
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The Time-Domain Theory of Forerunners

Karlsson, Anders; Rikte, Sten

1997

Link to publication

Citation for published version (APA):
Karlsson, A., & Rikte, S. (1997). The Time-Domain Theory of Forerunners. (Technical Report LUTEDX/(TEAT-
7054)/1-31/(1997); Vol. TEAT-7054). [Publisher information missing].

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7c2859a6-a76a-4d71-821e-c747b92f9d11


CODEN:LUTEDX/(TEAT-7054)/1-31/(1997)

The Time-Domain Theory of
Forerunners

Anders Karlsson and Sten Rikte

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
Sweden



Anders Karlsson and Sten Rikte

Department of Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118
SE-221 00 Lund
Sweden

Editor: Gerhard Kristensson
c© Anders Karlsson and Sten Rikte, Lund, January 17, 1997



1

Abstract

The time-domain theory of forerunners (precursors) in temporally disper-
sive, nonmagnetic, isotropic materials is developed using the propagator tech-
nique. Specifically, the impulse response at a (comparatively) large prop-
agation depth is expanded in two different ways: (a) with respect to the
wave-front and (b) with respect to slowly varying field components. A few
numerical examples illustrating the theory are given.

1 Introduction

The theory of forerunners or precursors is today a fairly well explored discipline
of electromagnetics [1, 2]. The importance of forerunners is due to the fact that
transients always arise in electromagnetics (except in strict monochromatic cases)
and that all materials exhibit dispersion (to some extent). In other words, many
elementary waves are excited and these waves propagate with different phase speed.
Absorption in dispersive materials is anomalous resulting in rapidly varying phase
speed in certain frequency bands, cf [3].

The first results in the field of forerunners were reported by Arnold Sommer-
feld [4] and Léon Brillouin [5] in two consecutive articles under the same title in An-
nalen der Physik in 1914. Sommerfeld and Brillouin used the saddle-point method
to analyze pulse propagation in Lorentz (resonance) materials at large propagation
depths. In the terminology of the saddle-point method, Sommerfeld’s forerunner
is due to distant saddle-points (high frequency components), whereas Brillouin’s
forerunner is due to the saddle-points close to the origin (low frequency compo-
nents). Sommerfeld’s forerunner (the first precursor) is the wave-front behavior of
the propagating field. This transient is characterized by high amplitudes and rapid
oscillations. Eventually, these oscillations die out, and Brillouin’s forerunner (the
second precursor) arrives. This anomaly is characterized by a sudden, significant
rise in amplitude and a rapid fall in frequency. After the main peak, the ampli-
tude decreases, while the frequency increases. The time when the anomaly occurs is
sometimes referred to as the quasilatent time [1]. Sommerfeld showed that the first
precursor can be expressed in terms of the Bessel function J1 with the argument
proportional to the square root of the propagation distance and the square root of
the wave-front time. Brillouin showed that the second precursor can be expressed
in terms of the Airy function Ai, with the argument depending on the propagation
distance and the wave-front time in a complicated way. Later, important correc-
tions to the forerunners were obtained using advanced saddle-point methods, see
Oughstun and Sherman [2]. In his book, Brillouin foresees a third group of fore-
runners when more than one resonance frequency are present [1]. Results for such
materials are available as well [6]. Recently results on pulse propagation in Debye
materials [7, 8] have been published. A physical background of Lorentz and Debye
materials, which are the most commonly used models for temporal dispersion, can
be found e.g. in [9]– [10].

In the opinion of the authors, Ref. 2 is an exhaustive and trustworthy study
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of pulse propagation phenomena in temporally dispersive dielectrics. In the present
paper a pure time-domain theory of forerunners in homogeneous, temporally disper-
sive, nonmagnetic, isotropic materials is developed. It will serve as a complement
to the frequency domain theory in Ref. 2. The ambition is to make the theory as
general and at the same time as simple and pedagogical as possible.

One-dimensional propagation of pulses in temporally dispersive materials has
been treated by many authors. There are, at least, three different time-domain
methods that depend on optical wave splitting: the imbedding method [11], the
Green functions method [9], and the propagator method [12]. A wave splitting is a
change of the dependent variables which simplifies the propagation problem. In this
article, a time-domain method based on a dispersive wave splitting is employed. This
wave splitting is obtained as a special case of the wave splitting for bi-isotropic media
that was originally introduced in [13]. Key concepts are the index of refraction and
the wave propagator, which both are temporal integral operators. These operators
fully determine the transients of the temporally dispersive medium.

In Section 2, general, normal incidence on a temporally dispersive slab is dis-
cussed. A dispersive wave splitting is presented in Section 3 and the corresponding
wave propagators are introduced in Section 4. The solution of the propagation
problem is given in Section 5. In Section 6, two different expansions of the wave
propagator are presented. These expansions correspond to the first precursor and
the second precursor. In particular Sommerfeld’s forerunner and Brillouin’s fore-
runner are identified. In Section 7, the forerunners for specific material models are
discussed. Numerical results are presented in Section 8. In Appendix A, causal
fundamental solutions in dispersive media are briefly discussed. Finally, in Appen-
dix B, basic results for some special functions, referred to as hyper-Airy functions,
are given. These smooth functions play an important role in the theory of the second
forerunner.

2 Basic equations

Throughout this article, Cartesian coordinates O(x, y, z) are employed. Operators
are denoted by calligraphic letters, scalar functions by italic letters, and vectors by
italic boldface letters. The radius vector is written r = exx + eyy + ezz, where
the basis vectors in the x-direction, y-direction, and z-direction are denoted by ex,
ey, and ez, respectively. Time is denoted by t. The electric field intensity and the
magnetic field intensity at the space-time point (r, t) are denoted by E(r, t) and
H(r, t), respectively. The corresponding flux densities are denoted by D(r, t) and
B(r, t). The speed of light in vacuum is denoted by c and the intrinsic impedance
of vacuum by η.

The constitutive relations of a linear, homogeneous, temporally dispersive, non-
magnetic, isotropic medium are

cηD(r, t) = E(r, t) + (χ ∗ E)(r, t), cB(r, t) = ηH(r, t), (2.1)
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where the star indicates temporal convolution:

(χ ∗ E)(r, t) =

∫ t

−∞
χ(t − t′)E(r, t′) dt′.

Dispersion is modeled by the electric susceptibility kernel χ(t), which vanishes for
t < 0 due to causality and is assumed to be bounded and smooth for t > 0. Observe
that a temporally dispersive medium with absolutely integrable susceptibility kernel
vanishes in the high-frequency limit in electromagnetic sense:

lim
ω→∞

∫ ∞

0

e−iωtχ(t) dt = 0 (the Riemann-Lebesgue lemma).

The restriction that the medium is nonmagnetic without optical response is not
essential.

A general, up-going, linearly polarized plane wave is incident normally on a
temporally dispersive slab, 0 < z < d, see Figure 1. For the sake of simplicity, the
medium is assumed to be located in vacuum. The incident plane wave at the front
wall, z = 0, at time t is given by

Ei(t) = exE
i(t), H i(t) = eyH

i(t), H i(t) = Ei(t)/η.

The incident electric field, Ei(t), is assumed to be bounded, smooth, and initially
quiescent, i.e., it vanishes for t < 0. All electromagnetic fields in the slab are assumed
to be initially quiescent.

Transverse electric and magnetic (TEM) solutions of the source-free Maxwell
field equations,

∇× E(r, t) = −∂tB(r, t), ∇× H(r, t) = ∂tD(r, t),

are sought:
E(r, t) = exEx(z, t), H(r, t) = eyHy(z, t). (2.2)

Elimination of the flux densities yields a first-order system of hyperbolic integro-
differential equations in the non-vanishing electric and magnetic field components:

c
∂

∂z

(
Ex

−ηHy

)
=

∂

∂t

{(
0 1

1 + χ∗ 0

) (
Ex

−ηHy

)}
, 0 < z < d. (2.3)

The reflected plane wave at the front wall, z = 0, at time t is given by

Er(t) = exE
r(t), Hr(t) = eyH

r(t), Hr(t) = −Er(t)/η.

