which a node communicates gteps, measurement update and prediction together with an
called neighbors and are contained in the Sgt Note that additional step where the nodes communicate and merge

IIl. DISTRIBUTED KALMAN FILTER

nodei is also included in the s&V. estimates. We will refer to an estimate after measurement
Each node observes the process (1) by a measuremeptate as local and after the communication step as regional
yi(k) = Ciz(k) + e;(k) @) The local .estimateﬁéowl(km) is formed by the pre-
- . . dicted regional estimaté;“’(k|k — 1) and the local
wheree; (k) € R?¢ is a white zero mean Gaussian process. measurement; (k)
The measurement- and process disturbances are correlated o
according to glocal (k|k) = 279 (k|k — 1)+
o) ] Tv)1" [Re 0 ... 0 Kilyi(k) — C:27° (k|k — 1)].  (4)
e1(k) ex(l) _ 0 Rew ... Ren 5 where K; is computed off-line using for example the

: : : : . : procedure presented in [14]. The predicted estimate at
en(k)] Len(l) 0 Reni ... Renn time zero is defined ag]*? (0| — 1) = &, whereiy is
(3) the initial estimate of:(0).



2) Merging
First the agents exchange their estimates over the com-
munication channel. This communication is assumed to
be error and delay free. The merged estimigte (k|k)
in node i is defined as a linear combination of the
estimates in the neighboring nodas.

27 (klk) = D Wiga ! (klk) (5)
JEN; Fig. 1. Stationary sensor network node with ultrasound ivececircuit
and robot with ultrasound sender. The nodes are packageglastc box
The weighting matricesV;; could for example be to reduce wear.

chosen using the procedure described in [14].
3) Prediction ) )
Because the measurement- and process noises &relfilateration

independent the prediction step only includes Trilateration is a method to find the position of an object
e e based on distance measurements to three objects with known
;% (k + k) = A2;(k[k) + Bu(k) ~ (6) positions. In three dimensions the problem has two solsfion

however the correct one can usually be determined from

physical considerations. The basic problem is to find a

. T . .

To generate measurements, corresponding to (2), an ult&glution [p. py p:] to the following three nonlinear
sound based system together with trilateration will be usegduations

The stationary sensor nodes are each equipped with an
ultrasound receiver and the mobile robot is equipped with ) ) ) 5
an ultrasound transmitter. The stationary sensor nodes are (Po — Pa2)” + (Py — py2)” + (P2 —p22)” = d3
implemented as Tmote Sky sensor network nodes together  (p, — pz3)® + (py — py3)® + (p» — p23)* = d3.
with a small ultrasound receiver circuit interfaced to thela -
via an AD converter, see Fig. 1. wherep,;, py; andp,,; are known positions of the nodes and

Both the ultrasound transmitters and receivers are degigng: 1 the distance from nodeto the object to be positioned.
to be isometric. i.e.. to transmit and receive in the &)°  1Nne problem can be transformed to a system of two linear
degree plane. T equations and one quadratic equation by e.g subtracting the

The robot used in the experiments is a dual-drive rob econd and third equation from the first, see [16] for a

developed in Lund. It is equipped with three Atmel AVR etailed analygs. i )
Megal6 processors and one TMote Sky node, see Fig. 1 An alternative more ge_ometrlc apprpach was taken in
Two AVR processors are used to control the wheel speeds’] Where the problem is solved using Cayley-Menger
using Pl-controllers. The remaining AVR is used to generatd€terminants. This approach has the benefit of a geometric
ultrasound. For a detailed description of the hardware sdgterpretation of the solution in terms of volumes, areas an
[15]. Throughout all experiments the robot is controlleod'StanceS' Also the error analysis with respect to e.g utista

using a wireless joystick. errors is simplified. _
As the robot is assumed to only move in theg-plane,

the problem can be reduced to a set of two linear equations.

The two linear equations will always have a solution unless
The implemented localization method works according tall three known points are positioned on a line. The two

the following principles. At the beginning of each measurelinear equations define two lines, see Fig. 2, which can be

ment cycle, the robot transmits a broadcast radio messawgpresented as

to alert the nodes of the incoming ultrasound pulse. After a

fixed time the robot then emits an ultrasound pulse. When aoy = a1 + a2 (")

the radio message reaches the node, it starts to sample the boy = b1 + bax (8)

ultrasound microphone. Then the stationary nodes detect th

beginning of the pulse using a moving median filter of lengt{'here

three. a0 = 2(pys — pu1)
The sample index where the pulse was detected is pro—0 ) v2 ) y12 ) 9 9

portional to the distance between the stationary nodes and! = @1 — 2 + Py =Py + Pra — Pa1 — 2p=(p=2 = P=1)

the robot when the pulse was emitted. If the speed ofaz = 2(pz1 — Pa2)

sound, the sampling interval in the nodes and the fixed delayy, — 2(py3 — Py1)

between ultrasound- and radio transmission are known the —_ > P2 — P2 4 PP — P21 — 2D (pas — pot)

actual distance can be computed. The position can then be' 1~ @3 T Pys = Py1 T Pas = Por = “Pz(Pz3 = Pl

computed using trilateration. by = 2(pa1 — Pas)-

IV. EXPERIMENTAL SETUP

(pac _px1)2 + (py - py1)2 + (pz _pzl)2 = d%

A. Ultrasound Based Localization



a
Node:

Fig. 3. Elements of the RMS-correlation matrix associated with the
Fig. 2. Two lines defining the solution to the trilateratiaiplem. Each line x-position for measurements (left) and simulations (righfje Eorrelation

corresponds to one pair of circles. For clarity only two of three possible Pattern introduced by trilateration is clearly visible.
lines are shown. This setup shows both overlapping and merlapping
circles. Sensor nodes are located at the center of eacle.circl

system. The diagonal elements Bf are thus the squared
RMS-value of the trilateration error. The advantage of gsin
o L ) .~ squared RMS-values instead of for example the variance is
"”9""“' asitis only moving in thEy-pIane. '_I'he mtersecthr_] that systematic errors are reflected in the RMS-value. As
pot'm otf.t:r;ese two lines constitute the trilaterated positi jateration is a nonlinear operation, the error is depmd

[ z py”] - Even though the three circles do not intersechs the position. Thus the result of (9) is dependent on the
in one point, the algorithm still provides a reasonable ltesu specific trajectory the the robot has followed. Ideally one

For a detailed discussion on how errors both in distancgoyid want to allow R, to vary with time, however this
measurements and node positions influence the trilateratiq;q 1 make the weight$V time varying thus making it

result, see [16] and [17]. more complicated to compute them off-line.

C. Camera Based Localization To illustrate the correlation pattern let us define the RMS-

. .. correlation matrix as
To evaluate the distributed ultrasound based localization

system an independent localization system is needed. In o (Re)ij (10)
the experimental setup a camera based system was used. Pij = (B)ir(R)ss
The robot was equipped with two markers to aid the vision e/uATrel I

system. The camera system consists of one fixed mountgd Fig. 3 elements associated with theposition for a
camera with a resolution df40 x 480 pixels. Each marker typical trajectory are shown for both measurements (left)
is located in the image using an algorithm based on a Harrighd simulations (right). The correlation pattern caused by

corner detector, see [18]. If the robot is assumed to movgijateration is clearly visible both in the experimentaida
in a plane, an image coordinate can be transformed to sfmulated data.

point p°®™ in the plane using a linear transformation. The

heading can then be computed using the two markers. In the V. COMMUNICATION PROTOCOL
experimental setup used, the vision based localizatiotesys
had an accuracy of approximatelgm.

Note that the z-coordinate. of the robot is assumed to be

As discussed in Section I-A it is assumed that the robot
can reach all nodes in the network with radio packets. Thus
D. Choice of Noise Covariance Matrices the robot constitutes a global clock which simplifies the

. . communication protocol.
The choice of measurement- and process covariance ma-

trices ®, and R,) are crucial to the performance of the As a single node can only measure the distance to the

: ) . . ._robot, nodes need to form groups of three to be able
algorithm. The process noise covariance matrix determlnef\g erform trilateration. One node in each aroun collects
the confidence in the model. HeRg, will be used as a tuning P i group

. C distance measurements from the other two and then computes
parameter to trade off between noise rejection and trust o : : . .
e position of the robot using trilateration. To reducdized
the model. . s " :
. . . bandwidth, distance measurements and position estimates a
The measurement noise covariance matix in the

i . : . transmitted in the same package.
experimental setup is a symmetrld x 14 matrix, thus it The protocol implemented is illustrated by the schedule in
has105 free parameters. The somewhat standard choice Ef 4 P P y
a diagonal matrix does not apply here as the trilaterated®” o )
position measurements are highly correlated. Insteasigusi 1) At the beginning of each period the robot asks the
a test trajectoryR. was estimated as a normalized version wheel controllers for the current wheel velocities.

of 2) The robot sends a broadcast message to all nodes
_— with its expected movement, that is previous heading
R.)yi = — (1) — e (V) (ptT (k) — peam (k)T estimate and wheel velocities. This corresponds to the
(Re) T};(pl (k) — p™ (k) (pS" (k) — p=™ (k)) term Bu(k) in (1).
9) 3) After sending the packet the robot updates its heading
where pi"™(k) is the trilaterated position in nodeat time estimate based on wheel speeds and position estimates

k and pc®™(k) is the position generated from the vision received from the network at step 7.
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Fig. 5. RMS error  — pc®™) for different types of estimation schemes.
Global refers to a Kalman filter that has access to all inforomativithout

R any delay. Distributed is the proposed distributed Kalmaterfiand Local

" refers to a Kalman filter that only uses local trilateratioriormation.
As a comparison raw trilateration is also plotted. The bidgedénce in
trilateration accuracy among nodes is due to the relativétippsof a node
compared to the robot trajectory.

