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1AbstratIn this paper, physial limitations on bandwidth, realized gain, Q-fator, anddiretivity are derived for antennas of arbitrary shape. The produt of band-width and realizable gain is shown to be bounded from above by the eigenval-ues of the long wavelength high-ontrast polarizability dyadis. These dyadisare proportional to the antenna volume and easily determined for an arbitrarygeometry. Ellipsoidal antenna volumes are analyzed in detail and numeri-al results for some generi geometries are presented. The theory is veri�edagainst the lassial Chu limitations for spherial geometries, and shown toyield sharper bounds for the ratio of the diretivity and the Q-fator for non-spherial geometries.1 IntrodutionThe onept of physial limitations for eletrially small antennas was �rst intro-dued more than half a entury ago in Refs. 3 and 24, respetively. Sine then,muh attention has been drawn to the subjet and numerous papers have been pub-lished, see Ref. 12 and referenes therein. Unfortunately, almost all these papersare restrited to the sphere via the spherial vetor wave expansions, deviating onlyslightly from the pioneering ideas introdued in Ref. 3.The objetive of this paper is to derive physial limitations on bandwidth, real-ized gain, Q-fator, and diretivity for antennas of arbitrary shape. The limitationspresented here generalize in many aspets the lassial results by Chu. The mostimportant advantage of the new limitations is that they no longer are restrited tothe sphere but instead hold for arbitrary antenna volumes. In fat, the smallest ir-umsribing sphere is far from optimal for many antennas, f., the dipole and loopantennas in Se. 8. Furthermore, the new limitations suessfully separate the ele-tri and magneti material properties of the antennas and quantify them in termsof their polarizability dyadis.The new limitations introdued here are also important from a radio systempoint of view. Spei�ally, they are based on the bandwidth and realizable gainas well as the Q-fator and the diretivity. The interpretation of the Q-fator interms of the bandwidth is still subjet to some researh, see Ref. 25. Moreover,the new limitations permit the study of polarization e�ets and their in�uene onthe antenna performane. An example of suh an e�et is polarization diversity forappliations in MIMO ommuniation systems.The present paper is a diret appliation of the physial limitations for broad-band sattering introdued in Refs. 19 and 20, where the integrated extintion isrelated to the long wavelength polarizability dyadis. The underlying mathematialdesription is strongly in�uened by the onsequenes of ausality and the sum-mation rules and dispersion relations in the sattering theory for the Shrödingerequation, see Refs. 16, 17 and 22.
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Figure 1: Illustration of a hypotheti antenna subjet to an inident plane-wave inthe k̂-diretion.2 Sattering and absorption of antennasThe present theory is inspired by the general sattering formalism of partiles andwaves in Refs. 16 and 22. In fat, based on the assumptions of linearity, time-translational invariane and ausality there is no fundamental di�erene betweenantennas and properly modeled satterers. This kind of fruitful equivalene betweenantenna and sattering theory has already been enountered in the literature, f.,the limitations on the absorption e�ieny in Ref. 2 and its relation to minimumsattering antennas. Without loss of generality, the integrated extintion and thetheory introdued in Ref. 19 an therefore be argued to also hold for antennas ofarbitrary shape. In ontrast to Ref. 19, the present paper fouses on the absorptionross setion rather than sattering properties.For this purpose, onsider an antenna of arbitrary shape surrounded by freespae and subjet to a plane-wave exitation impinging in the k̂-diretion, see Fig. 1.The antenna is assumed to be lossless with respet to ohmi losses and satisfy thefundamental priniples of linearity, time-translational invariane and ausality. Thedynamis of the antenna is modeled by the Maxwell equations with general reiproalanisotropi onstitutive relations. The onstitutive relations are expressed in termsof the eletri and magneti suseptibility dyadis, χe and χm, respetively, whihare funtions of the material properties of the antenna.The assumption of a lossless antenna is not severe sine the analysis an bemodi�ed to inlude ohmi losses, see the disussion in Se. 9. In fat, ohmi lossesare important for small antennas, and taking suh e�ets into aount, suggest thatthe lossless antenna is more advantageous than the orresponding antenna withohmi losses. Reall that χe and χm also depend on the angular frequeny ω of theinident plane-wave in the presene of losses.The bounding volume V of the antenna is of arbitrary shape with the restritionthat the omplete absorption of the inident wave is ontained within V . Thebounding volume is naturally delimited by a referene plane or a port at whih aunique voltage and urrent relation an be de�ned, see Fig. 1. The present de�nitionof the antenna struture inludes the mathing network and is of the same kind as



