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Abstract

The fundamental limits of the gain and e�ciency of an antenna are explored.

The antenna is con�ned in a sphere and all of the currents are assumed to run

in a material with a conductivity that is a function of the radial coordinate.

The analysis is based on the expansion of the electromagnetic �elds in terms

of vector spherical harmonics. Explicit expressions for the limits of gain and

e�ciency are derived for di�erent types of antennas.

1 Introduction

Small antennas su�er from physical limitations that reduce their bandwidth and
increase return losses and ohmic losses. The limitations are caused by the large
reactive electromagnetic �elds in the vicinity of the antenna. The reactive �elds are
related to the reactive currents in the antenna, and these reactive currents causes
ohmic losses in the metal. It is important to realize that the reactive electromagnetic
�elds and currents are consequences of Maxwell's equations and hence inevitable.
This paper investigates fundamental limits of the ohmic losses in an antenna and of
the gain of an antenna. The method for the investigation is based upon expansions
of the electromagnetic �elds in terms of spherical vector waves. A similar method
was used in a classic paper by Chu [2] on the fundamental limits of the Q−value
of omni-directional antennas. The results by Chu were generalized to non-axially
symmetric antennas by Harrington [6]. There are a number of other papers that
focus on the fundamental limits of antennas and a summary of the main results can
be found in [5] and [3].

The objective of the paper is to give measures of the e�ciency of antennas that
can be used by antenna designers. It is possible to estimate the power e�ciency of a
design if one can compare it with the physical limit. If a certain power e�ciency of
an antenna is required the physical limits give the bound for the size of the antenna.
This bound indicates the realistic size of the antenna.

2 Prerequisites

The following problem is analyzed in the paper: Consider an antenna that is cir-
cumferenced by a sphere of radius a. Outside the sphere there is vacuum and the
electromagnetic �elds satisfy Maxwell's equations. The current densities are con-
�ned in a sphere and run in a metal with conductivity σ(r) and relative permittivity
εr = 1. The volume of the sphere is denoted Va. The frequency is �xed at f . What
are the physical limits for the e�ciency and the gain of such an antenna?

The time convention ejωt is adopted in the paper. The e�ciency is de�ned as

ηe� =
Prad

Prad + Pohm
(2.1)

where Prad is the radiated power and Pohm is the power dissipated in the antenna,
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due to ohmic losses. The Ohm's law J = σE holds and the ohmic loss is

Pohm =
1

2

∫
Va

1

σ(r)
|J(r)|2dv (2.2)

The far �eld amplitude F (θ, φ) of the antenna is related to the far �eld by

F (θ, φ) = lim
kr→∞

E(r)krejkr (2.3)

The radiated power is

Prad =
1

2η0k2

∫ 2π

0

∫ π

0

|F (θ, φ)|2 sin θdφdθ

The de�nition of the directivity, D, and gain, G, are

D =
2π|F (θ, φ)|2max

k2η0Prad

G = Dηe�

(2.4)

where max denotes the maximum wrt θ and φ. The wave number k = ω
√
ε0µ0 and

the wave impedance η0 =
√
µ0/ε0 refer to vacuum.

3 General antennas

In the region exterior to the sphere, the electric �eld is expanded in spherical vector
waves, uτκml(r), also referred to as partial waves. These waves satisfy Maxwell's
equations and constitute a complete set of vector valued functions on a spherical
surface. The details of the spherical vector waves are given in appendix A. The
expansion reads

E(r) =
∞∑
l=1

l∑
m=0

∑
κ=e/o

2∑
τ=1

aτκmluτκml(r). (3.1)

The corresponding magnetic �eld is given by the induction law

H(r) =
j

ωµ

∞∑
l=1

l∑
m=0

∑
κ=e/o

2∑
τ=1

aτκml∇× uτκml(r)