Analogously, the transmitted plane wave at the rear wall, z = d, at time t is

Et(t) = exE
t(t), H t(t) = eyH

t(t), H t(t) = Et(t)/η.

In terms of these scattered waves, the boundary conditions are

Ei(t) + Er(t) = Ex(0, t),

H i(t) + Hr(t) = Hy(0, t),

Et(t) = Ex(d, t),

H t(t) = Hy(d, t).
(2.4)
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z

0 d

Ei

Er

E+

E− Et

χ(t) = 0 χ(t) = 0χ(t) �= 0

Figure 1: The scattering geometry with the incident, scattered, and internal electric
fields indicated.

3 Dispersive wave splitting

One way to deal with propagation problems in temporally dispersive media is to
adopt a dispersive wave splitting [13]. New vector field variables are introduced by(

E+

E−

)
= W

(
Ex

−ηHy

)
, W =

1

2

(
1 −Z
1 Z

)
. (3.1)

In terms of the split vector fields, E±(z, t), the electric and magnetic fields are(
Ex

−ηHy

)
= W−1

(
E+

E−

)
, W−1 =

(
1 1

−N N

)
. (3.2)

The temporal integral operators

Z ≡ 1 + Z∗, N ≡ 1 + N∗

are the relative intrinsic impedance and the index of refraction (or the relative
intrinsic admittance) of the temporally dispersive medium, respectively. The kernels
Z(t) and N(t) depend on time only and vanish for t < 0. These operators correspond
to the complex relative intrinsic impedance and the complex refractive index in the
Fourier plane as defined in Ref. 2. By definition,

ZN = 1 (N = Z−1) and N 2 = Er, where Er ≡ 1 + χ∗

is the relative permittivity operator of the medium and 1 the identity operator.
The refractive kernel, N(t), and the impedance kernel, Z(t), satisfy the Volterra

integral equations of the second kind

2N(t) + (N ∗ N)(t) = χ(t),

Z(t) + N(t) + (Z ∗ N)(t) = 0.
(3.3)

These equations are uniquely solvable in the space of bounded and smooth functions
in each bounded time interval, 0 < t < T , and they are numerically stable as well.



5

Thus, the construction of Z(t) and N(t) from χ(t) is a well posed problem. The
second Eq. (3.3) can be phrased as: Z(t) is the resolvent kernel of N(t).

Notice that the refractive kernel can be expanded in a power series of temporal
convolutions which converges in each bounded time interval, 0 < t < T :

N(t) =
∞∑

k=1

(
1
2

k

) (
(χ∗)k−1χ

)
(t).

Similarly, the impedance kernel can be expanded in a power series of temporal
convolutions:

Z(t) =
∞∑

k=1

(−1)k
(
(N∗)k−1N

)
(t).

The dispersive wave splitting (3.1)–(3.2) should be interpreted locally throughout
space. Consequently, it reduces to the optical wave splitting outside the slab:

Ex = E+ + E−, −ηHy = −E+ + E−.

It is easy to conclude that the split vector fields in the exterior regions are the up-
going electric fields and the down-going electric fields, respectively. Fourier trans-
formation of Eq. (3.2) with respect to time shows that this interpretation holds
inside the dispersive medium (see also Eq. (3.4) below). At the boundaries, how-
ever, the split fields are not well defined. To avoid confusing boundary conditions,
the notations E± are employed exclusively for the internal fields.

The introduction of the relative intrinsic impedance of the temporally dispersive
medium promotes simple, natural definitions of reflection and transmission opera-
tors for the electric field at normal incidence at a (single) nondispersive–dispersive
interface (d → ∞). In concordance with known results in the Fourier plane, the
reflection operator viewed from the nondispersive medium is

R =
(
ηZ + η1

)−1(
ηZ − η1

)
=

(
1 + N

)−1(
1 −N

)
,

where the second equality holds for nonmagnetic media only. This temporal integral
operator can be written in the form

R ≡ R∗,

where the kernel R(t) depends on time only and vanishes for t < 0. The reflection
kernel R(t) satisfies the Volterra integral equations of the second kind,

2R(t) − Z(t) + (Z ∗ R)(t) = 0,

2R(t) + N(t) + (N ∗ R)(t) = 0,

4R(t) + 2(χ ∗ R)(t) + χ(t) + (χ ∗ (R ∗ R))(t) = 0,

These equations imply that R(t) is bounded, smooth, and continuously dependent
on data for t > 0. According to the first two equations, R(t) is the resolvent kernel of
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N(t)/2 and −R(t) is the resolvent kernel of Z(t)/2. The third equation is recognized
as the imbedding equation for the semi-infinite dispersive medium [11].

Since the reflection operator for the up-going electric field is R, the reflection
operator for the down-going electric field is −R. The transmission operator for the
up-going electric field is then

T = 1 + R,

and the transmission operator for the down-going electric field 1−R. The interpre-
tation of these operators can be affirmed either by Eqs (3.4) and (3.6) below or by
temporal Fourier transformation.

Straightforward combination of the Maxwell Eqs (2.3) and the dispersive wave
splitting (3.1)–(3.2) shows that the split fields, E±(z, t), satisfy first-order dispersive
wave equations for up-going and down-going electric fields, respectively:

(c∂z ± ∂t)E
± = ∓∂tN ∗ E±, 0 < z < d. (3.4)

Notice that the split fields do not couple. Suppressing the general time-dependence,

E±(z) := E±(z, t), Ei := Ei(t), Er := Er(t), Et := Et(t), (3.5)

the boundary conditions (2.4) at z = 0 and at z = d reduce to(
Ei

Er

)
=

(
S SR
SR S

) (
E+(0)
E−(0)

)
,

(
Et

0

)
=

(
S SR
SR S

) (
E+(d)
E−(d)

)
, (3.6)

respectively, where the temporal integral operator

S ≡ 1 + S∗, ST = 1 (S = T −1)

is the inverse (resolvent operator) of the transmission operator T ≡ 1 + R∗. The
kernel of S is S(t) = N(t)/2.

4 Wave propagators

The solutions of the dynamic equations (3.4) can be written in the form

E±(z2, t ± (z2 − z1)/c) =
[
P (± (z2 − z1)) E±(z1, ·)

]
(t) (4.1)

(0 < z1, z2 < d), where the temporal integral operator P(z2 − z1) is referred to as
the wave propagator of the temporally dispersive medium and t denotes wave-front
time. Due to homogeneity, P(z2 − z1) is invariant under translations in the spatial
variable. It is natural, but not necessary, to demand that z1 ≤ z2 (z2 ≤ z1) for
up-going (down-going) fields.

The dynamic equations (3.4) show that the wave propagator satisfies the operator
identity

∂zP(z) = −KP(z), P(0) = 1,
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where the temporal integral operator K is related to the wave number of the disper-
sive medium:

K =
1

c
∂tN∗ =

1

c
N(0) + K(·)∗, K(t) =

1

c
N ′(t). (4.2)

The wave propagator is closely related to the causal fundamental solution of the
dispersive wave operator, see Appendix A. In appropriate operator notation,

P(z) = exp (−zK). (4.3)

Multiplication by the time-shift operator

P0(z) = exp
(
−zc−1∂t

)
= δ(· − z/c)∗

gives a wave propagator, P0(z)P(z), defined in terms of real time. In the frequency
plane, this wave propagator corresponds to the propagation factor

p(z) = exp (−ik(ω)z),

where k(ω) is the complex wave number as a function of angular frequency ω.
Two-fold application of Eq. (4.1) shows that the wave propagator, P(z), satisfies

the relations

P(z1 + z2) = P(z1)P(z2),

P(0) = 1,

P−1(z) = P(−z),

(4.4)

where the arguments can be both positive and negative. A positive argument, z,
corresponds to propagation of up-going waves or down-going waves in the dispersive
medium. A negative argument, −z, merely indicates that the inverse (resolvent
operator) of the operator P(z) is referred to. Notice that the rules (4.4) are the
requirements for a group; thus, the propagators, P(z), −∞ < z < ∞, form a group.
This is of importance in signal restoration since the propagator P(−z) restores
an incident signal E+(0, t) from a received signal E+(z, t) by E+(0, t − z/c) =
[P(−z)E+(z, ·)](t). Multiple propagation through the slab, 0 < z < d, gives rise to
wave propagators with arguments z > d.

