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Abstract

Nonlinear propagation of electromagnetic waves is an important problem in
optics. Often the properties of the nonlinear media are not fully understood.
The solution of an inverse problem can provide an aid to that understanding.

An inverse transmission problem is posed, it is one of reconstructing the
medium parameters, by measurement of a wave that has been propagated
through the nonlinear medium. The nonlinear medium is assumed to be ho-
mogeneous and isotropic. The methods have application to nonlinear optics,
and the numerical results for both the direct and inverse problems presented
are based on the nonlinear Kerr effect, which is observed in the optical wave-
length band. However, the mathematical techniques that are developed are
applicable to any set of nonlinear first order equations. The method is there-
fore model independent.

1 Introduction

Inverse problems for a single, scalar, one-way nonlinear wave equation have recently
been considered in Ref. 3, and we will henceforth refer to this paper as (I).

One of the major results, given here in this paper, is to show that a system of two
first order partial differential equations can be effectively analysed via a single one-
way wave equation. This is because the wave splitting, used to do this, only allows
coupling of the two one-way wave equations through the wavespeed functional. This
is a significant result as it enables exact solutions to be formulated for both the direct
and the inverse problems. The methods utilised in this paper are applicable to other
sets of quasi-linear first order equations, and so may be applied to problems other
than those of the nonlinear optical problems that are considered here.

In Section 2, we state the basic equations governing one-dimensional electro-
magnetic wave transmission through a typical nonlinear optical medium as used in
fibre optics. The effects of dissipation, in a passive nonlinear optical media, impose
constraints on the form that the constitutive relations can take. This is utilised
to examine the allowable form of the constitutive equations in Section 2.1. These
constitutive equations form the basic nonlinear models that are utilised later in the
paper.

It is shown, in Section 3, that by wave splitting the Maxwell equations describing
one-dimensional wave propagation through an isotropic, dissipative nonlinear optical
medium can be reduced to two one-way wave (transport) equations. It is further
shown that for the problem of relevance to this paper, that consideration of just one
one-way wave equation is necessary. This is due to the wave splitting used in this
paper, and it means only one one-way wave equation is needed in the subsequent
analysis. This is true provided that the initial reflected wave is identically zero in
space, and the solution to the nonlinear system is unique. Therefore the details of
existence and uniqueness of solution, for the original system of first order equations
and the wave split equations, is essential for our development; these results are
stated in Section 3.1, and proven in Appendices A and B.
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The various nonlinear models for optical media that are used in the results
shown in Section 5 are presented in Section 4. Our techniques in Section 5 build
on those discussed in (I). Further problems involving source reconstruction for a
linear one-way wave equation, are considered in Ref. 10. In Section 5, we pose
an inverse transmission problem of reconstructing the medium parameters from
measurement of a propagated wave through the nonlinear medium. The method of
characteristics is then employed to solve both the direct transmission problem and
the inverse transmission problem i.e., the problem of finding the functional form of
the wavespeed function after having measured the transmitted field.

One of the novel features of our inverse problems is that the inverse solution can
be written down in explicit form. Another novel feature is that the solution also
depends continuously on the given transmission data, and this is proven in Section 5.

Our methods have application to nonlinear optics, and the numerical results
for both the direct and inverse problems presented in Section 5.1 are based on the
nonlinear Kerr effect which is observed in the optical wavelength band. The analysis
and results presented in this paper are valid upto, but not beyond, any wavefunction
shock or discontinuity that may occur because of utilisation of the Kerr model.When
a more accurate model such as the Raman model is utilised, then dispersion alters
the shock behaviour; the various available models are discussed further in Section 2.

2 Basic equations

We first review here some of the nonlinear effects as observed in fibre optics. When
an electromagnetic wave propagates through a dielectric medium then polarization
of the medium molecules occurs. This polarization is generally represented through
the polarization field, P , which is related to the electric flux density, D, and the
electric field intensity, E, as

D = ε0E + P

where ε0 is the electric permittivity of free space. In general, evaluation of P will
require a quantum-mechanical approach. Although such an approach is often neces-
sary, when the optical frequencies are near to the resonant frequency of the medium,
a classical approach can be used far from medium resonance. This will be the case
for optical fibres in the wavelength range 0.5–2 µm, and this is the range that is of
interest in the study of nonlinear effects in optical fibres. The polarization vector
can be split into a linear and a nonlinear part as

P = P l + P nl

with the linear part being represented by a susceptibility kernel, χ(1), through

P l
i (x, t) = ε0

∫ t

−∞
χ

(1)
ij (t− t′)Ej(x, t

′) dt′
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and the nonlinear part as (see, e.g., Refs. 2, 8, and 9)

P nl
i (x, t) = ε0

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ

(3)
ijkl(t− t1, t− t2, t− t3)Ej(x, t1)Ek(x, t2)

× El(x, t3) dt3dt2dt1

In these equations, the fields are assumed to be quiescent before a fixed time, and are
dependent on the spatial coordinates, x = (x, y, z) ∈ R

3, and the temporal variable,
t ∈ R, and where Cartesian tensor notation has been used to represent the tensor
fields; so that i, j, k, l ∈ {1, 2, 3}. Note that causality causes the upper limit of the
integrals, in the previous equations, to be truncated. Also observe that in general,
polarisation effects produce memory effects. The lowest order nonlinear response,
which is shown here, allows for the molecular vibrations, which is attributed to the
Raman effect. In general, both the electrons and the nuclei respond to the optical
field, but the nuclei respond slower than the electrons. Often the nonlinear effect is
modelled by assuming an instantaneous response as

P nl
i (x, t) = ε0χ

(3)
ijklEj(x, t)Ek(x, t)El(x, t) (2.1)

and this amounts to neglecting the Raman effect. For silica fibres the vibrational
or Raman response occurs over a time scale of 0.6–0.7 ps; this will mean that the
equation (2.1) will be approximately valid for pulse widths greater than 1 ps. This
is the model of the Kerr effect utilised in this paper in Section 4.1, 4.2, and 5.1.