=
jk

ωµ

∞∑
l=1

l∑
m=0

∑
κ=e/o

2∑
τ=1

aτκmluτ ′κml(r),

(3.2)

where τ ′ = 3 − τ . Here τ = 1, 2 is the index for the two di�erent wave types (TE
and TM), κ = e for waves that are even with respect to the azimuthal angle φ and
κ = o for the waves that are odd w.r.t. to φ, l = 1, 2 . . . is the index for the polar
angle, and m = 0, . . . l is the index for the azimuthal angle. For m = 0 only the
partial waves with κ = e are non-zero, cf., Eq. (A.2). The expansion in Eq. (3.1)
covers all possible types of time harmonic sources inside Vint.
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3.1 Classi�cation

Antennas that radiate partial waves with τ = 1 are referred to as magnetic antennas,
since the reactive part of their radiated complex power is positive, i.e., inductive.
Antennas radiating partial waves with τ = 2 are referred to as electric antennas,
since they are capacitive when they are small compared to the wavelength.

The expansion coe�cients aτκml in the expansion (3.1) can theoretically be al-
tered independently of each other. Hence, each partial wave corresponds to an
independent port of the antenna. The maximum number of ports, or channels, an
antenna can use is then equal to the maximum number of partial waves the antenna
can radiate.

The following classi�cation of antennas is used in this paper:

Partial wave antenna An antenna that radiates only one partial wave (τκml).
The antenna has one port.

Magnetic multipole antenna of order l An antenna that radiates partial waves
with τ = 1 and index l. The maximum number of ports is Nlport = 2l + 1.

Electric multipole antenna of order l An antenna that radiates partial waves
with τ = 2 and index l. The maximum number of ports is Nlport = 2l + 1.

Magnetic antenna of order lmax An antenna that radiates partial waves with
τ = 1 and with l = 1, . . . lmax. The maximum number of ports is Nport =
lmax(lmax + 2).

Electric antenna of order lmax An antenna that radiates partial waves with τ =
2 and with l = 1, . . . lmax. The maximum number of ports is Nport = lmax(lmax+
2).

Combined antenna of order lmax An antenna that radiates partial waves with
τ = 1, 2 and l = 1, . . . lmax. The maximum number of ports is Nport =
2lmax(lmax + 2).

4 E�ciency

Consider �rst a partial wave antenna of magnetic type, τ = 1. Due to the orthog-
onality of the vector spherical harmonics, Eq. (A.4), and Eqs. (A.7) and (A.8), the
current density in the sphere has to be proportional to the vector wave function
A1κml(θ, φ),

J(r, θ, φ) = σ(r)f(r)A1κml(θ, φ) (4.1)

The optimization problem is to �nd f(r) such that the e�ciency is maximized. The
ohmic losses are

Pohm =
1

2

a∫
0

σ(r)(f(r))2r2dr (4.2)

due to the orthonormality of the vector wave functions, cf appendix A
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From Eq. (A.8) and the asymptotic expressions for the Hankel functions, Eq. (A.6)
it follows that the current density in Eq. (4.1) gives rise to the far �eld amplitude

F (θ, φ) = −kωµ0

a∫
0

σ(r)jl(kr)f(r)r2drjl+1A1κml(θ, φ) (4.3)

The corresponding radiated power is

Prad =
1

2k2η0

k2ω2µ2
0

(∫ a

0

σ(r)jl(kr)f(r)r2dr

)2

=
1

2
kωµ0

(∫ a

0

σ(r)jl(kr)f(r)r2dr

)2

(4.4)
The e�ciency is given by

ηe� =

(
1 +

1

kωµ0

∫ a
0
σ(r)(f(r))2r2dr(∫ a

0
σ(r)jl(kr)f(r)r2dr

)2

)−1

(4.5)

It is seen that this function is minimal when f(r) = jl(kr) and hence the maximal
e�ciency for a magnetic partial wave antenna of order l is

ηe� =

1 +
k

η0

ka∫
0

σ(x/k)(jl(x))2x2dx


−1

(4.6)