3the desriptions in Refs. 3 and 25. The re�etion oe�ient Γ at the port is dueto the unavoidable impedane mismath of the antenna over a given wavelengthinterval, see Ref. 5. The present analysis is restrited to single port antennas with asalar (single) re�etion oe�ient. The extension to multiple ports is ommentedbrie�y in Se. 9.For any antenna, the sattered eletri �eld Es in the forward diretion k̂ anbe expressed in terms of the forward sattering dyadi S as, see Appendix A,
Es(k, xk̂) =

eikx

x
S(k, k̂) · E0 + O(x−2) as x→ ∞. (2.1)Here, E0 denotes the Fourier amplitude of the inident �eld Ei(c0t−k̂ ·x), and k is aomplex variable with Re k = ω/c0 and Im k ≥ 0. For a large lass of antennas, theelements of S are holomorphi in k and Cauhy's integral theorem an be appliedto

̺(k) =
1

k2
p̂∗

e · S(k, k̂) · p̂e, k ∈ C. (2.2)Here, p̂e = E0/|E0| denotes the eletri polarization, whih is assumed to be inde-pendent of k.1 The omplex-valued funtion (2.2) is referred to as the extintionvolume and it provides a holomorphi extension of the extintion ross setion to
Im k ≥ 0, see Appendix A.A dispersion relation or summation rule for the extintion ross setion an bederived in terms of the eletri and magneti polarizability dyadis γe and γm,respetively. The derivation is based on energy onservation via the optial theoremin Refs. 16 and 22. The optial theorem σext = 4πk Im ̺ and the asymptoti behaviorof the extintion volume ̺ in the long wavelength limit, |k| → 0, are the key buildingbloks in the derivation. The result is the integrated extintion

∫ ∞

0

σext(λ) dλ = π2(p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m), (2.3)where the magneti (or ross) polarization p̂m = k̂ × p̂e has been introdued. Thefuntional dependene on k̂ and p̂e is for simpliity suppressed from the argumenton the left hand side of (2.3). Note that (2.3) also an be formulated in k = 2π/λ viathe transformation σext(λ) → 2πσext(2π/k)/k
2. For details on the derivation of (2.3)and de�nition of the extintion ross setion σext and the polarizability dyadis γeand γm, see Appendix A and B. The integrated extintion applied to satteringproblems is exploited in Ref. 19.It is already at this point important to notie that the right hand side of (2.3)only depends on the long wavelength limit or stati response of the antenna, whilethe left hand side is a dynami quantity whih inludes the absorption and satteringproperties of the antenna. Furthermore, eletri and magneti properties are seento be treated on equal footing in (2.3), both in terms of material properties andpolarization desription.1Observe that the assumption that p̂

e
is independent of k does not imply that the polarizationof the antenna in Fig. 1 is frequeny independent.
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Figure 2: Illustration of the two types of physial limitations onsidered in thispaper: GΛB represented by the shaded box (left �gure) and D/Q related to thedotted resonane model (right �gure).The antenna parameters of importane in this paper are the partial gain G andthe partial diretivity D, see Appendix E and Ref. 13. In general, both G and Ddepend on the inident diretion k̂ and the eletri polarization p̂e as well as thewave number k. In addition, the partial realized gain, (1 − |Γ |2)G, depends onthe re�etion oe�ient Γ . In the forthoming analysis, the relative bandwidth B,the Q-fator, and the assoiated enter wavelength λ0 are naturally introdued asintrinsi parameters in the sense that neither of them depend on k̂ or p̂e for a givensingle port antenna.Two di�erent types of bounds on the �rst resonane of an antenna are addressedin this paper, see Fig. 2. The bounds relate the integral (2.3) of two generi in-tegrands to the polarizability dyadis. The bound on the partial realized gain,
(1 − |Γ |2)G, in the left �gure takes the form of a box, i.e., it estimates the integralwith the bandwidth times the partial realized gain. The bound in the right �gureutilizes the lassial resonane shape of the integrand giving a bound expressed interms of the partial diretivity and the assoiated Q-fator.3 Limitations on bandwidth and gainFrom the de�nition of the extintion ross setion σext it is lear that it is non-negative and bounded from below by the absorption ross setion σa. For anunmathed antenna, σa is redued by the re�etion loss 1 − |Γ |2 aording to
σa = (1 − |Γ |2)σa0, where σa0 denotes the absorption ross setion or partial ef-fetive area for the orresponding perfetly mathed antenna, see Refs. 18 and 13.The absorption ross setion σa0 is by reiproity related to the partial antennadiretivity D as D = 4πσa0/λ

