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Compositional Loess modeling

J. BERGMAN1 and B. HOLMQUIST1

1Department of Statistics - Lund University, Sweden. email: jakob.bergman@stat.lu.se

Abstract

Cleveland (1979) is usually credited with the introduction of the locally weighted regression,
Loess. The concept was further developed by Cleveland and Devlin (1988). The general idea is
that for an arbitrary number of explanatory data points xi the value of a dependent variable is
estimated ŷi. The ŷi is the fitted value from a dth degree polynomial in xi. (In practice often
d = 1.) The ŷi is fitted using weighted least squares, WLS, where the points xk (k = 1, . . . , n)
closest to xi are given the largest weights.

We define a weighted least squares estimation for compositional data, C-WLS. In WLS the
sum of the weighted squared Euclidean distances between the observed and the estimated values is
minimized. In C-WLS we minimize the weighted sum of the squared simplicial distances (Aitchison,
1986, p. 193) between the observed compositions and their estimates.

We then define a compositional locally weighted regression, C-Loess. Here a composition is
assumed to be explained by a real valued (multivariate) variable. For an arbitrary number of data
points xi we for each xi fit a dth degree polynomial in xi yielding an estimate ŷi of the composition
yi. We use C-WLS to fit the polynomial giving the largest weights to the points xk (k = 1, . . . , n)
closest to xi.

Finally the C-Loess is applied to Swedish opinion poll data to create a poll-of-polls time series.
The results are compared to previous results not acknowledging the compositional structure of the
data.

1 Introduction

There exist different approaches of extracting information of time series. Smoothing of the series by
weighting together ‘neighboring’ observations – in the belief that these consistently reflect a common,
slowly varying property – comes in many different forms.

It may be a non-parametric approach in which weights are chosen according to some kernel function
suitably chosen to reflect the behavior in the underlying property, or as in wavelets by letting them
reflect a certain frequency resolution to be traced.

It can also be a parametric, or a locally parametric approach where the structure of the property
is described as a parametric function. Cleveland (1979) is usually credited with the introduction of
the locally weighted regression, Loess. The concept was further developed by Cleveland and Devlin
(1988). The general idea is that for an arbitrary number of explanatory data points xi the value of
a dependent variable is estimated ŷi. The ŷi is the fitted value from a dth degree polynomial in xi.
(In practice often d = 1.) The ŷi is fitted using weighted least squares, WLS, where the points xk
(k = 1, . . . , n) closest to xi are given the largest weights.

Figure 1 shows the results for a large number of polls of political party preferences to nine groups of
political parties during approximately four recent years. It is evident that the preferences are changing
over time in a non-linear fashion, and also that there are large random deviations in the polls for the
different parties. Smoothed versions of the series would facilitate a way of revealing changes in political
trends.

The difficulties occurring when applying standard smoothing techniques to multivariate data of
compositional type, is that the techniques do not account for the special structure inherent (among
the components) in the data.

We shall consider a technique similar to Loess for smoothing multivariate data of compositional
type, which take into account the special nature of the multivariate data being compositions.

1

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

1



Time

0.1

0.2

0.3

0.4

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●

●
●● ●

●

●
●

●

●

●

●
●

●●●

●

●●
●●

● ●

●

●
●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●
●●●

●

●
●

●
●

●

●
●

●
●●

●●●●
●●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●●

●
●●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●
●
●

●
●

●
●

●

●●

●
●

●●
●

●

●
●

●

●
●

●●
●

●

●●
●

●

●

●●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
● ●

●

●

●

●
●●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●●

●

●

● ●

●

●
●

●

●

●
●
●●

●
● ●

●

●
●

●

●

●

●●●

●● ●●●●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●
●●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●●

●

●

● ●
●●●●●

● ●●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●●●
●●

●●

●

●●●●

●

●

●
●

●
● ● ●

●
●

●

●●
●

●

●● ●
●●

●
●
●

●●●
●
● ● ●

●●

●

●

●●
●

●●
●

●

●
●●

●

● ●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●
●●●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