When the electric type partial wave antenna is considered the current density is

J(r) = jσ(r)∇× (f(r)A1κml(r)) (4.7)

The corresponding far �eld amplitude reads

F (θ, φ) = −kωµ0j
l+1

∫
Va

σ(r)v2κml(r
′) ·(∇′×f(r)A1κml(θ

′, φ′))dv′A2κml(θ, φ) (4.8)

The resulting e�ciency is

ηe� =

(
1 +

η0

ω2µ2
0

∫
Va
σ(r)(∇× f(r)A1κml(θ, φ))2dv

(
∫
Va
σ(r)(∇× jl(kr)A1κml(θ, φ)) · (∇× f(r)A1κml(θ, φ))dv)2

)−1

(4.9)
By assuming that f(r) = jl(kr) + αh(r) and �nding the minimum of this function,
it is seen that α = 0. Hence the most e�cient antenna of electric type has the
e�ciency

ηe� =

1 +
k

η0

ka∫
0

σ(x/k)
((
j′l(x) + 1

x
jl(x)

)2
+ l(l + 1)

(
1
x
jl(x)

)2
)
x2dx


−1

(4.10)
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Figure 1: E�ciency for magnetic (solid line) and electric (dashed line) partial wave
antenna with l = 1 (left curve), l = 2 (middle) and l = 3 (right) when σ = 107 S/m
and f = 1 GHz. Notice that the electric partial wave antenna of order l has almost
the same e�ciency as the magnetic partial wave antenna of order l − 1.

By introducing the dimensionless quantities

B1l =
η0

k

∫ ka

0

σ(x/k)(jl(x))2x2dx

B2l =
η0

k

ka∫
0

σ(x/k)

((
j′l(x) +

1

x
jl(x)

)2

+ l(l + 1)

(
1

x
jl(x)

)2
)
x2dx

the e�ciency reads

ητe� =
Bτl

Bτl + 1

where τ = 1 for the magnetic antenna and τ = 2 for the electric antenna. In the
case of constant conductivity, σ(r) = σ, the integrals can be solved analytically

B1l =
η0σa

2

(
(kaj′l)

2 + kajl(ka)j′l(ka) + ((ka)2 − l(l + 1))(jl(ka))2
)

B2l = η0σajl(ka) (jl(ka) + kaj′l(ka)) +B1l

The explicit expressions for the corresponding electric �eld, the far �eld amplitude,
the radiated and the dissipated powers are given in appendix B.

Finally, consider a combined multipole antenna with �xed far �eld amplitude for
each of the multipoles. The e�ciency of this antenna is optimized when the e�ciency
of each multipole is optimized. Thus the radial dependence of the current density of
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each multipole of index l is given by fl ∼ jl(kr) in Eqs. (4.1) and (4.7). As higher
order multipoles are added to an antenna, the e�ciency decreases. From Eqs. (4.6)
and (4.10) and �gure 1 it is seen that there are breakpoints for the e�ciency when
Bτl = 1. If ka is below this value it is very power consuming to add the multipole of
index l. On the other hand, if ka is above the value then the e�ciency is only slightly
degraded by the addition of the multipole. The curves in �gure 1 are valuable for
an antenna designer that, e.g., intends to design an antenna with a certain number
of ports.

5 Gain

The optimal directivity of a multipole antenna of order l is Dopt = Nport/2 =
(2l + 1)/2, cf., [6] and [7]. The corresponding optimal gain is

Gτl = Doptητe� =
2l + 1

2

Bτl

Bτl + 1
(5.1)

Notice that Gl → Nport/2 = (2l + 1)/2 as ka→∞ and Gτl is very close to Nport/2
once ka passes the breakpoint given by Bτl = 1.
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Figure 2: Optimal gain for an electric (dashed line) or magnetic (solid line) antenna
of order lmax = 1, 2, . . . 4, when σ = 1 · 107 S/m. The frequency is f = 1 GHz.
Asymptotically the gain approaches the maximum directivity Dopt = Nport/2 =
lmax(lmax + 2)/2.