Non-resonant intensity dependent effects (incoherent) can be included by use of
a nonlinear susceptibility kernel of the form

χ
(3)
ijkl(t− t1, t− t2, t− t3) = χ

(3)
iklRj(t− t1)δ(t− t2)δ(t1 − t3)

with ∫ ∞

0

Rj(t) dt = 1

and then

P nl
i (x, t) = ε0χ

(3)
iklEk(x, t)

∫ t

−∞
Rj(t− t′)Ej(x, t

′)El(x, t
′) dt′

The response function Rj should include electronic and vibrational (Raman) con-
tributions, and if the electronic effect is assumed to be instantaneous then (for
notational convenience we omit the index j)

R(t) = (1 − fr)δ(t) + fRhR(t)

with

hR =
τ 2
1 + τ 2

2

τ1τ 2
2

exp(−t/τ2) sin(t/τ1)



4

where the R function parameters, fr, fR, τ1, and τ2 are chosen so that the main
memory effect is for t < 0.7 ps (for silica fibres). The form of this model, hR, is the
well known Lorentz or resonance model for the Raman gain spectrum. Extensions
of our methods in Section 5 for this model will be considered in a later paper.

The Maxwell equations, in a source-free region, linking the electric field, E,
magnetic field intensity, H , with the magnetic and electric flux densities, B, and
D, respectively are 

∇× E(x, t) = − ∂
∂t

B(x, t)

∇× H(x, t) =
∂

∂t
D(x, t)

Furthermore, assume that all fields depend only on the coordinate z. The Maxwell
equations then become 

J · ∂
∂z

E(z, t) = − ∂
∂t

B(z, t)

J · ∂
∂z

H(z, t) =
∂

∂t
D(z, t)

where J = ẑ × I (a rotation π/2 around the axis ẑ), and I is the identity opera-
tor. Assuming only transverse components of the electric field and non-magnetic
materials, rewrite these equations as1

∂

∂z
E(z, t) =

1

c0
η0
∂

∂t
J · H(z, t)

η0
∂

∂z
J · H(z, t) =

1

c0ε0

∂

∂t
D(z, t)

(2.2)

where the parameter η0 =
√
µ0/ε0 is the impedance of free space, and c0 = 1/

√
µ0ε0

is the wavespeed of electromagnetic radiation in free space.
The Maxwell equations imply the Poynting theorem

∇ · S + E · ∂tD + H · ∂tB = 0

where the Poynting vector S is defined as

S = E × H

Let the constitutive relations specifying the relationship between the field inten-
sities and the field flux densities be written as{

D(x, t) = ε0F (E(x, ·)) (t)

B(x, t) = µ0H(x, t)
(2.3)

and be assumed to hold at each point in space. We assume for optical media
the polarization effect is purely due to the electric field and can be represented

1Note that J · J = −I2, where I2 is the identity operator in the x-y-plane.
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through an operator F . Then, the first of these equations is a generalization of
those considered earlier. Dissipation of the medium implies, through integration of
the Poynting theorem over space and time that the energy density, E , through this
region has the form [4]

E(t) ≡
∫ t

−∞
{E(t′) · ∂tD(t′) + H(t′) · ∂tB(t′)} dt′ ≥ 0, for all fields (2.4)

Notice that this dissipation constraint includes only the electromagnetic part of dis-
sipation. If conversion of electromagnetic energy into mechanical energy, or other
energy forms, takes place in the medium, the dissipation constraints will look dif-
ferently.

In the remainder of the paper we assume that the medium is isotropic. This
implies that D and E have the same field orientation2, therefore scalar quantities
suffice. It follows from (2.4) that the appropriate functional inequality to study is∫ t

−∞
E(t′)

d

dt
F(E)(t′) dt′ ≥ 0, for all E ∈ X (2.5)

where the operator F : X → X , and where the affine function space X is defined by

X =
{
f ∈ C1(R) : f(t) = 0, t < t0, t0 fixed

}
for t0 bounded. We denote by Cn(Ω) the space of n times continuously differentiable
functions on Ω. It is further assumed that a Banach algebra is defined on X , then
integration by parts of (2.5) gives

E(t)F(E)(t) −
∫ t

−∞
E ′(t′)F(E)(t′) dt′ ≥ 0

where the prime, on the dependent variable, has been used to denote differentiation
w.r.t. its independent variable, t′. We can convert this expression into a more
convenient operator inequality by defining an operator G : X → X as

G(E)(t) =

∫ t

−∞
E ′(t′)F(E)(t′) dt′ (2.6)

Then

d

dt
G(E)(t) = E ′(t)F(E)(t)

and the energy equality (2.5) can then be rewritten as

E

E ′
d

dt
G(E) − G(E) ≥ 0, for all E ∈ X (2.7)

We observe that if the electric field is independent of t, then the inequality reduces
to a vacuous equality.

2As then, Di = ε0F(Ei).
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2.1 Constitutive relations of the function type — finite di-
mensional case

In general the operator F is acting on the function E. However, this case will not be
considered further in this paper, we just consider the finite dimensional case here.

Let F be a real, continuous function3 defined on R, i.e., F ∈ C(R). In this case
F(E)(t) = F (E(t)) is just a functional composition. So replacing the notation, F
by F , and G by G, the basic inequality, (2.7), becomes

E(t)G′(E(t)) −G(E(t)) ≥ 0, for all E ∈ X

where the prime on G denotes differentiation w.r.t. its argument, and where G ∈
C1(R) is a primitive function to F , i.e., G′(E) = F (E), such that G(0) = 0.
Therefore, in this finite-dimensional case, the relevant question to ask to ensure
that the media is dissipative is:

Question: For what functions G(x) is the following inequality satisfied:

x2 d

dx

(
G(x)

x

)
= xG′(x) −G(x) ≥ 0, x ∈ R

This inequality is equivalent to

d

dx

(
G(x)

x

)
≥ 0, x ∈ R (2.8)

Proposition 2.1. If F is an increasing function, with F ∈ C(R), for all x ∈ R,
then F defines a constitutive relation that satisfies the energy inequality (2.8).

Proof: Since F (x) is a increasing function, we have F (x) ≤ F (y), whenever x ≤ y.
From this we easily get∫ x

0

F (t) dt ≤
∫ x

0

F (x) dt = xF (x), x ≥ 0

−
∫ x

0

F (t) dt ≥
∫ 0

x

F (x) dt = −xF (x), x ≤ 0

or ∫ x

0

F (t) dt ≤ xF (x), for all x ∈ R

Moreover, this inequality is equivalent to (2.8); in fact, with G(x) =
∫ x

0
F (t) dt we

have xG′(x) ≥ G(x).

3Note that F ∈ C(R) is sufficient for Proposition 2.1, but stronger conditions will be required
in the remainder of the paper, cf. Definition 2.1.
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The converse to the Proposition 2.1, that every function that satisfies the energy
inequality (2.8) is an increasing function, is not true. A simple counter example is
F (x) = .8x+ sinx.