2, see Ref. 18. Thus, for any wavelength λ ∈ [0,∞),
σext ≥ σa = (1 − |Γ |2)σa0 =

1

4π
(1 − |Γ |2)λ2D. (3.1)



5Reall that D depends on the eletri polarization p̂e as well as the inident diretion
k̂. In the present ase of no ohmi losses, the partial gainG oinides with the partialdiretivity D.Introdue the wavelength interval Λ = [λ1, λ2] with enter wavelength λ0 =
(λ2 + λ1)/2 and assoiated relative bandwidth

B = 2
λ2 − λ1

λ2 + λ1

= 2
k1 − k2

k2 + k1

,where 0 < B ≤ 2 and k = 2π/λ ∈ K denotes the angular wave number in K =
[k2, k1]. Thus, for any wavelength interval Λ, the estimate σext ≥ σa in (3.1) yields

∫ ∞

0

σext(λ) dλ ≥
∫

Λ

σa(λ) dλ =
1

4π

∫

Λ

(1 − |Γ |2)λ2G(λ) dλ, (3.2)where D = G is used.2In order to simplify the notation, introdue GΛ = infλ∈Λ(1− |Γ |2)G as the min-imum partial realized gain over the wavelength interval Λ. Following this notation,the integral on the right hand side of (3.2) an be estimated from below as
∫

Λ

(1 − |Γ |2)λ2G(λ) dλ ≥ GΛ

∫

Λ

λ2 dλ = λ3
0GΛB

(
1 +

B2

12

)
. (3.3)Without loss of generality, the fator 1 + B2/12 an be estimated from below byunity. This estimate is also supported by the fat that B ≪ 2 in many appliations.Based upon this observation, (2.3), (3.2) and (3.3) an be summarized to yield thefollowing limitation on the produt GΛB valid for any antenna satisfying the generalassumptions stated in Se. 2:

GΛB ≤ 4π3

λ3
0

(p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m). (3.4)Relation (3.4) is one of the main results of this paper. Note that the fator 4π3/λ3
0neatly an be expressed as k3

0/2 in terms of the angular wave number k0 = 2π/λ0.The estimate 1+B2/12 ≥ 1 in (3.3) is motivated by the simple form of (3.4). Inbroadband appliations, B is in general not small ompared to unity, and the higherorder term in B should be inluded on the left hand side of (3.4).The right hand side of (3.4) depends on both p̂e and k̂ = p̂e × p̂m, as well as thelong wavelength limit (stati limit with respet to k = 2π/λ) material propertiesand shape of the antenna. It is indeed surprising that it is just the long wavelengthlimit properties of the antenna that bound the produt GΛB in (3.4). Sine γe and
γm are proportional to the volume V of the antenna, see Ref. 19, it follows from (3.4)that the upper bound on the produt GΛB is diretly proportional to V/λ3

0 or k3
0a

3,where a denotes the radius of the volume-equivalent sphere.2The equality sign on the left hand side in (3.2) is motivated by the broadband absorptione�ieny introdued in (3.7).



6In many antenna appliations it is desirable to bound the produt GΛB inde-pendently of the material properties. For this purpose, introdue the high-ontrastpolarizability dyadi γ∞ as the limit of either γe or γm when the elements of χeor χm in the long wavelength limit simultaneously approah in�nity.3 Note thatthis de�nition implies that γ∞ is independent of any material properties, dependingonly on the geometry of the antenna. From the variational properties of γe and
γm disussed in Ref. 19 and referenes therein, it follows that both γe and γm arebounded from above by γ∞. Hene, (3.4) yields