The optimal gain of an electric or magnetic antenna of order lmax is somewhat
harder to �nd. However it turns out that the antenna with the optimal gain has a
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Figure 3: Optimal gain for an electric antenna of order lmax = 5, when σ = 1 · 107

S/m as a function of ka. The frequency is f = 10 GHz (dash-dot line), f = 1 GHz
(dashed line) and f = 100 MHz (solid line). Notice that the maximum gain does
not scale with frequency if the conductivity is kept constant.

gain that is the sum of the optimal gains of the multipole antennas. Thus

Gτ =
lmax∑
l=1

Gτl =
lmax∑
l=1

2l + 1

2

Bτl

Bτl + 1
(5.2)

The proof is given in appendix B. Also here G→ Nport/2 as ka→∞, cf., �gure 2.
The e�ciency of the order lmax antenna is

ητ =
Gτ

lmax(lmax + 2)
(5.3)

The optimal gain of a combined antenna of order lmax is simply G = G1 +G2.

6 Concluding remarks

The currents that give the most optimal antennas in this paper were chosen inde-
pendently of Maxwell's equations. Needless to say, the real currents that can be
created inside a spherical volume have to satisfy Maxwell's equations and will su�er
from induction and capacitive coupling that lead to e�ects that are hard to tamper
with, e.g., the skin e�ect. Thus it is not possible to realize the optimal currents.
Anyway, the physical limits of antennas give the antenna designer indications on
the achievable e�ciency, gain and bandwidth for an antenna of a certain size and
frequency. The limits also serve as a measures of the quality of a design. If the
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values of e�ciency, gain and bandwidth are far from the physical limits it might be
worthwhile to redesign the antenna. This paper gives no rules of thumb on what
can be considered as far from the physical limits, that is left to the designers to
explore. It is quite straightforward to write a computer program that illustrates
the current densities in Eq. (B.8) in two-dimensional graphs. From such graphs a
designer can get ideas on how to construct an antenna with high gain. It is seen that
an antenna that is large compared to the wavelength should have its currents close
to the surface of the sphere in order to maximize the gain whereas a an antenna
that is small compared to the wavelength should have its currents distributed over
the entire volume. The amplitude and phase of these currents can be obtained from
a graph of the optimal current density.

Appendix A Vector waves and Green dyadic

The de�nition of spherical vector waves can be found in di�erent textbooks, e.g. [4]
and [6]. In this paper they are de�ned using vector spherical harmonics, cf., [1]

A1κml(θ, φ) =
1√

l(l + 1)
∇× (rYκml(θ, φ))

A2κml(θ, φ) =
1√

l(l + 1)
r∇Yκml(θ, φ)

A3κml(θ, φ) = r̂Yml(θ, φ).

(A.1)

The following de�nition of the spherical harmonics is used:

Yκml(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

(
cosmφ
sinmφ

)
(A.2)

where εm = 2− δm0 and κ, m, l take the values

κ =

(
e
o

)
, m = 0, 1, 2, . . . , l, l = 0, 1, . . . (A.3)

In the current application the index l will never take the value 0, since there are no
monopole antennas. The vector spherical harmonics constitute an orthogonal set of
vector functions on the unit sphere∫

Ω

Aτn(θ, φ) ·Aτ ′n′(θ, φ)dΩ = δττ ′δnn′ (A.4)

where the integration is over the unit sphere and where n = κml. The outgoing
divergence-free spherical vector waves are de�ned by

u1n(r) = hl(kr)A1n(θ, φ)

u2n(r) =
1

k
∇× (hl(kr)A1n(θ, φ))

= h′l(kr)A2n(θ, φ) +
1

kr
hl(kr)(A2n(θ, φ) +

√
l(l + 1)A3n(θ, φ))

(A.5)
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where hl(kr) = h
(2)
l (kr) is the spherical Hankel function of the second kind. The

asymptotic behavior in the far zone of the spherical Hankel functions is

h
(2)
l (kr)→ jl+1 e

−jkr

kr
when|k|r →∞ (A.6)

The regular wave function vτn(r) are obtained by replacing the spherical Hankel
functions h with the corresponding spherical Bessel functions.