It is readily seen that if F ∈ C1(R), the conditions of Proposition 2.1 are satisfied
if F ′ > 0, i.e., F is a strictly increasing function. In the sequel, we need a slightly
stronger condition which motivates the following definition:

Definition 2.1. A dissipative medium is said to be positively dissipative iff F ∈
C1(R) and F ′(x) ≥ a > 0, i.e., it is a strictly increasing function with a derivative
bounded away from zero.

Media that are positively dissipative have the important property that F ′(x) ≥
a > 0, i.e., F ′ is bounded below, this will be important in Section 3. In particular, in
this paper we will only consider problems for media that are positively dissipative.

We now consider some models for nonlinear media which are dissipative.

Example 1 — Kerr polynomial model: Let G(x) =
∑N

n=1 anx
n, with N

bounded, then the inequality (2.8) reduces to

N∑
n=1

(n− 1)anx
n−2 ≥ 0, x ∈ R

This will be satisfied if the coefficients an of the polynomial satisfy (sufficient con-
ditions) 

a1, arbitrary

an ≥ 0, n even

an = 0, n odd

It follows that F (x) = G′(x) =
∑N

n=1 nanx
n−1. This is a generalisation of the

polynomial relation that is the commonly used for the constitutive model of the
Kerr effect, cf. equation (2.1) and Ref. 6, i.e.,

Di = ε0(ε1Ei +
1

3
ε3E

3
i ) i ∈ {1, 2, 3}

implies

F (x) = ε1x+
1

3
ε3x

3

The result proven here shows this model is guaranteed positively dissipative if ε1
and ε3 are positive constants, cf. Section 4.1.
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Example 2 — Kerr saturation model: This model, generalises the Kerr ef-
fect to include the possibility that for high values of electric field, the nonlinearity
saturates. A rational polynomial model for this can be written as

F (x) = ε1x+
αx3

x2 + β2

which implies

F ′(x) = ε1 +
αx4 + 3αβ2x2

(x2 + β2)2

It then follows that this model is guaranteed positively dissipative if ε1 and α are
positive constants, cf. also Section 4.2.

3 Wave splitting

Throughout the sequel, we assume that the medium is homogeneous and isotropic
and then the constitutive relations become (2.3){

Di(x, t) = ε0F (Ei(x, ·)) (t)

Bi(x, t) = µ0Hi(x, t)
i ∈ {1, 2, 3} (3.1)

The assumption on the electromagnetic field components in Section 2 implies that
the electric and magnetic vector components lie in a plane tranverse to the z-axis (or
the x3-axis). Let w1 be the transverse component of the electric field E, and w2 the
corresponding component of the field η0J · H , then we can utilise these equations,
and (3.1), in (2.2), to yield the partial differential equation system

1

c0

∂

∂t

(
F(w1)(z, t)
w2(z, t)

)
=

(
0 1
1 0

)
∂

∂z

(
w1(z, t)
w2(z, t)

)
When the constitutive relations are of the function case of Section 2.1, then this
system of equations can be expressed as

1

c0

(
F ′(w1)∂tw1

∂tw2

)
=

(
0 1
1 0

)
∂

∂z

(
w1

w2

)
(3.2)

For positively dissipative media, Definition 2.1 ensures that F ∈ C1(R), F ′(w1) ≥
a > 0, so we can rewrite this equation as

1

c0

(√
F ′(w1)∂tw1

∂tw2

)
=

 0 1√
F ′(w1)

1√
F ′(w1)

0

 (√
F ′(w1)∂zw1

∂zw2

)
(3.3)

This form suggests that a transformation of the dependent variable will enable this
system to be expressed in a more convenient form. To facilitate this, introduce the
anti-derivative of

√
F ′(w1), through

g′(x) =
√
F ′(x)



9

Let it also be assumed that g be subject to g(0) = 0, so that

g(x) =

∫ x

0

√
F ′(t) dt

The properties just assumed for g′ (through Definition 2.1), and the inverse function
theorem, ensures the C1 function g has an inverse g−1.

Proposition 3.1. The function g is a homeomorphism, if it is associated with an
F function from a constitutive relation, for a positively dissipative medium.

Proof: For F a positively dissipative function, F ∈ C1(R), F ′(x) ≥ a > 0, then
from elementary analysis — with F strictly increasing, this will imply g is strictly
increasing and hence the existence, and continuity of g−1, which is also strictly
increasing. In fact we have more, g is a diffeomorphism, but this is not required
later.

Now, by defining new dependent variables u ∈ R
2

u =

(
u1

u2

)
=

(
g(w1)
w2

)
the underlying partial differential equation can be transformed from (3.2) into

ut = A(u)uz (3.4)

The symmetric matrix A(u) is

A(u) = c0

 0
1

g′(g−1(u1))
1

g′(g−1(u1))
0

 ≡ c(u1)

(
0 1
1 0

)

where the wavespeed c(u1) is

c(u1) =
c0

g′(g−1(u1))
= c0

d

du1

g−1(u1) (3.5)

The positively dissipative medium assumption, ensures that the function g′(x)
is a positive function bounded away from zero, i.e., g′(x) ≥ √

a > 0, for all x ∈ R.
Furthermore, this implies that c is a globally bounded above function. The matrix
A is therefore bounded in the standard operator norm, specifically, sup ‖A(u)‖ ≤
c0/

√
a. We collect this result for later reference in the following proposition:

Proposition 3.2. With g, associated with an F in the positively dissipative class,
the matrix-valued operator is bounded, as sup ‖A(u)‖ < c0/

√
a.

Equation (3.4) can now, in a special case, be solved by the method of character-
istics, after it has been converted to a diagonal form. This diagonalisation can be
motivated physically by the concept of wave splitting; this is because under certain
simplifying hypotheses the dependent variables can be then interpreted as waves
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u+(0, t) = h(t)

u−(0, t)

z

t

u+(z, 0) = f(z) u−(z, 0) = 0

Figure 1: The geometry for the initial-boundary value problem.

propagating in two opposite directions. To this end, introduce two new dependent
variables u±(z, t) defined by(

u+

u−

)
=

1

2

(
1 −1
1 1

) (
u1

u2

)
= P

(
u1

u2

)
where the transformation matrix has an inverse such that,(

u1

u2

)
=

(
1 1
−1 1

) (
u+

u−

)
= P−1

(
u+

u−

)
Substitution of these new dependent variables into (3.4) yields dynamics for the new
fields u±(z, t) as

∂t

(
u+

u−

)
= PA(u+, u−)P−1∂z

(
u+

u−

)
= c(u+ + u−)

(
−1 0
0 1

)
∂z

(
u+

u−

)
(3.6)

It should be observed that the two component waves still couple, through the func-
tional wavespeed c(u+ +u−), despite the fact that the wavespeed matrix is diagonal.
The effect of this coupling is to change the slope of the characteristic traces for each
of the two wave equations. This has the useful interpretation that if at some time
there is no reflected wave, there will continue to be no reflected wave for all future
time, while the forward wave is modified by its own presence in the medium.