The wave propagator can be factored as

P(z) = Q(z)
(
1 + P (z; ·) ∗

)
, (4.5)

where the wave-front propagator, Q(z), is the solution of the ordinary differential
equation

∂zQ(z) = −N(0)Q(z)/c, Q(0) = 1.

This factor determines the attenuation of the wave-front:

Q(z) = exp
(
−z

c
N(0)

)
.
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The propagator kernel, P (z; t), satisfies the integro-differential equation

∂zP (z; t) = −K(t) −
(
P (z; ·) ∗ K(·)

)
(t) P (0; t) = 0, (4.6)

which has a unique solution in the space of bounded and smooth functions in each
bounded interval, 0 < t < T , 0 < z < Z, see Ref. 14. P (z; t) vanishes for t < 0 since
K(t) vanishes for t < 0. By definition, the propagator kernels P (z; t) and P (−z; t)
are related to one another by the linear Volterra integral equation of the second
kind,

P (z; t) + P (−z; t) + (P (z; ·) ∗ P (−z; ·)) (t) = 0,

for which a unique solution exists.
The propagator kernel can be expanded in a power series of temporal convolu-

tions that converges in each bounded time interval, 0 < t < T :

P (z; t) =
∞∑

k=1

(−z)k

k!

(
(K∗)k−1K

)
(t). (4.7)

In operator notation
1 + P (z; ·)∗ = exp (−zK∗). (4.8)

5 Solution of the propagation problem

Suppressing the general time-dependence (3.5), Eqs (4.1) give

E+(z) = P(z)E+(0), E−(z) = P(d − z)E−(d). (5.1)

Upon setting z = d in the first equation and z = 0 in the second equation, the
boundary conditions (3.6) can be exploited, and the four unknown functions E±(0),
E±(d) eliminated. Straightforward calculations show that the solution of the direct
scattering problem reads

Et = M(1 −R2)P(d)(δ d
c
∗ Ei), Er = REi −M(1 −R2)RP(2d)(δ2 d

c
∗ Ei),

where the temporal integral operator

M =
(
1 −R2P(2d)δ2 d

c
∗

)−1

represents multiple propagation through the slab, and the notation

(δa ∗ Ei)(t) := Ei(t − a)

for time-shift has been employed. For the internal electric fields, the result is

E+(z) = MT P(z)(δ z
c
∗ Ei), E−(z) = −MT RP(2d − z)(δ 2d−z

c
∗ Ei).

Observe that these relations easily can be affirmed heuristically.
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If the slab 0 < z < d extends to infinity (d → +∞), the solution of the propaga-
tion problem becomes very simple:

E+(z) = T P(z)(δ z
c
∗ Ei) = (1 + R)P(z)(δ z

c
∗ Ei), E−(z) = 0.

The total electric and magnetic fields in the medium are then

Ex(z) = (1 + R)P(z)(δ z
c
∗ Ei), ηHy(z) = (1 −R)P(z)(δ z

c
∗ Ei)

and the reflected electric field becomes Er = REi.
A propagation problem closely related to the present one is the internal source

problem, where an initially quiescent, transverse current distribution, exJx(z, t),
excites the medium, 0 < z < d. This problem is treated in Appendix A.

6 Expansions of the wave propagator

In this section, the transients (forerunners) of the temporally dispersive medium are
investigated. Since the dynamic equations (3.4) have the solutions (5.1), all essential
information about the propagating field is contained in the wave propagator, P(z),
which depends on the refractive kernel, N(t), and the propagation depth, z, only.
The first precursor and the second precursor can be obtained by expanding the wave
propagator in different ways. Recalling the characteristic property of the exponen-
tial, this amounts to expanding the refractive kernel appropriately. Sommerfeld’s
forerunner and Brillouin’s forerunner are the leading terms in these expansions.

6.1 The first precursor–Sommerfeld’s forerunner

The first precursor is defined as the short-time, or wave-front, behavior of the impulse
response

[P(z)δ] (t) = Q(z) {δ(t) + P (z; t)} , (6.1)

where δ(t) is the Dirac delta pulse. Intentionally, this definition is vague. However,
Sommerfeld’s forerunner is given a precise meaning below.

In the light of Eqs (4.6)–(4.7), it makes sense to expand the wave-number kernel,
K(t), t > 0 about t = 0. The Maclaurin series of the smooth wave-number kernel is

K(t) = H(t)
k−1∑
j=0

tj

j!

djK

dtj
(+0) + H(t)

∫ t

0

(t − t′)k−1

(k − 1)!

dkK

dtk
(t′) dt′, k = 1, 2, 3, . . . ,

where H(t) denotes the Heaviside step function. The time-derivatives of the wave-
number kernel at the origin, K(k)(+0) = c−1N (k+1)(+0), are obtained from the
recurrence relation

2N (k)(+0) = χ(k)(+0) −
k−1∑
j=0

N (j)(+0)N (k−1−j)(+0),
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which, in turn, is obtained by differentiating Eq. (3.3) with respect to time. For the
first coefficients the result is

N(+0) =
1

2
χ(+0)

K(+0) =
1

2c

(
χ′(+0) − χ2(+0)/4)

)
.

Substituting the above expression for K(t) into Eq. (4.8) and using Eq. (4.5) and
the fundamental property of the exponential give

P(z) = Q(z) exp (−zK∗) = Q(z)

(
k−1∏
j=0

Qj(z)

)
Q̃k(z), (6.2)

where the wave-front operators are

Qj(z) = exp

{
−zK(j)(+0)

(
tjH(t)

j!

)
∗
}

, j = 0, 1, 2, . . . , k − 1

and the remainder is

Q̃k(z) = exp

{
− z

(k − 1)!

(
H(t)

∫ t

0

(t − t′)k−1K(k)(t′) dt′
)
∗
}

. (6.3)

Using the identity ((H∗)nH)(t) = tn/(n!)H(t), the wave-front operators can be
written in the form

Qj(z) = 1 + Qj(z; ·)∗, j = 0, 1, 2, . . . , k − 1,

where the power series of the wave-front operators are

Qj(z; t) = H(t)
∞∑
i=1

(
−zK(j)(+0)

)i ti(1+j)−1

(i(1 + j) − 1)!i!
.

The product (6.2) is an exact expansion of the wave propagator. Approximations
to the first precursor are obtained by neglecting the remainder (6.3).

Sommerfeld’s forerunner at the propagation depth z is

[PS(z)δ] (t) = Q(z) {δ(t) + PS(z, t)} ,

where the temporal integral operator is defined by taking the first two factors in
expansion (6.2):

PS(z) = Q(z)Q0(z) = Q(z)
(
1 + PS(z; ·) ∗

)
.

Since Q0(z; t) is a Bessel-function expansion, Sommerfeld’s forerunner kernel be-
comes

PS(z; t) = −zK(+0)
(
I0

(
2
√

−zK(+0)t
)
− I2

(
2
√
−zK(+0)t

))
H(t) =

= −zK(+0)
(
J0

(
2
√

zK(+0)t
)

+ J2

(
2
√

zK(+0)t
))

H(t).
(6.4)

The first formula is appropriate for Debye media (K(+0) < 0) and the second for
Lorentz media (K(+0) > 0). This result, which is a generalization of Sommerfeld’s
result [4] for the single-resonance Lorentz medium, has been obtained before using
various methods [15, 16]. Notice that the forerunner in the Lorentz medium is highly
oscillating.
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6.2 The second precursor–Brillouin’s forerunner

The second precursor represents the slowly varying component of the impulse re-
sponse (6.1). The dominant contribution to this transient is referred to as Brillouin’s
forerunner. This forerunner will be given a precise meaning below.