The Green dyadic is given by

G(r, r′) = −j
∑
n

vn(r<)un(r>) (A.7)

where vn(r) is the regular wave function. In a homogeneous space with current
density J the electric �eld is given by

E(r) = −jωµ0k

∫
Va

G · Jdv (A.8)

Appendix B Optimal gain of an electric or magnetic

antenna of order lmax.

For a given far �eld amplitude the most e�cient current distribution for each partial
wave is the same as for a multipole antenna of order l. Thus the current densities
read

J(r) = σ(r)
2∑

τ=1

∑
n

γτnj
−l+τvτn(r)

where n is the multi-index n = κml, γτn are the so far unknown amplitudes of the
currents and the factor j−l−τ has been introduced for convenience. The correspond-
ing far �eld amplitude, the radiated power, and the dissipated power read

F (θ, φ) =
2∑

τ=1

∑
n

γτnBτlAτn(θ, φ)

Prad =
1

2η0k2

2∑
τ=1

∑
n

(γτnBτl)
2

Pohm =
1

2η0k2

2∑
τ=1

∑
n

γ2
τnBτl

(B.1)

The gain is given by

G =
2π|F (θ, φ)|2max

k2η0(Prad + Pohm)
(B.2)

That results in the following expression

G =
4π
(∑2

τ=1

∑
n γτnBτlAτn(θ, φ)

)2

max∑2
τ=1

∑
n γ

2
τn (B2

τl +Bτl)
(B.3)
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where max is with respect to θ and φ. At this stage one can use the same technique
as in [6] or [7] to �nd the maximal gain. Let the direction of maximum gain be ẑ,
i.e., θ = 0 and the polarization be x̂. Then

G =
4π
(∑2

τ=1

∑
n γτnBτl|x̂ ·Aτn(0, φ)|

)2

max∑2
τ=1

∑
n γ

2
τn (B2

τl +Bτl)
(B.4)

where

|x̂ ·A1n(0, φ)| = δm1δσo

√
2l + 1

8π

|x̂ ·A2n(0, φ)| = δm1δσe

√
2l + 1

8π

(B.5)

That means that only m = 1 terms should be in the sum.
The extreme value of G is when ∂G

∂γτl
= 0 for all l. That leads to the relations

γτl =

√
2l + 1

3

B11 + 1

Bτl + 1
γ11 =

√
2l + 1

3

B21 + 1

Bτl + 1
γ21 (B.6)

and the gain

G =
2∑

τ=1

lmax∑
l=1

2l + 1

2

Bτl

Bτl + 1
(B.7)

If only electric or magnetic antennas are used than the sum in τ is omitted.
The optimal current density is

J(r, θ, φ) =
2∑

τ=1

lmax∑
l=1

j−l+τγ11

√
2l + 1

3

B11 + 1

Bτl + 1
(v1o1l(r, θ, φ)δτ1 + v2e1l(r, θ, φ)δτ2)

(B.8)
The regular vector waves vτκml(r) are given in appendix A. These current densities
result in a far �eld that is maximal in the direction θ = 0 and with the electric �eld
polarized in the x-direction. The corresponding far �eld amplitude and the electric
�eld are given by

F (θ, φ) =
2∑

τ=1

lmax∑
l=1

γ11

√
2l + 1

3

B11 + 1

Bτl + 1
Bτl (A1o1l(r, θ, φ)δτ1 + A2e1l(r, θ, φ)δτ2)

E(r, θ, φ) =
2∑

τ=1

lmax∑
l=1

j−l+τ+2γ11

√
2l + 1

3

B11 + 1

Bτl + 1
Bτl (u1o1l(r, θ, φ)δτ1 + u2e1l(r, θ, φ)δτ2)

(B.9)
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