Of interest for the remainder of this paper is a wave propagation problem in a
half space, z ≥ 0. Appropriate initial and boundary values for this problem are; see
Figure 1:

u+(z, 0) = f(z)

u−(z, 0) = 0

}
z ≥ 0, u+(0, t) = h(t), t ≥ 0 (3.7)

The system (3.6) is symmetric hyperbolic, so when the function c and its first deriv-
ative are globably bounded, the Cauchy problem specified by equation (3.6) with
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the side conditions of equation (3.7) has at most one classical short time solution.
This is shown in [5, Lemma 5.1.1] for the case where the solution has periodic initial
conditions, and we extend their result to apply for our problem in Appendix A.
However it should be noted that not all media have first derivatives of c that are
globally bounded, although two of the models we consider in Section 4.1 and Sec-
tion 4.2 do possess this property. The unique solution of this system implies that
u−(z, t) ≡ 0, for all z ≥ 0 and t ≥ 0. Then the forward propagating wave field
u+(z, t) satisfies the quasi-linear transport equation

∂tu
+ + c(u+)∂zu

+ = 0 (3.8)

which can be solved by the methods of characteristics. This means that the tech-
niques utilised in (I) can be applied to the system of first order partial differential
equations considered in this paper.

In Theorem 3.1 of the next subsection we prove existence and uniqueness of the
one-way wave equation (3.8), which is shown to be central to our development later
in this section, for a wider range of media.

3.1 Solution of the one-way wave equation

We first examine when the one-way wave equation (3.8) has a classical solution.
This enables us to find a solution to the direct propagation problem for the partial
differential equation (3.4) with side conditions (3.7). For this section consider the
initial-boundary value problem, on the quarter plane {(z, t) ∈ R

2|z > 0, t > 0}, for
the one-way wave equation (3.8) with side conditions{

u+(0, t) = h(t), t > 0

u+(z, 0) = f(z), z > 0

Sufficient conditions on the boundary value h(t), and on the initial condition f(z),
for the classical solution of the direct propagation problem to exist, is found in (I);
we weaken those conditions here. Let Γ be a curve in the t-z-plane, parameterized
by the parameter ζ, and defined by t = τ(ζ), z = ζ and the solution of

dτ(ζ)

dζ
=

1

c (u+(ζ, τ(ζ)))
(3.9)

Then, by (3.8), the variation in u+ along Γ is

d

dζ
u+(ζ, τ(ζ)) = D1u

+(ζ, τ(ζ)) +
1

c (u+(ζ, τ(ζ)))
D2u

+(ζ, τ(ζ)) = 0

where D1u
+, and D2u

+, denote the partial derivatives of u+ w.r.t. its first, and
second arguments, respectively. This equation shows that u+ is constant along Γ,
and that the characteristics defined by (3.9) are therefore straight lines.
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The characteristic trace (not necessarily unique) that goes through the point
(z, t), t > 0 can be described by

τ(ζ; z, t) = t+
ζ − z

c (h(τ(0; z, t)))
(3.10)

Observe, for future reference, that the characteristic trace has slope 1/c. Later, we
also require the inverse of t′ = τ(ζ; z, t), namely ζ = τ−1(t′; z, t) — the existence of
which is assured for c > 0 — (see Ref. 1 for further use of this notation).

To simplify the notation in the remainder of this section, denote t′ = τ(0; z, t)
by τ(z, t), where this is the intercept of the curve Γ, which passes through the point
(z, t), with the line z = 0. To determine τ = τ(z, t) for a given value of (z, t), it
is necessary to solve the equation, which is obtained by setting ζ = 0 in equation
(3.10).

(t− τ) c (h(τ)) = z (3.11)

In the previous analysis, it is assumed that τ(z, t) > 0. Similar arguments can
be used to find the solution when τ(z, t) < 0, i.e., when the characteristic trace is
back propagated from (z, t) and it cuts the z-axis prior to the t-axis. In this case,
the pertinent transcendental equation is

tc (f(ζ)) + ζ = z

where the solution ζ = ζ(z, t) > 0 is the z-value where the characteristic curve
intercepts the z-axis.

The solution of the direct propagation problem, u+, is then determined from the
boundary value or the initial condition as

u+(z, t) =

{
f(ζ(z, t)) if τ(z, t) < 0

h(τ(z, t)) if τ(z, t) > 0
(3.12)

An extension of this analysis we formulate as an uniqueness and existence theo-
rem, which is proven in Appendix B.

Theorem 3.1. Let f, h ∈ C1[0,∞), and c ∈ C1(R) be given functions such that
f(0) = h(0) and c ≥ c1 > 0, and let T ≥ 0 and Z ≥ 0 be determined by

1

Z
=


0 if d

dt
c(h(t)) ≤ 0 for all t ≥ 0

sup
t≥0

{
− d
dt

1

c(h(t))

}
otherwise

1

T
=


0 if d

dz
c(f(z)) ≥ 0 for all z ≥ 0

sup
z≥0

{
− d

dz
c(f(z))

}
otherwise
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Furthermore, let τ = τ(z, t) and ζ = ζ(z, t), for a given value of (z, t), be determined
by {

(t− τ) c (h(τ)) = z

tc (f(ζ)) + ζ = z
(3.13)

and let {
Ω1 = {(z, t) : τ(z, t) > 0, 0 ≤ z ≤ Z}
Ω2 = {(z, t) : τ(z, t) < 0, 0 ≤ t ≤ T}

Then in the two regions Ω1 and Ω2, the continuously differentiable function, u+(z, t),
defined by

u(z, t) =

{
h(τ(z, t)) (z, t) ∈ Ω1

f(ζ(z, t)) (z, t) ∈ Ω2

(3.14)

is the unique classical solution to

∂tu+ c(u)∂zu = 0 subject to

{
u(z, 0) = f(z) z ≥ 0

u(0, t) = h(t) t ≥ 0

in the respective regions Ω1 and Ω2.