An expansion of the wave propagator with respect to slowly varying fields is
sought. The general idea is to expand the field in terms of its derivatives and
neglect the higher-order terms.

Each smooth field, Ei(t′), can be expanded in a Taylor series around the obser-
vation time, t:

Ei(t′) =

(
k−1∑
j=0

(t′ − t)j

j!

dj

dtj
Ei(t)

)
+

∫ t′

t

(t′ − t′′)k−1

(k − 1)!

dk

dtk
Ei(t′′) dt′′, k = 1, 2, 3, . . . .

Applying this expansion to the convolution integral (χ ∗ Ei)(t) gives

(
χ ∗ Ei

)
(t) =

(
k∑

j=1

χj
d(j−1)

dt(j−1)
Ei(t)

)
+

(
Xk ∗

dk

dtk
Ei

)
(t), (6.5)

where the coefficients

χj =
(−1)j−1

(j − 1)!

∫ ∞

0

tj−1χ(t) dt (6.6)

are proportional to the moments of χ(t) and the remainder is

Xk(t) =
(−1)k

(k − 1)!

(∫ ∞

t

(τ − t)k−1χ(τ) dτ

)
H(t).

The equality (6.5) can be viewed as an expansion of the operator χ∗. Analogously,
the operator N∗ can be expanded as

N∗ =

(
k∑

j=1

nj
d(j−1)

dt(j−1)

)
+ Nk ∗

dk

dtk
. (6.7)

For media such that Xk and Nk tend to zero as k tends to infinity, one can write

χ∗ =
∞∑

k=0

χk+1
dk

dtk
δ∗, N∗ =

∞∑
k=0

nk+1
dk

dtk
δ ∗ . (6.8)

For instance, these relations hold for the Lorentz model, see Section 7.
Of course, the coefficients χk and nk are closely connected. A relation between

these coefficients is obtained by inserting the expansions (6.8) in definition (3.3).
The result is

χk+1 = 2nk+1 +
k∑

i=0

nk−i+1ni+1.

As a consequence of this recursion formula, it is sufficient to compute the mo-
ments (6.6) of the susceptibility kernel. This approach is particularly advantageous
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for multiple-resonance media, see Section 7. The coefficients nk are determined in
consecutive order starting with k = 1. Explicitly,

n1 =
√

1 + χ1 − 1,

n2 =
χ2

2
√

1 + χ1

,

nk+1 =
χk+1 −

∑k−1
i=1 nk−i+1ni+1

2(1 + n1)
, k > 1.

(6.9)

An expansion of the wave propagator with respect to slowly varying fields can
now be obtained. Let k = k(χ) be less than or equal to the largest integer such that
the moment nk does not violate the signature

n4k+1 ≥ 0, n4k+2 ≤ 0, n4k+3 ≤ 0, n4k+4 ≥ 0. (6.10)

Using Eqs (4.2)–(4.3) and expansion (6.7), the wave propagator, P(z), z > 0, can
be written as

P(z) = exp

{
−z

c

d

dt

k∑
j=1

nj
d(j−1)

dt(j−1)

}
Pk+1(z) =

(
k∏

j=1

Pj(z)

)
Pk+1(z), (6.11)

where

Pj(z) = exp

{
−z

c
nj

dj

dtj

}
, j = 1, 2, 3, . . . , k

and

Pk+1(z) = exp

{
−z

c

d

dt
Nk ∗

dk

dtk

}
.

The propagators Pj(z) are temporal convolution operators:

Pj(z) = Pj(z; ·)∗, j = 1, 2, 3, . . . , k.

By definition,
P1(z; t) = δ (t − t1) , t1 = n1z/c,

where the time-delay t1 is proportional to the propagation distance z. The kernels
Pj(z; t), j = 2, 3, 4, . . . , k are non-causal. Fourier transformation reveals that

Pj(z; t) =
1

tj
Bj

(
t

tj

)
, j = 2, 3, 4, . . . , k,

where the scaling times, tj, are proportional to the jth root of the propagation
depth:

tj =

(
j|nj|z

c

) 1
j

, j = 1, 2, 3, . . . , k.

The properties of the infinitely differentiable, bounded, and integrable hyper-Airy
functions Bj(x) := Aj(−x) are discussed in Appendix B. In particular, A2(x) is
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Figure 2: The sign of the coefficients nk for a single-resonance Lorentz medium
with ωp =

√
20 × 1016 rad/s, ω0 = 4 × 1016 rad/s and ν = 0.56 × 1016 s−1. The

signature + − −+ is violated at k = 23. This means that the expansion (6.8) has
to be truncated at k < 23. The coefficients χk have the same signs as nk for the k
in this figure. The corresponding propagator kernel is depicted in Figure 3.

a Gaussian function and A3(x) is the Airy function Ai(x). Observe that for the
Lorentz medium, the Airy function comes in backwards in accordance with known
results, cf Fig. 3.

As a consequence of Eq. (6.11), the wave propagator, P(z), can be written as

P = P1 ∗ P2 ∗ P3 ∗ P4 ∗ ....Pk ∗ Pk+1, (6.12)

for some finite integer k. Since the functions Pj = Pj(z; t), j = 1, 2, 3, . . . , k, are
smooth, and since the wave propagator can be written in the form (4.5) where
the kernel P (z; t) vanishes for t < 0 and is bounded and smooth for t > 0, the
operator Pk+1(z) must produce the highly oscillating field components. In particular,
it generates a delta function and Sommerfeld’s forerunner kernel. Neglecting the
operator Pk+1(z) in the product (6.12) gives a more or less accurate approximation
to the slowly varying field components.

The functions Pk(z; t) all satisfy∫ ∞

−∞
Pk(z; t) dt = 1

lim
z→0

Pk(z; t) = δ(t)

Pk(z1; t) ∗ Pk(z2; t) = Pk(z1 + z2; t)

It is not possible to have arguments z < 0 in Pk(z; t) when k > 1 since Pk(−|z|, t)
is not a classical function or even a distribution; hence, the inverse to the function
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Figure 3: The propagator kernel, P (z; t), for a single-resonance Lorentz medium
characterized by Brillouin’s parameters (z = 10−6 m, ωp =

√
20 × 100/3 × c/z,

ω0 = 400/3 × c/z, ν = 56/3 × c/z). 32768 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c. The propagator rule was used
once at the computation. Approximations to the second precursor obtained by the
time-domain method are shown also. Brillouin’s forerunner is an appropriate ap-
proximation to the field in the neighborhood of the quasilatent time, t1 = 1/2×z/c,
only. Higher-order approximations must be used to obtain a good approximation to
the “tail” of the second precursor. These approximations practically lie on top of
the numerical result.

Pk(z; t) when k > 1 does not exist in normal function spaces or in the space of
distributions. Thus, for each k, the functions Pk(z; t), z > 0 form a semi-group in
contrast to the entire propagator, P(z), −∞ < z < ∞, that forms a group. Also
if the product in Eq. (6.12) is truncated at some finite k > 1 the corresponding
propagator does not have an inverse and thus only forms a semi-group.

The theory presented so far holds for the dispersive signature (6.10) only. Exam-
ples given below indicate that the above method is well suited for normally absorbing
resonance (Lorentz) media for which at least n1 > 0, n2 < 0, n3 < 0, but, perhaps,
to restricted to be applied to relaxation (Debye) materials for which n1 > 0, n2 < 0,
but n3 > 0. In the following, Brillouin’s forerunner is defined for materials for which
the refractive coefficients n1, n2 < 0, and n3 are finite.

Brillouin’s forerunner (kernel), PB(z; t), is defined by

PB = P1 ∗ P2 ∗ P3, (6.13)

where Pj = Pj(z; t), and satisfies the parabolic differential equation

−c∂zPB(z; t) = n1∂tPB(z; t) + n2∂
2
t PB(z; t) + n3∂

3
t PB(z; t), PB(+0; t) = δ(t).

This definition is essentially the classical, crude approximation to the second pre-
cursor in a single-resonance Lorentz material obtained by Brillouin [1]. Temporal
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Figure 4: The refractive index, N(t), for the single-resonance Lorentz medium
characterized by Brillouin’s parameters, cf Figure 3.