● ●●

●

●
●

●
●●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●
●
● ●●

●

●
●

●
●

●
●

●
●

●●●

●

●
●●

●
●●
●

●●
●

●●
●

●
●

●

●

●

● ●●
●
●

●

●
●●

●

●
●

●

●●
●●

●●

●
●

●
●

●
●●

●

●

●
●

●

●
●
●
●

●
●

●

●●

●●●

●

●
●

●

●
●

●

●

●

●
●

●●
●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
● ●● ● ●

●

● ●●●●
●

●
●

●

●
●

●
●●

●

●
●

●
●
●●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

● ●

●

●
●●

●

●●
●
●
●

●
●●●●

●
●

●

●

●
●

●
●

●

●
●

●
●
●

●

●
●

●

●

●
●

● ●

●●

●●
●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●
●

●
●
●
●

●
●

●●
●

●

●

●
●●

●
●

●
●●

●
●

●

●

●

●

● ●
●●●

●●●

●

●

● ●

● ●●

●

●

●
●
●

●

●
●

●
●
●

●

●
●

●
●
●●

●

●

●

●●●●

●

●●

●

●

●
●●

●

●
●

●
●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●
●
●
●
●

●●
●

●

● ● ●
●
●

●

●
●

●
●

●
●
●

●
● ●●●

●

●
●

● ●

●
●

●

●

●●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●●

●

●●●
●
●

●

●
●

●

●

●
●

●

●

●

●●●
●●

● ●
●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●●
●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●
●●●

● ●

●

●

●
●●

●

●

●
●
●
●

●

●
●●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●●●

● ●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
● ● ●

●

●

●
●

●
●

●

●

●
●
●●

●●

●

●

●

●
●

●
●
●

●●
●
●●●

●
●
●

●●

● ●●
●
●●

●

●
●

●

●
●
●

●●
●

●
●
●●

●

●

●
●●

●

●●
●●● ●

●

●

●●

●

●●● ●
●

●

●
●

●
●
●

●●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●
●●

●

●
●

●

●

●
● ●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●●

●

●●

●

●
●●

● ●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●●●
●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●
●

●

●
● ●

●
●

●
●
●

●

●●
●

●

●●
●
●

● ●
●●●

●●

● ●●
● ●

●
●●

●
●

●

●
●●

●

●

●

●

●

●

● ●
●●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●
●
●●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●
●

●
●
●

●

●
●

●

●●
●●

●●

●
●

●●
●

●

● ●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●
● ●●●

●

●

●

●●

●●●
●

●●

●

●

●
●

●
●●

●

●●
●
●●●

●

2007 2008 2009 2010

Figure 1: Polls of political party preferences to nine groups of political parties (different colors) during approximately
four recent years

2 The method

Let (x1,y1), . . . , (xn,yn) be n pairs of observations of which the yi’s are compositions in the simplex
SD and x is an explanatory variable. This explanatory variable may be univariate or multidimensional,
with or without manifold restrictions. It may thus for example be another compositional variable. We
shall exemplify the procedure by letting the explanatory variable be a univariate real variable repre-
senting ‘time’ and therefore let (t1,y1), . . . , (tn,yn) be the n pairs of observations of a compositional
time series at time points t1, . . . , tn.

Now let t′1, . . . , t
′
m be a second set of time points. These may constitute a larger set of time

points than t1, . . . , tn within the convex hull of the latter and may include those latter time points
as a subset (interpolation), or it could simply be equal to, or a subset of the set of the time points
t1, . . . , tn (smoothing). It may even be a complementary set of time points for prediction purposes
(extrapolation).

We use the notation a⊕b for the perturbation (a1b1, . . . , aDbD)/
∑D

i=1 aibi of b relative to a (or a
relative to b) where ai (bi) are the components of a (b). Further c�b defines the power transformation
(bc1, . . . , b

c
D)/

∑D
i=1 b

c
i for c ∈ R.

2.1 Weighted least squares for compositions, C-WLS

Suppose that the data is generated by
yi = g(ti)⊕ εi

where g is supposed to be a smooth function of the t variable. The idea to estimate g, is to locally fit
a first degree polynomial in the simplex space, by letting the closest points influence most.

At each time point t′k we find compositions β0 and β1 that minimize

QC(β0,β1) =
n∑

i=1

wi(t
′
k)d2S{yi;β0 ⊕ (ti � β1)}
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where

wi(t
′
k) = W (

dE(t′k, ti)

d(t′k)
)

for the ‘tricube’ weight function

W (u) =

{
(1− u3)3, if 0 ≤ u < 1
0, otherwise

and d(t′k) = dE(t′k, the q closest ti) for some given integer q, 1 ≤ q ≤ n. Here closeness is measured in
a metric of the space of t, and thus dE(t′, t) is the Euclidean distance between t′ and t.