This theorem gives a maximal extension of the (z, t)-quarter plane for which no
shocks in the solution u+ can occur. Sufficient conditions for no shocks to occur in
u+ on the whole of the (z, t)-quarter plane was shown in Proposition 2.1 of (I). The
maximal extension of the two regions is given by the first part of the case statements
for 1/Z and 1/T in the theorem; this coincides with the conditions given in (I).

In Section 5 the initial condition function, f , is assumed to be the zero function,
and this means that the consistency condition may be violated as h(0) may not
be zero. This implies that a discontinuous jump in the solution from u = 0, to
u = h(0), occurs on the initial causal wavefront, at time z/c(h(0)), so that the
results of Theorem 3.1 hold for all time after this.

4 Transmission problem

The results of the previous section are applied to the pulse transmission problem,
for specific cases of positively dissipative nonlinear optical media.

In a physical transmission problem an electromagnetic field is incident from the
left onto an interface (the line z = 0), of a half space, which is the Kerr medium (z >
0), see Figure 1. It is assumed that the initial conditions are w1(z, 0) = w2(z, 0) = 0,
inside the Kerr medium, z > 0, for this problem. To the left of z = 0 (z < 0) only
the u+ wave is present, and the results in Section 3 ensure that u− is never excited
for all z. Note in the physical variables(

u+

u−

)
=

1

2

(
g(w1) − w2

g(w1) + w2

)
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so it is observed, that if u− ≡ 0, then the two components w1 and w2 are related
through

w2 = −g(w1) (4.1)

The u+ component can be physically measured from the fact that equation (4.1)
implies u+ = −w2. Remember that the w2 component is related to the magnetic
field intensity.

4.1 Kerr polynomial medium

As an explicit example, take the Kerr medium defined by the constitutive function

F (E) = ε1E +
1

3
ε3E

3 ⇒ F ′(E) = ε1 + ε3E
2

and therefore

g′(x) =
√
ε1 + ε3x2 (4.2)

which, for positive constants ε1 and ε3, is bounded away from zero, and also with
all higher derivatives bounded. Furthermore, integration gives

g(x) =
ε1

2
√
ε3

ln
x
√
ε3 +

√
ε1 + ε3x2

√
ε1

+
x
√
ε1 + ε3x2

2

which is also bounded away from zero. Typical values for the parameters ε1 and ε3
are {

ε1 = n2
0

ε3 = 3Sn4
0

where the zero field refractive index is n0 = 1.5, and the parameter S is in the
range 10−14–10−23 m2/V2 (SiO2: S = 1.3 · 10−22 m2/V2, and C6H5NO2: ε3 =√
ε12.89 · 10−18 m2/V2). The non-linear term is therefore usually very small, and

propagation must occur over considerable distance for its effects on the propagating
pulse to become very marked.

The Kerr model can have higher order dependence, on the field, as shown in the
next equation for g′. In that equation g′ is shown with a term ε5, which allows for
the possibility of fifth order dependence of F on the electric field. This model is
utilised in the numerical reconstruction results presented in Section 5.1.

g′(x) =
√
ε1 + ε3x2 + ε5x4 (4.3)

It should be noted that unlike the third order model used earlier in this section this
modified model will not have globally bounded derivatives.

It is convenient for numerical simulation to scale the problem through the scaling
transformations: ε3 → ε3/a

2, ε5 → ε5/a
4, t → at, z → az, and u+ → au+. This
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Figure 2: The propagation of an incident pulse u+(0, t) = 3H(t) exp{−(t − 3)2}
for the Kerr polynomial model with ε1 = 1.5, ε3 = 0.1 and ε5 = 0. Here, H(t)
denotes the Heaviside function and the initial condition is f(z) = 0. Four different
propagation times are shown, t = 2, 4, 6, and 8.

ensures for our simulations z, t and the field amplitudes are very many orders of
magnitude smaller than in a physical problem4.

Two different diagrammatic presentations of the propagating pulse, through this
medium, are shown in Figures 2 and 3. Graphical representation of g, g′ and the
resultant wavespeed c, for this model, can be seen in Figures 7, 9 and 5, respectively.

4.2 Kerr saturation medium

Often nonlinear effects saturate, and the model discussed in this section will allow
this at field amplitudes set by the parameter β. The constitutive function is

F (E) = ε1E +
αE3

E2 + β2
⇒ F ′(E) = ε1 +

αE4 + 3αβ2E2

(E2 + β2)2

and therefore

g′(x) =

√
ε1 +

αE4 + 3αβ2E2

(E2 + β2)2 (4.4)

4For the example of SiO2 with ε3 = 0.1, as used subsequently in this paper, then a ≈ 10−11.



16

u+

t

2 4 6 8 10 12

0.5

1

1.5

2

2.5

3

Figure 3: The propagation of an incident pulse u+(0, t) = 3H(t) exp{−(t−3)2} for
the Kerr polynomial model with ε1 = 1.5, ε3 = 0.1 and ε5 = 0. The initial condition
f(z) = 0, and three different propagation distances, z = / are shown, / = 0, 2, and
4.2.

Similar scaling of the parameters, as carried out in the Kerr polynomial model, is
performed on this model. It is seen for positive constants in the model, that g′ is
bounded away from zero and all higher order derivatives are also globally bounded.

A diagrammatic presentation of the propagating pulse through this medium, is
shown in Figure 4. Graphical representation of g, g′ and the resultant wavespeed c,
for this model, can be seen in Figures 8, 10 and 6, respectively.

Observe, in Figures 2, 3, and 4 that the propagated pulses for / = 4.2, and
/ = 0.6, respectively, correspond to nearly the maximal existence distance for the
classical solution of the one-way wave equation. For values of z greater than this
distance a shock forms, this can be seen to be almost occurring in these figures
(the shock occurs in the Kerr polynomial and saturation model for z equal to 4.23
and 0.65, respectively). Also, observe that the near occurrence of a shock causes
a steepening of the trailing edge of the pulse. One of the uses of Kerr media is to
sharpen transmitted pulses. This steepening can be reasoned physically from the
property of the wavespeed functional increases with decreasing field amplitude; for
the problems chosen here and shown in Figures 5 and 6. It follows that the slope
of the characteristic traces flattens with decreasing field amplitude, and therefore
as the traveling pulse decreases in amplitude, on the trailing edge of the pulse
the lower amplitude values catch up with the higher amplitude parts! This should
be contrasted with phenomena in which the wavespeed increases with increasing
amplitude, so causing the shock to form on the leading edge. The Ref. 7 may be
consulted to see that such leading edge shocks can occur in shallow-water waves
(p. 108), and nonlinear transmission lines (p. 38).