Fourier transformation technique gives a closed-form expression for Brillouin’s fore-
runner kernel in terms of the Airy function Ai(x):

PB(z; t) = exp

(
n3

2

27n2
3

z

c
− n2

3n3

(t − t1(z))

)Ai
(
sign(n3)

(t−t1(z))
t3(z)

)
t3(z)

, (6.14)

where the scaling times are

t1(z) =

(
n1 −

n2
2

3n3

)
z

c
, t3(z) =

(
3|n3|z

c

) 1
3

and the sign function has been introduced: sign(n3) = 1 for n3 > 0 and sign(n3) =
−1 for n3 < 0. Notice that the quasilatent time t1(z) has been modified. The
result (6.14) can also be verified by straightforward differentiation. Equation (6.14)
shows again that Brillouin’s forerunner arrives backwards in Lorentz media and
forwards in Debye materials.

As has been pointed out before [2], Brillouin’s forerunner (6.14) is valid as an
approximation to the slowly varying propagating field in a neighborhood of the
quasilatent time only. To obtain better approximations to the “tail” of the second
precursor, higher-order approximations must be adopted. This can be done either by
advanced saddle-point analysis [2] or by using the above convolution technique. In
this article, the latter method is employed. In the numerical examples in Section 8,
the following expansion is found to be accurate enough: P1 ∗ P2 ∗ P3 ∗ P4 ∗ P5.

7 The forerunners for specific material models

In this section Sommerfeld’s and Brillouin’s forerunners are discussed for some spe-
cific material models.
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Figure 5: The sign of the coefficients nk for a double-resonance Lorentz medium
with ωp1 =

√
5 × 1016 rad/s, ω01 = 1016 × rad/s, ν1 = 0.2 × 1016 s−1 and ωp2 =√

20×1016 rad/s, ω02 = 10×1016 rad/s, ν2 = 0.56×1016 s−1. The signature +−−+
is violated at k = 17. This means that the expansion (6.8) has to be truncated at
k < 17. The coefficients χk have the same signs as nk for the k in this figure. The
corresponding propagator is depicted in Figure 6.

The susceptibility kernel of the single-resonance Lorentz medium is

χ(t) =
ω2

p

ν0

sin (ν0t) exp
(
−ν

2
t
)
H(t),

where ν0 =
√

ω2
0 − ν2/4. For this particular model, the initial derivatives are

χ(k)(+0) = (−1)k
ω2

p

2iν0

(
bk − b

k
)

= (−1)k+1
ω2

pω
k
0

ν0

sin

(
k arcsin

(
ν0

ω0

))
,

where b = ν/2 − iν0 = ω0 exp (−i arcsin (ν0/ω0)) and the bar denotes complex con-
jugate. The initial derivatives satisfy the recurrence formula (cf results for the
Chebyshev polynomials)

χ(k+2)(+0) = −
(
νχ(k+1)(+0) + ω2

0χ
(k)(+0)

)
.

Sommerfeld’s forerunner is given by Eq. (6.4) where N(+0) = 0 and K(+0) =
ω2

p/(2c). The relevant properties for the second precursor are

Xk(t) = (−1)k
ω2

p

ωk
0ν0

sin

(
ν0t + k arcsin

(
ν0

ω0

))
exp

(
−ν

2
t
)
H(t)

and

χk = (−1)k+1
ω2

p

ωk
0ν0

sin

(
k arcsin

(
ν0

ω0

))
. (7.1)
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 P(z;t),   numerical result

Figure 6: The propagator kernel, P (z; t), for a double-resonance Lorentz medium
characterized by the Shen-Oughstun parameters z = 48π × 10−8 m, ωp1 =

√
5 ×

16π × c/z, ω01 = 16π × c/z, ν1 = 0.2 × 16π × c/z, ωp2 =
√

20 × 16π × c/z, ω02 =
10×16π×c/z, ν2 = 0.56×16π×c/z. 65536 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c. The propagator rule was used
twice. Approximations to the second forerunner are shown as well. As in the single-
resonance case, Brillouin’s forerunner is an appropriate approximation to the field
in the vicinity of the quasilatent time, t1 = 3/2 × z/c, only. In order to obtain a
good approximation to the “tail”, higher-order approximations must be used. The
higher-order approximations practically lie on top of the numerical result.

From this result, it follows that the susceptibility coefficients χk satisfy the recur-
rence relation

χk+2 = − 1

ω2
0

(χk + νχk+1) . (7.2)

For realistic medium parameters, one has χ1 > 0, χ2 < 0, χ3 < 0, χ4 > 0:

χ1 =
ω2

p

ω2
0

, χ2 = −
νω2

p

ω4
0

, χ3 = −
ω2

p(ω
2
0 − ν2)

ω6
0

, χ4 =
ω2

pν(2ω2
0 − ν2)

ω8
0

.

The first refractive coefficients nk are

n1 =

√
1 +

ω2
p

ω2
0

− 1 > 0, n2 = − 1√
1 +

ω2
p

ω2
0

νω2
p

2ω4
0

< 0,

n3 = − 1

2
√

1 +
ω2

p

ω2
0


ω2

p(ω
2
0 − ν2)

ω6
0

+
ν2ω4

p

4ω8
0

1

1 +
ω2

p

ω2
0


 < 0.

The recurrence relation (7.2) shows that the signature +−−+ in the susceptibility
coefficients, χk, is repeated quite a number of times unless the collision frequency ν is
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Figure 7: The refractive index, N(t), for the double-resonance Lorentz medium
characterized by the Shen-Oughstun parameters, cf Figure 6.

extremely high, cf Figure 2. Experience shows that this is the case for the refractive
coefficients, nk, as well. Brillouin’s forerunner kernel is given by Eq. (6.14).

The generalization to a Lorentz medium with M multiple resonant frequencies
is straightforward. The susceptibility kernel for such a medium is written as a sum
of Lorentz kernels

χ(t) =
M∑

m=1

ω2
pm

ν0m

sin (ν0mt) exp
(
−νm

2
t
)
H(t).

The numbers N(+0) = 0 and K(+0) =
∑M

m=1 ω2
pm

/(2c) determine Sommerfeld’s
forerunner. In analogy with Eq. (7.1) the susceptibility coefficients for the second
precursor are

χk = (−1)k+1

M∑
m=1

ω2
pm

ωk
0m

ν0m

sin

(
k arcsin

(
ν0m

ω0m

))
.

The Debye medium is a very good model for polar liquids in the microwave
region. This model reads

χ(t) = αe−βtH(t).

The relevant properties for Sommerfeld’s forerunner are N(+0) = α/2 and K(+0) =
−αβ/(2c) − α2/(8c). The coefficients

χk = (−1)k−1αβ−k,

determine the second precursor. The three first values of nk in Eq. (6.9) read

n1 =

√
1 +

α

β
− 1, n2 = − α

2β2
√

1 + α/β
, n3 =

4βα + 3α3

8β4(1 + α/β)3/2
.
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Figure 8: The propagator kernel Q(z)P (z; t) for a Debye half-space characterized
by α = 100 × c/z and β = 40 × c/z. 4096 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c.

The signature + − −+ is broken already at k = 3, and then only the two first
functions can be used in the expansion (6.12). A better approximation to the prop-
agating field is given by Brillouin’s forerunner (6.14).

A model that is used for conducting media is the Drude model. It is obtained
from the Lorentz model by letting the resonance frequency ω0 be zero. The electrons
then lose their binding to the atoms and will act as free electrons. Specifically, the
susceptibility kernel reads

χ(t) =
ω2

p

ν

(
1 − e−νt

)
H(t).

Sommerfeld’s forerunner is then the same as for the Lorentz medium. The suscep-
tibility kernel is not integrable and hence the expansion (6.5) does not exist.