Sample wheel speeds Compute position estimate
Ultra sound/heading packet H Log

Bl Compute heading estimate Position/distance packet
for estimates generated in Matlab compared to real experi-
ments is approximately cm. This error is mostly due to
Fig. 4. Communication schedule used in experiments. guantization effects in the logging of wheel speeds.
The main results of the experiments are summarized in
Fig. 5 where the RMS error for different types of estima-
4) When the packet transmitted at step 2 reaches a noggn schemes are shown. Global Kalman filter means that
it starts to sample the incoming ultrasound pulse. Thehe filter has access to trilateration information from all
sampling is interrupted when the edge of the pulse igodes without any delay. Distributed denotes the proposed
reached. algorithm, whereas in the local case only local trilaterati
5) The nodes compute their new estimate based on infqiformation is used. As a comparison the raw trilaterated
mation received during the previous time interval.  estimate is also plotted. Note that even in the local case
6) Each node logs data using a wired network to reducg node needs to communicate with two of its neighbors
interference. to be able to perform trilateration. The big difference in
7) After a specified time based on its identity number thgilateration accuracy among nodes is due to the relative
nodes broadcast their new position estimate togethgbsition of a node compared to the robot trajectory.
with the distance measurement taken at step 4. Theseror both the global- and distributed Kalman filter to
messages are then received by neighboring nodgserform well it is crucial that the relation between the

B Sample ultrasound Il Joystick packet

in.cluding the robot if i? is in range. ~_ diagonal elements ak. is correct. To achieve thisz. was
8) Finally the robot receives commands from a joystickomputed based on the same trajectory as the RMS errors
used to control it. in Fig. 5.

In the implementation, data is transmitted after the predic Examining the results, we can draw the conclusion that the
tion step instead of between the update- and prediction stdfstributed algorithm performs almost as good as a global
as described in Section lll. However it is straightforwaod t solution. One can also note that the performance of the

modify the algorithm for this scenario. local estimator is very close to that of both the global
and distributed schemes in e.g nodes 6 and 7 where the
V. EXPERIMENTAL RESULTS measurement accuracy is high. Using a permutation test

To evaluate performance, the root mean square (RMS) {f9] differences between the global- and distributed Kalma
the difference to the position estimated by the vision systefilter could only be verified at @5% confidence level
pe®™ will be used. in node 1. Using the same test, differences between the

When evaluating the impact of different parameters anbbcal- and distributed Kalman filter could not be verified in
design choices it is crucial that experiments are repeatabhodes 6 and 7. The permutation test used here is somewhat
However, as the radio environment where the experiment®nservative as it does not utilize the correlation between
were performed is highly non-stationary, repeatabilitysvea different estimates generated from the same data.
big problem. This issue was resolved by studying estimates One critical issue for an algorithm that utilizes a wireless
generated in Matlab using logged trilateration-, wheeksbe communication channel is sensitivity to packet loss. In the
and packet arrival data as input. The average RMS differencesults presented in Fig. 5 the average packet loss prdtyabil



was approximately0%. To further investigate how sensitive was very close to the performance of a optimal global
the proposed algorithm is to packet loss, a number aolution. Also the distributed Kalman filter proved to bewer
simulations were performed. In this study two different way insensitive to packet loss, which is of great importancerwhe
of handling lost packets were investigated: to use the ladealing with wireless communication links. As presented in
received packet and to use the local estimate. In Fig. 6 thiég. 6 the performance degradation at for examiile and
average RMS error among the seven nodes is plotted a$@% packet loss are only.1% and9.4% respectively.
function of packet loss for the two different methods. As
a comparison the average RMS error for raw trilateration _
and local estimation are also shown. To isolate the errors This work was partially funded by the RUNES Integrated
caused by the distributed Kalman filter algorithm, packetBroject contract IST-2004-004536.
used in the trilateration computations were left unaffddig
the increased packet loss probability. Therefore, thergrro (1] D. Hall and J. Li A g | it

; ; ; ; ; . Hall and J. Llinas, “An introduction to multisensor sion,”
for raw trilateration and _Iocal estimation is unaffect.ed by Proceedings of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.
the packet loss. From Fig. 6 it is apparent that using thgz] R. viswanathan and P. Varshney, “Distributed deteciigth multiple

sensors part i. fundamental&toceedings of the |EEE, vol. 85, no. 1,

20 . . . . . . . . . pp. 54-63, 1997.
[3] H. Durrant-Whyte, B. Rao, and H. Hu, “Toward a fully decetized
wr 1 architecture for multi-sensor data fusiorRbbotics and Automation,
Raw Trilateration 1990. Proceedings., 1990 IEEE International Conference on, pp.

1331-1336 vol.2, 1990.
1ar Distributed Kaiman Piter 1 [4] S. Grime, H. F. Durrant-Whyte, and P. Ho, “Communication

using the last received
packet when pckets re ot decentralized data-fusion systems,” in Proc. American Control
Local Kalman Filter Conference, 1992, pp. 3299-3303.
E [5] F. Bourgault and H. F. Durrant-Whyte, “Communication in geal
/ decentralized filters and the coordinated search strategyThe 7th

8l P

- International Conference on Information Fusion, July 2004.
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