GΛB ≤ 4π3

λ3
0

(p̂∗
e · γ∞ · p̂e + p̂∗

m · γ∞ · p̂m). (3.5)The introdution of the high-ontrast polarizability dyadi γ∞ in (3.5) is the startingpoint of the analysis below.The high-ontrast polarizability dyadi γ∞ is real-valued and symmetri, andonsequently diagonalizable with real-valued eigenvalues. Let γ1 ≥ γ2 ≥ γ3 denotethe three eigenvalues. Based on the onstraint p̂e · p̂m = 0, whih is a onsequene ofthe free spae plane-wave exitation, the right hand side of (3.5) an be estimatedfrom above as
sup

p̂e·p̂m=0

GΛB ≤ 4π3

λ3
0

(γ1 + γ2). (3.6)The interpretation of the operator sup
p̂e·p̂m=0 is polarization mathing, i.e., thepolarization of the antenna oinides with the polarization of the inident wave.In the ase of non-magneti antennas, γm = 0, the seond eigenvalue γ2 in (3.6)vanishes. Hene, the right hand side of (3.6) an be improved by at most a fator oftwo by utilizing magneti materials. Note that the upper bounds in (3.5) and (3.6)oinide when γ∞ is isotropi.Sine γ1 and γ2 only depend on the long wavelength properties of the antenna,they an easily be alulated for arbitrary geometries using either the �nite elementmethod (FEM) or the method of moments (MoM). Numerial results of γ1 and γ2for the Platoni solids, the retangular parallelepiped and some lassial antennasare presented in Ses. 7 and 8. Important variational properties of γj are disussedin Ref. 19 and referenes therein. The in�uene of supporting ground planes andthe validity of the method of images for high-ontrast polarizability alulations arepresented in Appendix C.The estimate in (3.2) an be improved based on a priori knowledge of the sat-tering properties of the antenna. In fat, σext ≥ σa in (3.1) may be replaed by

σext = σa/η, where 0 < η ≤ 1 denotes the absorption e�ieny of the antenna, seeRef. 2. For most antennas at the resonane frequeny, η ≤ 1/2, but exeptions fromthis rule of thumb exist. In partiular, minimum sattering antennas (MSA) de�nedby η = 1/2 yield an additional fator of two on the right hand side of (3.1). Theinequality in (3.2) an be replaed by the equality
∫

Λ

σext(λ) dλ = η̃−1

∫

Λ

σa(λ) dλ. (3.7)3Reall that χ
e
and χ

m
are real-valued in the long wavelength limit. In the ase of �nite orin�nite ondutivity, see Appendix B.



7The onstant η̃ is bounded from above by the absorption e�ieny via η̃ ≤ supλ∈Λ η,and provides a broadband generalization of the absorption e�ieny. If η̃ is invokedin (3.2), the right hand side of the inequalities (3.4), (3.5), and (3.6) are sharpenedby the multipliative fator η̃.4 Limitations on Q-fator and diretivityUnder the assumption of N non-interfering resonanes haraterized by the real-valued angular wave numbers kn, a multiple resonane model for the absorptionross setion is
σa(k) = 2π

N∑

n=1

̺n
Qnkn

1 +Q2
n(k/kn − kn/k)2/4

, (4.1)where k is assumed real-valued and ̺n are positive weight funtions satisfying∑
n ̺n = ̺(0). Here, the Q-fator of the resonane at kn is denoted by Qn, andfor Qn ≫ 1, the assoiated relative half-power bandwidth is Bn ∼ 2/Qn, see Fig. 3.Reall that Qn ≥ 1 is onsistent with 0 < Bn ≤ 2. For the resonane model (4.1),one an argue that Qn in fat oinides with the orresponding antenna Q-fator inAppendix F when the relative bandwidth 2/Qn is based on the half-power threshold,see also Refs. 6 and 25. In the ase of strongly interfering resonanes, the model (4.1)either has to be modi�ed or the estimates in Se. 3 have to be used.The absorption ross setion is the imaginary part, σa = 4πk Im ̺a, of the fun-tion

̺a(k) =
N∑

n=1

̺n
iQnkn/(2k)

1 − iQn (k/kn − kn/k) /2
, (4.2)for real-valued k. The funtion ̺a(k) is holomorphi for Im k > 0 and has a symmet-rially distributed pair of poles for Im k < 0, see Fig. 3. The integrated absorptionross setion is

1

4π2

∫ ∞

−∞

σa(k)

k2
dk = ̺a(0) = η̺̃(0) ≤ ̺(0), (4.3)where ̺(0) is given by the long wavelength limit (A.4).For antennas with a dominant �rst resonane at k = k1, it follows from (3.1)and (4.1) that the partial realized gain G satis�es