8 Numerical calculations

There is a couple of ways to calculate the propagator kernel, P (z; t), in Eq. (4.5)
numerically by time-domain techniques. One way is to solve the integro-differential
Eq. (4.6) (by integration along the characteristics, z = constant). This is quite time
consuming, since a convolution has to be performed at every step in the spatial
variable z. For a fixed propagation depth, z, a more efficient way is to solve the
following Volterra integral equation of the second kind:

P (z; t) = −1

t
(F (·) ∗ P (·)) (t) − zK(t), F (t) = ztK(t). (8.1)

This equation can be obtained by Laplace transformation of Eq. (4.8) and differen-
tiation with respect to the Laplace transform variable. The integral equation (8.1)
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has been used also in Refs 17–18. A straightforward way to solve Eq. (8.1) is to
discretize the integral by the trapezoidal rule. The numerical scheme is then very
easy to implement. It is also possible to use higher-order integration routines, e.g.,
the Simpson rule, to get faster convergence. The price to be paid is a more compli-
cated code. A third time-domain method of calculating P (z; t) is to use the series
expansion of the exponential in Eq. (4.7). It should be pointed out that the relation

P (z1 + z2; t) = P (z1; t) + P (z2; t) + (P (z1; ·) ∗ P (z2; ·)) (t), (8.2)

cf Eq. (4.4), can be utilized in the calculation of P (z; t) in all three cases. In fact,
numerical tests indicate that it is necessary to use this rule in order to obtain correct
results for (comparatively) large propagation depths.

The asymptotic expressions for P (z; t) are obtained from the analysis in Section 6
and Appendix B. Of the different models presented in Section 7, only the Lorentz
models can be expanded in more than two functions in the expansion (8.2). For large
z it is enough to use Brillouin’s wave propagator (6.14. For smaller z, one has to
use more than three functions in the expansion (6.12). The functions Pk with k > 3
are, if they exist, obtained from the hyper-Airy functions Ak(x) in Appendix B.
For a small argument x, the hyper-Airy function can be obtained numerically by
solving the ODE (B.3) with the initial conditions (B.4) and (B.6), or by solving the
Volterra Eqs (B.7), or performing the Fourier integral in Eq. (B.1) and Eq. (B.2).
Experience indicates that one may switch to the asymptotic expressions presented
in Appendix B when x is larger than approximately 5.

In Figure 3 the propagator kernel is shown at depth z = 10−6 m for a single-
resonance Lorentz half-space characterized by Brillouin’s parameters (z = 10−6m,
ωp =

√
20×100/3×c/z, ω0 = 400/3×c/z, ν = 56/3×c/z). The susceptibility kernel,

χ(t), and the refractive kernel, N(t), are depicted in Figure 4. This example was
also used in Ref. 19 where the curves were obtained by frequency domain methods.
The numerical results shown in Figure 3 were obtained by first solving the integral
Eq. (8.1) at z = 5×10−7 m and then applying the propagator rule (4.4) once. Due to
the fast oscillations in the first part of the signal (the first precursor) a large number
of data points are needed in such calculations. In this case 32768 = 215 data points
were used. In Figure 2 the corresponding values of the coefficients nk are shown. It
is then seen that at k = 23 the rule +−−+ is violated. The number of functions in
the expansion (6.12) has to be less than 23 but, as seen from Figure 3, already five
functions give a very good approximation of the second precursor.

In Figure 6, the propagator kernel, P (z; t), for a double-resonance medium is
shown. The parameters and depth z are copied from Ref. 6, where this case was
analyzed: z = 48π × 10−8 m, ωp1 =

√
5 × 16π × c/z, ω01 = 16π × c/z, ν1 =

0.2×16π×c/z, ωp2 =
√

20×16π×c/z, ω02 = 10×16π×c/z, ν2 = 0.56×16π×c/z. The
susceptibility kernel, χ(t), and the refractive kernel, N(t), are depicted in Figure 7.
In the calculation of the propagator kernel, the time interval was discretized into
98304 = 3 × 215 points and the propagator rule (8.2) was used twice. A small low
frequency error can be seen around the scaled time 0.8 where the curve makes a
small dip. It is expected that this vanishes if even more points are used. However,
the high-frequency signal and the low-frequency signal are very accurate. The main
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difference between the propagators in Figures 3 and 6 is the part of the signal
that appears between the first and the second precursor in Figure 3. This part
is due to the special choice of frequencies in the double-resonance Lorentz model.
This contribution cannot be obtained from the expansion (6.12). Another choice of
double-resonance parameters, that does not give this kind of response, is analyzed
in Ref. 6.

The propagation kernel Q(z)P (z; t) at fixed propagation depth z for a Debye
half-space characterized by α = 100c/z and β = 40c/z is depicted in Figure 8.
Taking the propagation distance to be z = 1 m, these parameters correspond to the
relaxation time τ = 1/β = 8.33 × 10−11 s and the strength α = 3 × 1010 Hz. The
result has been obtained numerically using series expansion of the exponential (4.8).
Figure 8 shows that the propagation kernel can be approximated surprisingly well
by the normalized Gaussian. Brillouin’s forerunner, Eq. (6.14), is an even better
approximation.

Conclusion

In this paper the classical problems of the first and second precursors in dispersive
media were illuminated from the time-domain. The strategy was to stay in the time-
domain as much as possible and only step into the frequency domain to fetch results
that are hard to obtain in the time-domain. Many wave-propagation problems can
be viewed from both the time-domain and the frequency domain. The present paper
manifests that much insight to a wave propagation problem is gained if one has a
possibility to view it from both domains.
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Appendix A Causal fundamental solutions

The present article treats external excitation of a homogeneous, temporally disper-
sive, nonmagnetic, isotropic slab (2.1). In this appendix, the response to an internal
current distribution,

J(r, t) = exJx(z, t), (A.1)

is investigated. This source problem is fundamental for one-dimensional wave propa-
gation in temporally dispersive media. Actually, external excitation can be regarded
as a special case (with the sources distributed over the boundaries).

The causal fundamental solutions or the retarded Green’s functions of the wave
operators for up-going waves and down-going waves in an unbounded dispersive
medium (−∞ < z < ∞) are given in subsection A.1. In subsection A.2, internal
excitation of a dispersive slab (0 < z < d) is discussed.
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A.1 The unbounded dispersive medium

The Maxwell equations are

∇× E = −∂tB, ∇× H = J + ∂tD,

where the current density (A.1) is assumed to bounded and smooth with respect to
the time variable and integrable with respect to the spatial variable. A transverse
electric and magnetic response of the form (2.2) is sought.

Applying the dispersive wave splitting (3.1)–(3.2) gives the uncoupled, dispersive
first-order wave equations

∂zE
± = ∓c−1∂tNE± ∓ ηZJx/2. (A.2)

The split vector fields, E±(z, t), can be expressed in terms of the causal fundamental
solutions of the dispersive wave operators

±∂z + c−1∂tN .

These distributions are denoted by E±(z; t), respectively, and satisfy the dispersive
wave equations (

±∂z + c−1∂tN
)
E± = δ(z) δ(t).

Under suitable assumptions, Schwartz’ kernel theorem [20, pp. 128-129] is applica-
ble, and the solutions of the propagation problems (A.2) can be written in the form

E±(z, t) = −1

2

∫ (∫
E±(z − z′; t − t′)(ηZJx)(z

′, t′) dt′
)

dz′.

It is straightforward to show that the fundamental solutions are

E±(z; t) = H (±z) E(|z|; t),
where H(z) is the Heaviside step function and

E(|z|; t) = Q(|z|)
(
δ (t − |z|/c) + P (|z|; t − |z|/c)

)
,

is the retarded fundamental solution of the second-order dispersive wave operator,
see Ref. 21. The wave-front propagator, Q(z), and the propagator kernel, P (z; t),
were introduced in Section 4.