The (squared) distance measure on the simplex considered here will be the (squared) Aitchison
distance

d2S(y; z) =
1

2D

D∑
i=1

D∑
j=1

(ln(
yi
yj

)− ln(
zi
zj

))2

for compositions y and z, proposed by Aitchison (1992). The relation is

d2S(y; z) = Dd2E(clr(y), clr(z))

to the Euclidean distance of centered log-ratio transformed compositions (see Aitchison (1986) for
more details). The technique proposed here is however not restricted to this measure and it is possible
to use other measures e.g. a measure based on divergence as suggested by Mart́ın-Fernández et al.
(1999).

If z = β0 ⊕ (t� β1) then

d2S(y; z) =
1

2D

D∑
i=1

D∑
j=1

(ln(
yi
yj

)− ln(
β0,i
β0,j

)− t ln(
β1,i
β1,j

))2

where β0,i and β1,i are the components of β0 and β1, respectively.
Here β0 and β1 are compositions in SD and hence the minimization of QC is subject to the

restrictions β0 ≥ 0, β1 ≥ 0 and βT
0 1 = βT

1 1 = 1.
The local compositional weighted least squares (C-WLS) estimates corresponding to t′k are

(β̂0k, β̂1k) = arg min
β0,β1

QC(β0,β1) .

One way to accomplish this minimization is by adding Lagrange multiplicators of the restrictions to
QC . Other possibilities include using available minimization procedures that permit restrictions on
the parameters to be specified.

It is also possible to find explicit expressions for the minimizing β0 and β1 when using the distance
measure d2S (see Appendix). For the implemented version of the procedure we have also used (as an
alternative) a minimization algorithm where positive restrictions on the parameters were specified,
and where the last component in the composition were set to one minus the sum of the other parts of
the compositions. This gives a flexibility for using other distance measures as mentioned above.

2.2 Loess for compositions, C-Loess

Repeating this procedure for each t′k in the set {t′1, . . . , t′m} we obtain a set of estimated compositions.
The locally fitted first degree polynomial composition at t′k is denoted ŷ′

k = ŷ(t′k) and is equal to

β̂0k ⊕ (t′k � β̂1k) for k = 1, . . . ,m, where β̂0k and β̂1k are the locally fitted estimates corresponding to
time t′k. This is then a compositional locally weighted regression, which we name C-Loess.

Let d2i = d2S(yi; ŷi) where ŷi = ŷ(ti) = β̂0i ⊕ (ti � β̂1i) is the fitted (estimated) composition at ti.
As a measure of lack-of-fit we may use

s2LOF =

n∑
i=1

d2S(yi; ŷi)/n
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based on the ‘deviations’ between the fitted and observed compositions at t1, . . . , tn. It may however
also sometimes be useful to plot the individual deviations d2i or di against ti to have a summary of
the scale over the range of observations. This plot may reveal time points where the smoothed result
deviate very much from what is observed. Also a smoothed version of such a scatter plot may give
information on the local average deviations in the mean level. Here of course s2LOF is the ‘totally
smoothed’ average value of the d2i ’s.

The larger q, the smoother result will be obtained from the C-Loess procedure and the larger value
of s2LOF. An ‘optimum’ smoothing parameter q can be obtained by minimizing a function of s2LOF

penalized by sample size n and q.
The C-Loess estimate ŷ(t′k) is not a linear combination of the yi’s as it would be for unrestricted

spaces. However it can be shown that it can be written as

n⊕
i=1

(`i(t
′
k)� yi)

(i.e. a compositional linear combination) where the `i(t
′
k) depend on t1, . . . , tn,W, dE , and q (and t′k)

but not on the yi’s, (see Appendix).

3 Swedish opinion poll data

The data set we consider consists of n = 218 number of polls of political party preferences in Sweden.
The polls extend over the time period from October 2006 to May 2010 and were performed by a
number of different polling institutes including Statistics Sweden (SCB). The polls included in the
data set are all similar in their design. They were all essentially telephone interviews of a number of
individuals each of which were given the question: “If it were general election today, what political
party would you vote for?” The given definite answers were used to calculate fractions of the different
party supporters (party preference compositions). The number of individuals taking part in each
poll may vary from poll to poll but in general it is quite stable around 1000-2500 individuals, but
there also exist polls in which as many as 7000 individuals were interviewed. There are nine parts
in the compositions: the four liberal/conservative parties currently in office (M, FP, C, KD), the
three environmentalist/socialist parties (S, V, MP), the nationalistic party (SD), and all other parties
(Other).