17

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

3
u+

t

Figure 4: The propagation of an incident pulse u+(0, t) = 3H(t) exp{−(t− 3)2}.
This is for the Kerr saturation model with ε1 = 1, α = 4 and β = 1. Three different
propagation distances, z = /, values are shown, with / = 0, 0.3, and / = 0.6.

5 Inverse Problems

Throughout this section it is assumed that u+(z, 0) = f(z) ≡ 0, for z > 0, and then
the inverse transmission problem is posed as:

Given the initial boundary values as in equation (3.7) for a one-way wave equa-
tion (3.8), and the measured propagated field at z = /, namely u(t) = u+(/, t), for
//c(h(0)) < t < T1, reconstruct the medium parameters.

Specifically, in the first instance we reconstruct the wavespeed functional c(ξ)
for as large an interval of ξ as possible. Here T1 > //c(h(0)) is a time such that the
interval [//c(h(0)), T1] is non-zero. The time that the measurement of u starts, is
after the initial wavefront arrives at z = /, namely t = //c(h(0)).

It is required that the measured propagated solution is continuously differentiable
for times after the initial wavefront has arrived, so that this imples / < Z for all
results in this section.

An implicit solution to equation (3.8) can then be written as

u+(z, t) = h
(
t− z/c(u+)

)
H

(
t− z/c(u+)

)
rather than in the form of equation (3.12); hereH denotes the Heaviside distribution.
This equation is obtained by rearranging (3.11). Then an inverse reconstruction map
is determined by the inverse of the map

u(t) = h(t− //c(u)), t > //c(h(0)) (5.1)

which is an implicit map from the wavespeed c to the measurement u. This equation
can easily be inverted to read

c(u) = //
(
t− h−1(u(t))

)
, t > //c(h(0)) (5.2)
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Figure 5: The true wavespeed functional c(ξ) —— and the reconstructed func-
tional (circles) when the boundary value is h(t) = 3H(t) exp{−(t− 3)2}. This is for
the Kerr polynomial model with ε1 = 1.5, ε3 = 0.1 and ε5 = 0.

and this solution may also be written as

c(ξ) = //
(
u −1(ξ) − h−1(ξ)

)
, t > //c(ξ0) (5.3)

with t = u −1(ξ) and ξ0 = h(0). To use this form of solution it is required that u
is strictly monotone; this is in order to use its inverse function and that this can
be the case is proven in (I). However, there, it is required that the function h be
monotone, which is not likely in an inverse experiment. The boundary function, h,
is usually only locally monotone over an interval of t ∈ R. It is shown here, that this
implies that u is correspondingly locally monotone, and it follows that the existence
of piecewise local inverses for u and h is assured. The Lemma 2.2, from (I), is now
generalised to prove that the transmission function u is piecewise locally monotone.

Lemma 5.1. The function u is piecewise differentiable and piecewise strictly mono-
tonic, with the assumptions that the functions h and c are continuously differentiable
and piecewise strictly monotone.

Proof: Upon differentiation of (5.1) w.r.t. t it follows

u ′(t) =
h′

(
t− //c(u(t))

)
1 − /c′(u(t))h′

(
t− //c(u(t))

)
/c2(u(t))

, t > //c(ξ0) (5.4)

and if h′ > 0, while c′ < 0 no shock can occur and equation (5.4) implies u(t)
is strictly increasing. However if h′ > 0, while c′ > 0 the function u(t) is again
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Figure 6: The true wavespeed functional c(ξ) —— and the reconstructed func-
tional (circles) when the boundary value is h(t) = 3H(t) exp{−(t− 3)2}. This is for
the Kerr saturated model with ε1 = 1.5, α = 4, and β = 1.

strictly increasing but with the possibility of a shock occurring; in particular when
h′

(
t− //c(u)

)
= c2(u)/

(
/c′(u)

)
, cf. equation (B.1), but because of our assumptions,

this does not occur in Ω1. Now, if h′ < 0 it follows u(t) is strictly decreasing, with
similar arguments on the dependence of sign of c′.

The time values for which the measurement function u is strictly increasing,
and decreasing, will not be the same as for h; e.g., see Figure 3. It should now
be observed from Lemma 5.1 that if h is strictly monotone on the interval [0, T2],
then u will also be so on the interval [//c(h(0)), T2 + //c(h(T2))]; so implying that
the locally monotone interval, for the two functions, will not be the same unless
c(h(0)) = c(h(T2)).

Corollary 5.1. The measurement function u is locally homeomorphic, when both c
and h ∈ C1 are locally homeomorphic.

Proof: The results follows from Lemma 5.1 and elementary analysis.
It is seen that with the assumptions made, the solution of the inverse problem

is unique and that the solution depends continuously upon the measured data, u,
provided this data is exact.

Theorem 5.1. The wave speed functional c(u) can be uniquely reconstructed, from
the transmission data u, over intervals in which both h and u are strictly monotone.
Furthermore, the wavespeed functional depends continuously on the measurement u
with a bounded Lipschitz continuity coefficient.
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Proof: From Lemma 5.1 and Corollary 5.1, together with equation (5.3), it follows,
if given an interval [0, T2] in which h is strictly monotone, c is uniquely determined.

All that remains to be shown is the value of the Lipschitz constant. Differentia-
tion of (5.2) w.r.t. u shows

d

du
c(u) =

−/
(t− h−1(u))2

(
dt

du
− d

du
h−1(u)

)
so that the appropriate Lipschitz constant C̃ is

C̃ = sup
ξ

∣∣∣∣ /

(t− h−1(ξ))2

(
1

u′(t)
− 1

h′(h−1(ξ))

)∣∣∣∣ with ξ = u(t),

and t ∈ min{[//c(h(0)), T2 + //c(h(0))], [//c(h(0)), T2 + //c(h(T2))]}. It follows that
the Lipschitz constant exists, and is bounded for (/, t) ∈ Ω1.

It is noted that this proof also shows that c is monotone until h′(t) = u′(t), at
which point c′(u) = 0.

It is shown in Section 3 that the function g can be related to the wave speed
though the initial value differential equation, see (3.5)

d

dξ
g−1(ξ) = c(ξ)/c0

g−1(0) = 0

It follows that once the wavespeed has been reconstructed, g−1 can be found uni-
quely, so enabling g to be calculated over the region for which g−1 is injective, which
by Proposition 3.1 is R, and for which c is known.

Corollary 5.2. The material function g(ξ) can be uniquely reconstructed from the
transmission data, and it depends continuously on the measurement data u, this is
provided this data is exact.