The special case when the current source is distributed over the plane z = 0 is of
particular interest. In this case, Jx(z, t) = j0(t)δ(z). The up-going and down-going
electric fields then satisfy the dispersive first-order wave equations(

±∂z + c−1∂t(1 + N∗)
)
E±(z, t) = E0(t)δ(z),

where E0 = −η(1 + Z∗)j0/2 is the electric field in the plane z = 0. Consequently, a
current distributed over the plane z = 0 induces electric fields given by

E±(z, t) =

∫
E±(z, t − t′)E0(t

′) dt′,

respectively. The relation to the propagator, P(z), is given by

E±(z, t + |z|/c) = H(±z) [P(|z|)E0] (t),

that is, P(|z|) = E(|z|, t + |z|/c)∗ = Q(|z|)(δ(t) + P (|z|; t))∗.
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A.2 Internal excitation of a dispersive slab

The dispersive wave Eqs (A.2) still hold within the slab. Suppressing the general
time-dependence (3.5), the boundary conditions (3.6) reduce to

Er = (1 −R) E−(0), Et = (1 −R) E+(d), (A.3)

and
E+(0) = −RE−(0), E−(d) = −RE+(d) (A.4)

in the absence of external excitation, Ei.
Apart from the given internal current distribution, there is a concentrated source

for up-going waves at z = 0 and a concentrated source for down-going waves at z = d.
Therefore, the solution of the propagation problem is given by

E+(z, t) =

∫
E+(z, t − t′)E+(0, t′) dt′

− 1

2

∫ d

0

(∫
E+(z − z′; t − t′)(ηZJx)(z

′, t′) dt′
)

dz′, 0 < z < d

and

E−(z, t) =

∫
E−(z − d, t − t′)E−(d, t′) dt′

− 1

2

∫ d

0

(∫
E−(z − z′; t − t′)(ηZJx)(z

′, t′) dt′
)

dz′, 0 < z < d,

where the fields E+(0, t′) and E−(d, t′) can be expressed in terms of the fields E−(0, t)
and E+(d, t) via the conditions (A.4) (notice that these functions satisfy the wave
Eqs (A.2) in the interval 0 < z < d, and that trivial results are obtained by letting
z → 0 in the first equation and z → d in the second). Letting z → d in the
first equation and z → 0 in the second gives a system of coupled Volterra integral
equations of the second kind in the fields E+(d, t) and E−(0, t) only. In terms of the
propagator, P(z), and the multiple propagation operator, M, the solutions are

E+(d) = −1

2

∫ d

0

MP(d − z′) ηZ
(
δ (d−z′)

c

∗ Jx(z
′)
)

dz′

+
1

2

∫ d

0

MRP(d + z′) ηZ
(
δ (d+z′)

c

∗ Jx(z
′)
)

dz′

and

E−(0) =
1

2

∫ d

0

MRP(2d − z′) ηZ
(
δ (2d−z′)

c

∗ Jx(z
′)
)

dz′

− 1

2

∫ d

0

MP(z′) ηZ
(
δ z′

c
∗ Jx(z

′)
)

dz′,

where, for simplicity, the time argument has been dropped. The scattered electric
fields, Er = Er(t) and Et = Et(t), are easily obtained by Eqs (A.3).
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Notice that the results above easily can be confirmed heuristically: in each source
plane, z′, one half of the current density generates an up-going wave whereas the
other half generates a down-going wave, and in the observation plane, z, these waves
sum up after a number of reflections at the walls.

Appendix B The hyper-Airy functions Ak

The hyper-Airy functions A2k(x), −∞ < x < +∞ are defined as follows:

Definition B.1. Let k be an arbitrary positive integer. The real function A2k(x) of
real argument x is the inverse Fourier transform of the function exp (−ξ2k/(2k)).
The real function A2k+1(x) of real argument x is the inverse Fourier transform of
the function exp (iξ2k+1/(2k + 1)).

The hyper-Airy functions A2k(x) of even indices belong to the Schwartz class of
rapidly decreasing functions S, that is, the set of all φ ∈ C∞ such that

sup
x

|xβφ(α)(x)| < ∞

for all indices α and β. Thus, in particular, the functions A2k(x) are bounded,
infinitely differentiable, and integrable. Moreover, these functions are even functions
of x. Explicitly,

A2k(x) =
1

2π

∫
exp

(
−ξ2k/(2k) + ixξ

)
dξ, −∞ < x < +∞. (B.1)

The hyper-Airy functions A2k+1(x) of odd indices belong to the Schwartz class
of tempered distributions S ′, that is, the continuous linear forms on S. The gen-
eralized functions A2k+1(x) coincide with the bounded, infinitely differentiable, and
integrable functions

A2k+1(x, η) =
1

2π

∫
exp

(
iζ2k+1/(2k + 1) + ixζ

)
dζ, −∞ < x < +∞, (B.2)

where the contour of integration is the line ξ → ζ = ξ + iη and η is an arbitrary
positive constant. Since the leading term of the analytic integrand for large |ξ| is
exp (−ξ2kη), the integral (B.2) converges. Moreover, the contour of integration can
be displaced in the direction of the imaginary axis, demonstrating that A2k+1(x, η)
is independent of η > 0. Since

exp
(
iζ2k+1/(2k + 1)

)
→ exp

(
iξ2k+1/(2k + 1)

)
in S ′ as η → +0,

Eq. (B.2) provides integral representations for the hyper-Airy functions A2k+1(x) of
odd indices. The leading behaviors of A2k+1(x) as x → −∞ presented below show
that these functions do not belong to the Schwartz class S.

By definition, ∫
Ak(x) dx = 1.
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Figure 9: The hyper-Airy functions B2(x), B4(x), and B6(x).

Furthermore, A2(x) is a Gaussian function and A3(x) is the Airy function Ai(x):

A2(x) =
1√
2π

exp

(
−x2

2

)
, A3(x) = Ai(x), −∞ < x < +∞.

Differentiating under the integral sign yields the ordinary differential equations

A
(2k−1)
2k (x) = (−1)kxA2k(x), −∞ < x < +∞,

A
(2k)
2k+1(x) = (−1)k+1xA2k+1(x), −∞ < x < +∞

(B.3)

for the hyper-Airy functions. These equations, which are higher-order generaliza-
tions of the Airy equation,

Ai′′(x) = xAi(x), −∞ < x < +∞,

are sometimes referred to as hyper-Airy equations.
The hyper-Airy equations show that A

(k−1)
k (0) = 0. More generally, the deriva-

tives of the hyper-Airy functions of even indices at the origin

A
(m)
2k (0) =

1

2π

∫
(iξ)m exp

(
−ξ2k

2k

)
dξ =

im

2π
(1 + (−1)m))

∫ ∞

0

tm exp

(
−t2k

2k

)
dt

can be expressed in terms of the gamma function

Γ(x) =

∫ ∞

0

tx−1 exp (−t) dt :

A
(2m)
2k (0) =

(−1)m

π
(2k)

2m+1
2k

−1Γ

(
2m + 1

2k

)
, A

(2m−1)
2k (0) = 0. (B.4)
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Figure 10: The hyper-Airy functions B3(x), B5(x), and B7(x).

The derivatives of the hyper-Airy functions of odd indices at the origin

A
(m)
2k+1(0) =

1

2π

∫
(iζ)m exp

(
iζ2k+1/(2k + 1)

)
dζ,

can be obtained by changing the contour of integration. Integrating along the half-
rays

ζ(t) = ∓t exp

(
∓ iπ

(2k + 1)2

)
, t > 0 (B.5)

yields the result

im

2π

(
exp

(
i(m + 1)π

(2k + 1)2

)
+ (−1)m exp

(
−i(m + 1)π

(2k + 1)2

)) ∫ ∞

0

tm exp

(
− t2k+1

2k + 1

)
dt

or

A
(2m)
2k+1(0) =

(−1)m

π
cos

(
(2m + 1)π

(2k + 1)2

)
(2k + 1)

2m+1
2k+1

−1Γ

(
2m + 1

2k + 1

)
,

A
(2m−1)
2k+1 (0) =

(−1)m

π
sin

(
mπ

2k + 1

)
(2k + 1)

2m
2k+1

−1Γ

(
2m

2k + 1

)
.

(B.6)

Restrictions of the functions Ak(x) to [0, +∞) and (−∞, 0] can be obtained by

solving the hyper-Airy equations subject to the initial values A
(j)
k (0), j = 0, . . . , k−1.