(1 − |Γ |2)G =
k2σa

π
≤ ̺(0)

2k2Qk1

1 +Q2(k/k1 − k1/k)2/4
, (4.4)where ̺1 ≤ ̺(0) has been used. The right hand side of (4.4) reahes its maximumvalue ̺(0)2k3

1Q/(1−Q−2) at k0 = k1(1−2Q−2)−1/2 or k0 = k1 +O(Q−2) as Q→ ∞.Hene, k0 is a good approximation to k1 if Q ≫ 1. For a lossless antenna whih isperfetly mathed at k = k0, the partial realized gain (1−|Γ |2)G oinides with thepartial diretivity D. Under this assumption, (4.4) yields D/Q ≤ ̺(0)2k3
1/(1−Q−2)whih further an be estimated from above as

D

Q
≤ k3

0

2π
(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m) , (4.5)
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Figure 3: The symmetrially distributed pair of poles (×) of the extintion volume
̺ in the omplex k-plane (left �gure) and the orresponding single resonane modelof Im ̺ when Qn ≫ 1 (right �gure).where (A.4) have been used. Relation (4.5) together with (3.5) onstitute the mainresults of this paper.Analogous to (3.5) and (3.6), it is lear that (4.5) an be estimated from aboveby the high-ontrast polarizability dyadi γ∞ and the assoiated eigenvalues γ1 and
γ2, viz.,

sup
p̂e·p̂m=0

D

Q
≤ k3

0

2π
(γ1 + γ2). (4.6)Here, (4.6) is subjet to polarization mathing and therefore independent of theeletri and magneti polarizations, p̂e and p̂m, respetively. Note that the upperbounds in (4.5) and (4.6) only di�er from the orresponding results in (3.5) and (3.6)by a fator of π, i.e., GΛB ≤ πC and D/Q ≤ C. Hene, it is su�ient to onsidereither the GΛB bound or the D/Q bound for a spei� antenna. The estimates (4.5)and (4.6) an be improved by the multipliative fator η̃ if a priori knowledge of thesattering properties of the antenna (3.7) is invoked in (4.4).The resonane model for the absorption ross setion in (4.1) is also diretlyappliable to the theory of broadband sattering in Ref. 19. In that referene, (4.1)an be used to model absorption and sattering properties and yield new limitationson broadband sattering.5 Comparison with Chu and Chu-FanoIn this setion, the bounds on GΛB and D/Q subjet to mathed polarizations, i.e.,inequalities (3.6) and (4.6), are ompared with the orresponding results by Chuand Fano in Refs. 3 and 5, respetively.



95.1 Limitations on Q-fator and diretivityThe lassial limitations derived by Chu in Ref. 3 relate the Q-fator and the di-retivity D to the quantity k0a of the smallest irumsribing sphere. Using thenotation of Ses. 3 and 4, the lassial result by Chu for an omni-diretional an-tenna (for example in the azimuth plane) reads
sup

p̂e·p̂m=0

D

Q
≤ 3

2

k3
0a

3

k2
0a

2 + 1
=

3

2
k3

0a
3 + O(k5

0a
5) as k0a→ 0. (5.1)In the general ase of both TE- and TM-modes, (5.1) must be modi�ed, see Ref. 12,viz.,

sup
p̂e·p̂m=0

D

Q
≤ 6k3

0a
3

2k2
0a

2 + 1
= 6k3

0a
3 + O(k5

0a
5) as k0a→ 0. (5.2)Note that (5.2) di�ers from (5.1) by approximately a fator of four when k0a≪ 1.The bounds in (5.1) and (5.2) should be ompared with the orresponding resultin Se. 4 for the sphere. For a sphere of radius a, the eigenvalues γ1 and γ2 aredegenerated and equal to 4πa3, see Se. 6. Insertion of γ1 = γ2 = 4πa3 into (4.6)yields sup

p̂e·p̂m=0D/Q ≤ C, where the onstant C is given by
C = 4k3

0a
3, C = 2k3

0a
3, C = k3

0a
3. (5.3)The three di�erent ases in (5.3) orrespond to both eletri and magneti materialproperties (C = 4k3

0a
3), pure eletri material properties (C = 2k3

0a
3), and pureeletri material properties with a priori knowledge of minimum sattering hara-teristis (C = k3