5.1 Numerical Results

All the inverse reconstruction experiments were carried out with an incident pulse

h(t) = 3H(t) exp{−(t− 3)2}

and this function is piecewise monotone, in two pieces, and satisfies the conditions
required in the previous section. Note that h(0) �= 0 for this incident wave and
therefore a finite jump discontinuity propagates along the characteristic determined
by c(h(0)) = z/t.

The solution to the direct transmission problem, as given by the implicit solution
(5.1), was found, as displayed in Figures 2–4, by first solving the nonlinear equation
(3.11), and then substituting into (3.12). This yields a unique solution up to the
point z = Z, as proven in Theorem 3.1. The transmitted fields u for the two models
considered in this paper, namely a Kerr polynomial medium, and a Kerr saturated
medium, are shown in Figures 3–4 for various propagation lengths.

We recap the assumptions made for the inverse reconstruction problem:
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Figure 7: The true g(ξ) function —— and the reconstructed function (circles)
when the boundary value is h(t) = 3H(t) exp{−(t − 3)2}. This is for the Kerr
polynomial model with ε1 = 1.5, ε3 = 0.1 and ε5 = 0.

• Measure the transmitted field, where this field is assumed to be continuous,
i.e., no shock has occurred.

• The incident pulse, h(t), is known, piecewise strictly monotone, and it is con-
tinuously differentiable for t ∈ [0, T1].

• The transmission length / is known. If this is not the case it will only effect
the scaling of c and subsequent parameters. The functional form of c can still
be found.

• The free space wavespeed c0 is known.

For the inverse reconstruction problem h is known, so that the inverse of this
function h−1 can be found over an appropriate interval 5. Lemma 5.1 ensures that the
inverse function to the measured transmission function, namely u −1 can be found
over an appropriate interval. Once these inverse functions have been calculated
the equation (5.3) provides the solution. The given boundary function h has two
monotone sections, 0 < t < 3, and 3 < t < 6, so that (5.3) can be used over two
separate intervals. When these two intervals are used for the non-noisy data, as

5The inverse function h−1 is found numerically by solving the nonlinear equation h(ξ)− y = 0,
for ξ given y, with the inverse function defined through ξ = h−1(y). A similar method is used for
u−1.
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Figure 8: The true g(ξ) function —– and the reconstructed function (circles) when
the boundary value is h(t) = 3H(t) exp{−(t − 3)2}. This is for the Kerr saturated
model with ε1 = 1.5, α = 4, and β = 1.

used here, this yields identical results for c. However, for noisy data by performing
two reconstructions this would enable some smoothing to be achieved. Figures 5
and 6 show the reconstructed wavespeed when / = 4.2, and / = 0.6, for the Kerr
polynomial, and the Kerr saturated models, respectively. The results when using
transmission data at / = 2, and / = 0.3, for the Kerr polynomial, and the Kerr
saturated model, respectively, cannot be distinguished from these. Note in these
figures that c(ξ) can only be found for 0 < ξ < 3 as the applied boundary function
only has this range.

In Figures 7 and 8, the reconstructed g function is shown for the Kerr polynomial
(/ = 4.2) model, and the Kerr saturated model (/ = 0.6), respectively. Identical
results are obtained when / = 2 and / = 0.3 for these respective models. Note in
these figures that g(ξ) can only be found for 0 < ξ < ξa, where ξa = g−1(3), as the
applied boundary function only has this range.

To reconstruct the material parameters {ε1, ε3, ε5}, and {ε1, α, β}, for the respec-
tive models, it is more convenient to work with g′(ξ) as given by equations (4.3),
and (4.4), respectively, to find the coefficients. Figures 9 and 10 show the true and
reconstructed Kerr polynomial and saturated Kerr model g′ functions, respectively.

Let Σ denote the set of these coefficients, and g̃ ′ denote the reconstructed g′

function. As g′ denotes the model representation given by equations (4.3) and (4.4),
the appropriate coefficients can be calculated by the maximum likelihood principle.
If g̃ ′ has been reconstructed at ξi, i = 0...N , values of ξ through the previously
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Figure 9: The true g′(ξ) function —– and the reconstructed function (circles)
when the boundary value is h(t) = 3H(t) exp{−(t − 3)2}. This is for the Kerr
polynomial model with ε1 = 1.5, ε3 = 0.1 and ε5 = 0.

specified algorithm, and if ‖ · ‖2 denotes the standard discrete /2-norm over the
N + 1 values of ξi, then the problem of finding the maximum likelihood probability
for the coefficients can be written as

min
Σ

‖g̃ ′ − g′‖2

Where in this equation g′ is the analytical representation of the model; either (4.3)
or (4.4). For the model given by equation (4.3) the method of the least sum of
the squares of the errors problem is linear6, and it is a standard regression problem.
However, for equation (4.4) the method of least squares problem is a nonlinear
regression problem. For the reconstructed g̃ ′ functions shown in Figures 9 and 10,
the respective parameters, were found to be

Fig 9: ε1 = 1.5, ε3 = 1.001, ε5 = 0 with an /2-error of 3.1 × 10−4.

Fig 10: ε1 = 1.0004, α = 4.0006, β = 1.0015 with an /2-error of 1.1 × 10−3.

If the the wrong choice of models is made, and an attempt is made to fit a Kerr
polynomial model to the saturated g̃ ′ data, values of a polynomial were found that
were not positively dissipative, and a /2-error of 1.2 was obtained; so illustrating
a false premise. Similarly, if an attempt is made to fit the saturated model to the

6If the fit is made to g′2.
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Figure 10: The true g′(ξ) function —– and the reconstructed function (circles)
when the boundary value is h(t) = 3H(t) exp{−(t − 3)2}. This is for the Kerr
saturated model with ε1 = 1.5, α = 4, and β = 1.

reconstructed g̃ ′ data from the Kerr polynomial problem, then a least squares error
measure of 9.1 × 10−4 was found; this was not a clear false premise. This can be
attributed to a well known result in approximation theory; the fact that a rational
approximation can provide a wider class of function fit than a polynomial.

6 Conclusions

This paper has shown that it is possible to reconstruct the material parameters
for a nonlinear medium, from measurement of a propagated electromagnetic pulse
through the medium. The inverse algorithm is not model dependent and therefore
useful if the underlying nonlinear model of the material is not known. Specifically,
we have illustrated the use of the algorithm for the Kerr medium. Furthermore, the
solution depends continuously on the measurement data. This is a rare occurrence in
an inverse problem. However, it should be noticed, that in optics the field quantities
are not directly accessible, but only observable through a functional.
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Appendix A Uniqueness result

In this appendix we extend the result of [5, Lemma 5.1.1], for the case where the
solution has periodic initial conditions, to apply for our problem. It is shown that the
direct problem posed in Section 3 has at most one classical solution. The requirement
of global boundedness of c needed for this result is true for the Kerr and saturated
models used in this paper.