Good approximations to the hyper-Airy functions can be obtained in the vicinity of
the origin using standard ODE-solvers. Convolution equations for the hyper-Airy
functions are obtained easily by repeated integration:

A2k(x) =
(−1)k

(2k − 2)!

∫ x

0

(x − ξ)2k−2ξA2k(ξ) dξ +
2k−2∑
m=0

xm

m!
A

(m)
2k (0),

A2k+1(x) =
(−1)k+1

(2k − 1)!

∫ x

0

(x − ξ)2k−1ξA2k+1(ξ) dξ +
2k−1∑
m=0

xm

m!
A

(m)
2k+1(0).

(B.7)
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These Volterra equations of the second kind are uniquely solvable in the space of
continuous functions in each bounded interval [0, X] or [−X, 0].

The functions Ak(x) can be extended to entire functions in the complex plane.
The function Ak(ωx), where ω is any solution of ωk = 1, solves the same differential
equation as Ak(x). Since the derivative of A2k+1(ωx) at x = 0 is ωA′

2k+1(0) �= 0,
and since the second derivative of A2k(ωx) at x = 0 is ω2A′′

2k(0) �= 0, the functions
Ak(ωx) are all different (k > 2). However, the solutions obtained this way are
linearly dependent. Specifically, the relationship between these solutions is∑

ωAk(ωx) = 0. (B.8)

To prove this fact, compute the derivatives of the left member up to order k − 1
at x = 0, and use the fact that

∑
ωm = 0 for 1 ≤ m ≤ k − 1. The relation (B.8)

can be used to obtain asymptotic expansions of Ak(x) on certain half-rays if the
corresponding results are known on other half-rays.

Asymptotic expansions for the Airy function Ai(x) are easy to obtain, see, e.g.,
Hörmander [20]. The leading behavior at large positive arguments x (and the rest
of the asymptotic series as well for that matter) is obtained by choosing η =

√
x:

A3(x) ∼ x− 1
4

2
√

π
exp

(
−2

3
x

3
2

)
, x → +∞.

This result is valid also for complex arguments z, primarily in the opening sector
| arg z| < π/3, but the expression holds even for | arg z| < π. Using this fact and the
relation (B.8), one obtains the leading behavior of the Airy function Ai(x) for large
negative arguments:

A3(−x) ∼ x− 1
4

√
π

cos

(
2

3
x

3
2 − π

4

)
, x → +∞. (B.9)

The leading behaviors of the hyper-Airy functions Ak(x), k > 3 as x → ±∞,
which all are oscillating, are now derived. Write

A2k(x) = I2k(ix) + I2k(−ix),

where the integral

Ik(z) =
1

2π

∫ ∞

0

exp

(
−tk

k
+ tz

)
dt (B.10)

converges for all complex numbers z. For real positive arguments x, the integrand
has a movable maximum at t = x1/(k−1). Substituting s = tx−1/(k−1) in the inte-
gral (B.10), the maximum is fixed at s = 1, and Laplace’s method can be used to
obtain the leading asymptotic behavior of Ik(x) for large positive arguments:

Ik(x) ∼ x− k−2
2(k−1)√

2π(k − 1)
exp

(
k − 1

k
x

k
k−1

)
, x → +∞, (B.11)
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see formula (6.4.19c) in Bender and Orzag [22]. The change of variables s =
tx−1/(k−1) introduced above shows that this result is valid also for complex argu-
ments z in the opening sector | arg z| < k−1

k
π
2
. Anticipating that the result holds

sufficiently far beyond this sector, one obtains the leading behavior of the hyper-Airy
functions of even indices:

A2k(x) ∼
√

2

π(2k − 1)
|x|− k−1

2k−1 exp

(
−2k − 1

2k
cos

(
k − 1

2k − 1
π

)
|x| 2k

2k−1

)

× cos

(
2k − 1

2k
sin

(
k − 1

2k − 1
π

)
|x| 2k

2k−1 − k − 1

2k − 1

π

2

)
, x → ±∞.

Observe that the results are not applicable to the Gaussian function — the opening
angle is not large enough in this case.

Integrating along the half-rays (B.5), the hyper-Airy functions of odd indices can
be expressed in terms of the integral (B.10):

A2k+1(x) = exp

(
− iπ

(2k + 1)2

)
I2k+1

(
−ix exp

(
− iπ

(2k + 1)2

))

+ exp

(
iπ

(2k + 1)2

)
I2k+1

(
ix exp

(
iπ

(2k + 1)2

))
.

Using the leading asymptotic behavior (B.11), one obtains the leading behavior of
the hyper-Airy functions of odd indices as x → ±∞. The result is

A2k+1(x) ∼ x− 2k−1
4k

√
πk

exp

(
− 2k

2k + 1
cos

(
k − 1

k

π

2

)
x

2k+1
2k

)

× cos

(
2k

2k + 1
sin

(
k − 1

k

π

2

)
x

2k+1
2k − k − 1

2k

π

2

)
, x → +∞.

for large positive arguments and

A2k+1(−x) ∼ x− 2k−1
4k

√
πk

cos

(
2k

2k + 1
x

2k+1
2k − π

4

)
, x → +∞. (B.12)

for large negative arguments. Notice that the result (B.9) for the Airy function Ai(x)
for large negative arguments can be obtained using Eq. (B.12). Observe that the
results are not applicable to the Airy function Ai(x) for large positive arguments—
the opening angle is not large enough.

The results above can be improved retaining more terms in the asymptotic series
for Ik(x) as x → ∞. The two first terms are

Ik(x) ∼ x− k−2
2(k−1)√

2π(k − 1)
exp

(
k − 1

k
x

k
k−1

) (
1 +

(2k − 1)(k − 2)

24(k − 1)
x− k

k−1

)
, x → +∞,
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see formula (6.4.35) in Bender and Orzag [22]. Using this result, the correction term
for A2k(x) for large arguments |x| becomes

(4k − 1)(k − 1)

12(2k − 1)

√
2

π(2k − 1)
|x|− 3k−1

2k−1 exp

(
−2k − 1

2k
cos

(
k − 1

2k − 1
π

)
|x| 2k

2k−1

)

× cos

(
2k − 1

2k
sin

(
k − 1

2k − 1
π

)
|x| 2k

2k−1 − 3k − 1

2k − 1

π

2

)
.

Similarly, the correction term for A2k+1(x) for large positive arguments becomes

(4k + 1)(2k − 1)

48k
√

πk
x− 6k+1

4k exp

(
− 2k

2k + 1
cos

(
k − 1

k

π

2

)
x

2k+1
2k

)

× cos

(
2k

2k + 1
sin

(
k − 1

k

π

2

)
x

2k+1
2k − 3k + 1

2k

π

2

)
.

Finally, the correction term for A2k+1(−x) for large negative arguments is

(4k + 1)(2k − 1)

48k
√

πk
x− 6k+1

4k cos

(
2k

2k + 1
x

2k+1
2k − 3π

4

)
.

In summary, the hyper-Airy functions of even indices are even, oscillating func-
tions, which are exponentially attenuated for large arguments. The leading behavior
of the hyper-Airy functions of odd indices are oscillating and exponentially attenu-
ated for large positive arguments. The leading behavior of the hyper-Airy functions
of odd indices are oscillating but only weakly attenuated for large negative argu-
ments. The frequencies, the phase angles, and attenuating functions can be obtained
explicitly in each separate case.

When Brillouin’s forerunner is to be discussed, it is more appropriate to use
the reversed hyper-Airy functions Bk(x) := Ak(−x) than the hyper-Airy functions
themselves. The functions Bk(x), k = 2, 3, 4, 5, 6, 7 are plotted in Figure 9 and
Figure 10.

References

[1] L. Brillouin. Wave propagation and group velocity. Academic Press, New York,
1960.

[2] K. E. Oughstun and G. C. Sherman. Electromagnetic Pulse Propagation in
Causal Dielectrics. Springer-Verlag, Berlin Heidelberg, 1994.

[3] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New York,
second edition, 1975.
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