0a
3 with η̃ = 1/2), respetively. Note that the third ase in (5.3)more generally an be expressed as C = 2k3

0a
3η̃ for any broadband absorption e�-ieny 0 < η̃ ≤ 1. The bounds in (5.2) and (5.3) are omparable although the newlimitations (5.3) are sharper. In the omni-diretional ase, (5.1) provides a sharperbound than (5.3), exept for the pure eletri ase with absorption e�ieny η̃ < 3/4.5.2 Limitations on bandwidth and gainThe limitation (3.6) should also be ompared with the result of Chu when the Fanotheory of broadband mathing is used. The Fano theory inludes the impedanevariation over the frequeny interval to yield limitations on the bandwidth, seeRef. 5. For a resonane iruit model, the Fano theory yields that the relationbetween B and Q is, see Ref. 6,

B ≤ π

Q ln 1/|Γ | . (5.4)The re�etion oe�ient Γ is due to mismath of the antenna. It is related to thestanding wave ratio SWR as |Γ | = (SWR − 1)/(1 + SWR).Introdue Qs as the Q-fator of the smallest irumsribing sphere with 1/Qs =
k3

0a
3 +O(k5

0a
5) as k0a→ 0 for omni-diretional antennas. Under this assumption, it



10follows from (5.1) that sup
p̂e·p̂m=0D ≤ 3Q/2Qs. Insertion of this inequality into (5.4)then yields
sup

p̂e·p̂m=0

GΛB ≤ 3π

2

1 − |Γ |2
ln 1/|Γ | k

3
0a

3. (5.5)For a given k0a, the right hand side of (5.5) is monotone in |Γ | and bounded fromabove by 3πk3
0a

3. However, note that the Chu-Fano limitation (5.5) is restrited toomni-diretional antennas with k0a≪ 1.Inequality (5.5) should be ompared with the orresponding result in Se. 3 forthe smallest irumsribing sphere. Sine the upper bounds (3.6) and (4.6) onlydi�er by a fator of π, i.e., sup
p̂e·p̂m=0GΛB ≤ C ′ and sup

p̂e·p̂m=0D/Q ≤ C where
C ′ = πC, it follows from (5.3) that

C ′ = 4πk3
0a

3, C ′ = 2πk3
0a

3, C ′ = πk3
0a

3. (5.6)The three ases in (5.3) orrespond to both eletri and magneti material properties(C ′ = 4πk3
0a

3), pure eletri material properties (C ′ = 2πk3
0a

3), and pure eletrimaterial properties with a priori knowledge of minimum sattering harateristis(C ′ = πk3
0a

3), respetively.The limitations on GΛB based on (5.6) are omparable with (5.5) for most re-�etions oe�ients |Γ |. For |Γ | < 0.65 the Chu-Fano limitation (5.5) provides aslightly sharper bound on GΛB than (5.6) for pure eletri materials. However, re-all that the spherial geometry gives an unfavorable omparison with the presenttheory, sine for many antennas the eigenvalues γ1 and γ2 are redued onsiderablyompared with the smallest irumsribing sphere, f., the dipole in Se. 8.1 and theloop antenna in Se. 8.2.6 Ellipsoidal geometriesClosed-form expressions of γe and γm exist for the ellipsoidal geometries, see Ref. 19,viz.,
γe = V χe · (I + L · χe)

−1, γm = V χm · (I + L · χm)−1. (6.1)Here, I denotes the unit dyadi and V = 4πa1a2a3/3 is the volume of ellipsoid interms of the semi-axes aj. The depolarizability dyadi L is real-valued and symmet-ri, and hene diagonalizable with real-valued eigenvalues. The eigenvalues of L arethe depolarizing fators Lj, given by
Lj =

a1a2a3

2

∫ ∞

0

ds

(s+ a2
j)
√

(s+ a2
1)(s+ a2

2)(s+ a2
3)
, j = 1, 2, 3. (6.2)The depolarizing fators Lj satisfy 0 ≤ Lj ≤ 1 and∑j Lj = 1. The semi-axes aj areassumed to be ordered suh that L1 ≤ L2 ≤ L3. Closed-form expressions of (6.2)in terms of the semi-axis ratio ξ = (minj aj)/(maxj aj) exist for the ellipsoids ofrevolution, i.e., the prolate spheroids (L2 = L3) and the oblate spheroids (L1 = L2),see Appendix G.