Theorem A.1. Let the matrix A(u) ∈ R
2,2 be diagonal of the form

A(u) = c(u)

(
−λ1 0
0 λ2

)
where λ1 > 0, i = 1, 2, and let c be bounded and have bounded first order derivatives,
i.e., ‖A‖∞ < ∞, ‖DA‖∞ < ∞. Then the initial-boundary value problem for u =
{u+, u−} satisfying

∂t

(
u+

u−

)
= A(u)∂z

(
u+

u−

)
,

{
t > 0

z > 0

subject to 
u±(z, 0) = f±(z), z ≥ 0

u+(0, t) = h(t), t ≥ 0

limz→∞ u
±(z, t) = 0 for all t ≥ 0

has at most one classical solution.

Proof: From the assumptions we have that

‖A(u) − A(v)‖ ≤ C1‖u − v‖

Now suppose u and v are two solutions and denote w = {w+, w−} = u − v.
Furthermore, w satisfies the side conditions

w±(z, 0) = 0, z ≥ 0

w+(0, t) = 0, t ≥ 0

limz→∞w
±(z, t) = 0 for all t ≥ 0

Then

∂tw = A(u)∂zu − A(v)∂zv = A(u)∂zw + (A(u) − A(v)) ∂zv
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and it follows that7

1

2

d

dt
(w,w) = (w,wt) = (w, A(u)wz) + (w, (A(u) − A(v)) vz)

Integration by parts gives, due to the homogeneous boundary condition of w+

(w, A(u)wz) = −c(u(z = 0))λ2‖w−(z = 0)‖2 − (wz, A(u)w) − (w, A(u)zw)

which implies

(w, A(u)wz) = −1

2
(w, A(u)zw) − 1

2
c(u(z = 0))λ2‖w−(z = 0)‖2

≤ −1

2
(w, A(u)zw) ≤ C2‖w‖2

Therefore we get

d

dt
‖w‖2 ≤ C3‖w‖2

so by Grönwall’s lemma, and the initial conditions, this inequality proves that
‖w‖ = 0, for all t ≥ 0, and the theorem is proven.

Appendix B Proof of Theorem 3.1

Proof : First examine the restricted region Ω1, and observe that the characteristic
trace can be written as in equation (3.10). If two such traces intersect within the
(z, t) quarter plane and they originate from the z = 0, t > 0 line, with values t1 and
t2, it is easily shown that they intersect at Z where

1

Z
= − 1

t2 − t1

(
1

c(h(t2))
− 1

c(h(t1))

)
= − d

dt

1

c(h(t))

∣∣∣∣
t=t̃

for some t̃ ∈ [t1, t2]

(B.1)

In such a case the region Ω1 is less than the whole quarter plane, and the largest
value of the right hand side determines the smallest value of z where a shock can
occur, and the result follows; this occurs e.g., when c′ < 0, and h′ < 0. Consideration
of the traces emanating from the t = 0 line, and using a similar argument defines
Ω2 and the time T .

To prove that (3.14) is a uniquely defined solution to our problem we need to
use the implicit function theorem. For (z, t) ∈ Ω1, the first equation in (3.13)

7The scalar product is in the spatial variable z, i.e.,

(u,v) =
∫ ∞

0

(u1(z)v1(z) + u2(z)v2(z)) dz, ‖u‖ =
√

(u,u)
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has a unique solution, by the implicit function theorem. In fact if F1(z, t; τ) =
(t− τ) c (h(τ)) − z = 0, then for (z, t) ∈ Ω1, which implies z ≤ Z,

D3F1(z, t; τ) = −c (h(τ)) + (t− τ) d
dτ
c (h(τ))

= −c(h(τ))
(
z
d

dτ

1

c(h(τ))
+ 1

)
≤ −c(h(τ))

(
− z
Z

+ 1
)
< 0

(B.2)

where D3 denotes differentiation w.r.t. the third variable. This proves that for all
(z, t) ∈ Ω1, there is a unique solution τ = τ(z, t) to (3.13). Similarly, F2(z, t; ζ) =
tc (f(ζ)) + ζ − z = 0, gives for (z, t) ∈ Ω2

D3F2(z, t; ζ) = t
d

dζ
c(f(ζ)) + 1 ≥ − t

T
+ 1 > 0 (B.3)

and for all (z, t) ∈ Ω2, there is a unique solution ζ = ζ(z, t) to (3.13). Notice that
under the assumptions made on c, f , and h, (3.13) have unique solutions τ and ζ in
Ω1 ∪ Ω2, and that therefore τ = 0 ⇔ ζ = 0, since c(h(0)) = c(f(0)) = z/t.

Furthermore, it is clear that u(0, t) = h(τ(0, t)) = h(t) for t > 0, and u(z, 0) =
f(ζ(z, 0)) = f(z) for z > 0; so (3.14) satisfies the side conditions.

We are now ready to prove that the solution (3.14) also satisfies the partial
differential equation. Differentiating (3.13) with respect to z, and then t, gives,
respectively, {

τz {(t− τ) c′ (h(τ))h′(τ) − c (h(τ))} = 1

ζz {tc′ (f(ζ)) f ′(ζ) + 1} = 1

and {
τt {(t− τ) c′ (h(τ))h′(τ) − c (h(τ))} = −c (h(τ))
ζt {tc′ (f(ζ)) f ′(ζ) + 1} = −c (f(ζ))

Since, (t− τ) c′ (h(τ))h′(τ)− c (h(τ)) �= 0 for (z, t) ∈ Ω1 and tc′ (f(ζ)) f ′(ζ) + 1 �= 0
for (z, t) ∈ Ω2, see (B.2) and (B.3), we get{

τzc (h(τ)) + τt = 0

ζzc (f(ζ)) + ζt = 0

Therefore, finally from (3.14) it follows this solution satisfies

∂tu+ c(u)∂zu =


∂

∂t
h(τ(z, t)) + c(h(τ(z, t)))

∂

∂z
h(τ(z, t))

∂

∂t
f(ζ(z, t)) + c(f(ζ(z, t)))

∂

∂z
f(ζ(z, t))

 = 0

{
(z, t) ∈ Ω1

(z, t) ∈ Ω2
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