Figure 2 shows the smoothed series using q = 40. For the largest of party in office (M) we see
a clear increase around the start of the economic crisis in the second half of 2008, and at the same
time a large decrease for the largest opposition party (S). A close-up of the smaller parties is shown
in Figure 3. We here see a steady decline for C and an almost doubling in size for MP. Two parties
are constantly close to the election threshold; KD is just above 4 % and SD is approaching from 4 %
from below.

We also modeled the data using a number of different values of the smoothing parameter q, ranging
from 10 to 150. In Figure 4 the smoothed series are shown with q = 30, q = 40 and q = 50. As is seen
in the figure, q = 30 yields a more volatile estimate than q = 40 or q = 50 which are more smooth as
expected. We choose to use q = 40 as it seems to give a good balance between capturing the changes
in trend while not being too sensitive to individual polls.

The sequence of residual deviations di for the smoothed series in Figures 2 and 3 are shown in
Figure 5. There does not seem to be any variation due to time in the deviations. The sample size
of an opinion poll is usually varying between polling institutes but seldom between polls performed
by the same institute. If it is believed that the sample size is the primary source of the uncertainty
in the result, then there should be possible to find some smooth relation between sample size and
deviation. If this is the case we could build in this into the weighting of different polls in the distance
measure, letting more uncertain points weight less than more accurate polls. However, in Figure 6
we see no clear such relation; the deviations are smaller for larger sample sizes but there seems to be
other sources of variability too.
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Figure 3: Close-up of the smoothed Swedish opinion poll series with q = 40 with original observations. The solid black
line represents the 4 % election threshold for winning seats in the Swedish parliament.

Time

0.1

0.2

0.3

0.4

2007 2008 2009 2010

Party

M

FP

C

KD

S

V

MP

SD

Other

Figure 4: Smoothed series with q = 30 (solid line), q = 40 (dotted line), and q = 50 (dashed line). We note that q = 30
yields a much more volatile smooth than q = 40 or q = 50 which are more similar.
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Figure 5: The deviations di from the smoothed series for q = 40 plotted versus time.
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Figure 6: The deviations di from the smoothed series for q = 40 plotted versus sample size.
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Figure 7: The deviations di from the smoothed series for q = 40 plotted versus the different polling institutes.

One other possible source of variation is shown in Figure 7, where we see the deviations plotted
versus the polling institutes. There are apparently large differences between the various institutes.
The small deviations for Statistics Sweden (SCB) are explained by the fact SCB uses much larger
sample sizes: approximately 6000-7000 compared to the others institutes’ sample sizes of 1000-2000.
The large deviations of United Minds are probably explained by the fact that they use a web panel and
not a telephone interviewing scheme. We believe that the other differences are probably due different
degrees of weighting of the results using previous election results and various demographic statistics.

Finally, we also estimated a traditional Loess smooth for each of the nine parts, treating them each
as a real univariate series. The smooth is for comparability done with q = 40. The smoothed series are
plotted in Figure 8 together with the compositional Loess smoothed series. In the figure we see that
both methods yield similar results, however in this case the traditional Loess tends to underestimate
the larger parties and overestimate the smaller parties compared to the compositional Loess model.

4 Summary and conclusions

In this paper we perform smoothing of time series of compositional data, taking into account their
compositional properties. We introduce a compositional weighted least squares estimation (C-WLS)
and a compositional locally weighted regression model (C-Loess). The technique is flexible and can
be performed very efficiently for certain distance measures. Is has been shown that the technique
makes a difference as compared to traditional smoothing techniques where the inherent compositional
structure is respected.
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Appendix

The centered log-ratio transform

For a composition α in the interior of SD, the centered log-ratio transform clr and it’s inverse iclr are
defined by

y = clr(α) = (ln
α1

g(α)
, . . . , ln

αD

g(α)
)

where g(α) = (α1 · · ·αD)1/D, and

α = iclr(y) = (
exp y1∑D
1 exp yi

, . . . ,
exp yD∑D
1 exp yi

)

Hence
clr(α) = (lnα1, . . . , lnαD)− 1 ln((α1 · · ·αD)1/D) = aC

where a = (lnα1, . . . lnαD)′ and aC = (ID − 1
D1D1

T
D)a.