11
Prolate: 

Oblate: 

Prolate: 

Oblate: 

Prolate MSA: 

Oblate MSA: 

° 1 + ° 2 
° 1 + ° 2 
° 1 
° 1 

° 1 
° 1 

0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

2 

2.5 

3 

» 

° = V s j 

Prolate:  ° 2 = ° 3 
 

Oblate:  ° 1 = ° 2 

 Prolate:  ° 1 
 

 

Oblate:  ° 3 
 

D/Q/(k 0 a 
3 ) 

0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

Chu (TM)

(TE+TM) 

» Figure 4: The eigenvalues γ1 ≥ γ2 ≥ γ3 (left �gure) and the quotient D/Q (right�gure) for the prolate and oblate spheroids as funtion of the semi-axis ratio ξ.Note the normalization with the volume Vs = 4πa3/3 of the smallest irumsribingsphere.The high-ontrast polarizability dyadi γ∞ is given by (6.1) as the elements of χeor χm simultaneously approah in�nity. From (6.1) it is lear that the eigenvaluesof γ∞ are given by γj = V/Lj. For the prolate and oblate spheroids, V is neatlyexpressed in terms of the volume Vs = 4πa3/3 of the smallest irumsribing sphere.The results are V = ξ2Vs and V = ξVs for the prolate and oblate spheroids, respe-tively. The eigenvalues γ1 and γ2 for the prolate and oblate spheroids are depitedin the left �gure in Fig. 4. Note that the urves for the oblate spheroid approah
4/π in the limit as ξ → 0, see Appendix G. The orresponding limiting value forthe urves as ξ → 1 is 3.The general bound on GΛB for arbitrary ellipsoidal geometries is obtained byinserting (6.1) into (3.4), i.e.,
GΛB ≤ 4π3V

λ3
0

(
p̂∗

e · χe · (I + L · χe)
−1 · p̂e + p̂∗

m · χm · (I + L · χm)−1 · p̂m

)
. (6.3)Independent of both material properties and polarization e�ets, the right hand sideof (6.3) an be estimated from above in analogy with (3.6). The result is

sup
p̂e·p̂m=0

GΛB ≤ 4π3V

λ3
0

(
1

L1

+
1

L2

)
. (6.4)In the non-magneti ase, the seond term on the right hand side of (6.3) and (6.4)vanishes. For the prolate and oblate spheroids, the losed-form expressions of Lj inAppendix G an be introdued to yield expliit upper bounds on GΛB.
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circular disk circular needleFigure 5: Geometry of the irular disk and needle.The orresponding results for the quotient D/Q are obtained from the observa-tion that GΛB ≤ πC is equivalent to D/Q ≤ C, see Se. 4. For the general aseinluding polarization and material properties, (6.3) yields
D

Q
≤ k3

0V

2π

(
p̂∗

e · χe · (I + L · χe)
−1 · p̂e + p̂∗

m · χm · (I + L · χm)−1 · p̂m

)
. (6.5)Analogous to (6.4), the restrition to mathed polarizations for the quotient D/Qreads

sup
p̂e·p̂m=0

D

Q
≤ k3

0V

2π

(
1

L1

+
1

L2

)
. (6.6)The upper bound in (6.6) is depited in the right �gure in Fig. 4 for the prolate andoblate spheroids. The solid urves orrespond to ombined eletri and magnetimaterial properties, while the dashed urves represent the pure eletri ase. Thenon-magneti minimum sattering ase (η̃ = 1/2) is given by the dotted urves.Note that the three urves in the right �gure vanish for the prolate spheroid as

ξ → 0. The orresponding limiting values for the oblate spheroid are 16/3π, 8/3πand 4/3π, see Appendix G.The urves depited in the right �gure in Fig. 4 should be ompared with thelassial results for the sphere in (5.1) and (5.2). The omni-diretional bound (5.1)and its generalization (5.2) are marked in Fig. 4 by Chu (TE) and (TE+TM), re-spetively. From the �gure, it is lear that (6.6) provides a sharper bound than (5.2).For omni-diretional antennas, (5.1) is slightly sharper than (6.6) for the sphere, butwhen a priori knowledge of minimum sattering harateristis (η̃ = 1/2) is used, thereversed onlusion holds. Reall that the lassial results in Se. 5.1 are restritedto the sphere, in ontrast to the theory introdued in this paper.Based on the results in Appendix G, it is interesting to evaluate (6.4) in the limitas ξ → 0. This limit orresponds to the axially symmetri needle and irular diskin Fig. 5. For a needle of length 2a with semi-axis ξ ≪ 1, (G.3) inserted into (6.4)yields
GΛB ≤ 16π4a3