For a perturbation (α⊕ β) = (α1β1, . . . , αDβD)/(
∑D

1 αiβi), the clr is additive, i.e.

clr(α⊕ β) = (ln(α1β1/
D∑
1

αiβi), . . . , ln(αDβD/
D∑
1

αiβi))− 1 ln(
α1β1∑D
1 αiβi

· · · αDβD∑D
1 αiβi

)1/D)

= (ln(α1β1), . . . , ln(αDβD))− 1 ln(α1β1 · · ·αDβD)1/D) = clr(α) + clr(β)

Minimization of QC

For each t′k we minimize

QC =
n∑

i=1

wi(t
′
k)d2S{yi;α⊕ (ti � β)}

=
1

2D

n∑
i=1

wi

D∑
k=1

D∑
j=1

(ln(
yik
yij

)− ln(
αk

αj
)− ti ln(

βk
βj

))2

where yij , αj and βj are the components of yi, α and β, respectively, and where we in the notation
have suppressed the dependence of wi from t′k.

Let ηij = ln yij be the components of ηi, aj = lnαj and bj = lnβj then

QC =
1

2D

n∑
i=1

wi

D∑
k=1

D∑
j=1

(ηik − ηij − ak + aj − ti(bk − bj))2

With ci = ηi − a− tib and Ci = ci1
T − 1cTi we may write

QC =
1

2D

n∑
i=1

wi trace(CiC
T
i ) =

n∑
i=1

wic
T
i (ID −

1

D
1D1

T
D)ci

QC =
n∑

i=1

wi(ηi − a− tib)T (ID −
1

D
1D1

T
D)(ηi − a− tib)

or

QC =
n∑

i=1

wiη
T
i (ID −

1

D
1D1

T
D)ηi − 2

n∑
i=1

wiη
T
i (ID −

1

D
1D1

T
D)(a + tib)+

+
n∑

i=1

wi(a + tib)T (ID −
1

D
1D1

T
D)(a + tib)
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Introducing ηCi = (ID − 1
D1D1

T
D)ηi, aC = (ID − 1

D1D1
T
D)a and bC = (ID − 1

D1D1
T
D)b we have

QC =
n∑

i=1

wiη
T
CiηCi − 2

n∑
i=1

wiη
T
Ci(aC + tibC) +

n∑
i=1

wi(aC + tibC)T (aC + tibC)

or

QC =
n∑

i=1

wiη
T
CiηCi − 2

n∑
i=1

wiη
T
CiaC − 2

n∑
i=1

witiη
T
CibC+

+
n∑

i=1

wia
T
CaC + 2

n∑
i=1

witia
T
CbC +

n∑
i=1

wit
2
ib

T
CbC

By differentiating QC wrt aC and bC and setting these to zero we obtain, with d11 =
∑n

1 wi, d12 =∑n
1 witi, and d22 =

∑n
1 wit

2
i and further g1 =

∑n
1 wiηCi and g2 =

∑n
1 witiηCi, the equations

d11aC + d12bC = g1

and
d12aC + d22bC = g2.

These have the solutions

aC = (d22g1 − d12g2)/(d11d22 − d212) =
n∑
1

uiηCi

and

bC = (d11g2 − d12g1)/(d11d22 − d212) =

n∑
1

viηCi

where
ui = (d22wi − d12witi)/(d11d22 − d212)

and
vi = (d11witi − d12wi)/(d11d22 − d212)

which both depend on t′k. Finally
α = iclr(aC)

and
β = iclr(bC)

Compositional linear combination

For α⊕ (t′k � β) we have

clr(α⊕ (t′k � β)) = clr(α) + t′k clr(β) = aC + t′kbC =
n∑
1

(ui + t′kvi)ηCi

which can be written

clr(

n⊕
i=1

(`i(t
′
k)� yi)) =

n∑
1

`i(t
′
k) clr(yi) =

n∑
1

`i(t
′
k)ηCi

where `i(t
′
k) = ui + t′kvi where ui, vi of course also depend on t′k as well as on W , q, dE , and t1, . . . , tn

but not yi.
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