3λ3
0

f(θ)

ln 2/ξ − 1
+ O(ξ2) as ξ → 0. (6.7)



13Here, f(θ) = sin2 θ for the TE- and TM-polarizations in the ase of both eletriand magneti material properties. In the non-magneti ase, f(θ) = 0 for the TE-and f(θ) = sin2 θ for the TM-polarization. Note that the sin2 θ term in (6.7) andthe logarithmi singularity in the denominator agree with the radiation pattern andthe impedane of the dipole antenna in Se. 8.1, see Ref. 4.The orresponding result for the irular disk of radius a is non-vanishing in thelimit as ξ → 0, viz.,
GΛB ≤ 64π3a3

3λ3
0

f(θ). (6.8)Here, f(θ) = 1+cos2 θ for the TE- and TM-polarizations in the ase of both eletriand magneti material properties. In the non-magneti ase, f(θ) = 1 for the TE-and and f(θ) = cos2 θ for the TM-polarization. Note the diret appliation of (6.8)for planar spiral antennas.7 γ∞ for some generi geometriesIn this setion, some numerial results of γ∞ are presented and analyzed in termsof the physial limitations disussed in Se. 3.7.1 The Platoni solidsSine the Platoni solids are invariant under appropriate point groups, see Ref. 11,their orresponding high-ontrast polarizability dyadis γ∞ are isotropi, i.e., γ∞ =
γ∞I, where I denotes the unit dyadi in R

3. Let γ = γj represent the eigenvalues of
γ∞ for j = 1, 2, 3. The Platoni solids are depited in Fig. 6 together with the eigen-values γ in terms of the volume V of the solids. The �ve Platoni solids are from leftto right the tetrahedron, hexahedron, otahedron, dodeahedron and iosahedron,with 4, 6, 8, 12 and 20 faets, respetively. Inluded in the �gure are also γ in unitsof 4πa3, where a denotes the radius of the smallest irumsribing sphere. Thisomparison with the smallest irumsribing sphere is based on straightforward al-ulations whih is further disussed in Se. 7.2. The numerial values of γ in Fig. 6are based on Method of Moments (MoM) alulations, see Ref. 19 and referenestherein.Sine the upper bound in (3.6) is linear in γ, it follows that among the Platonisolids, the tetrahedron provides the largest upper bound on GΛB for a given volume
V . The eigenvalues γ in Fig. 6 are seen to approah 3V as the number of faetsinreases. This observation is on�rmed by the variational priniple disussed inRef. 19, whih states that for a given volume the sphere minimizes the trae of γ∞among all isotropi high-ontrast polarizability dyadis. Hene, a lower bound on γis given by the sphere for whih γ = 3V .For mathed polarizations, the eigenvalues in Fig. 6 an diretly be appliedto (3.6) to yield an upper bound on the performane of any antenna irumsribedby a given Platoni solid. For example, the non-magneti tetrahedron yields GΛB ≤
624V/λ3

0 or GΛB ≤ 0.19 for V = 1 cm3 and enter frequeny c0/λ0 = 2 GHz. The
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5.029V 3.644V 3.551V 3.178V 3.130V 3V

(0.205) (0.445) (0.377) (0.704) (0.632) (1)Figure 6: The eigenvalues γ (upper row) for the �ve Platoni solids and the sphere.The number in parenthesis are γ in units of 4πa3, where a denotes the radius of thesmallest irumsribing sphere.orresponding bound on the quotient D/Q di�er only by a fator of π, i.e., D/Q ≤
0.059.It is interesting to note that the pertinent point group symmetries of the Platonisolids are preserved if their geometries are altered appropriately. Suh symmetrihanges yield a large lass of geometries for whih γ∞ is isotropi and the upperbound on GΛB is independent of the polarization. This observation together withthe fat that the variational priniple disussed above also an be applied to arbi-trary isotropi high-ontrast polarizability dyadis, are partiularly interesting froma MIMO-perspetive, see Ref. 9 and referenes therein.7.2 Comparison with the sphereFrom the disussion of the polarizability dyadis in Ref. 19, it is lear that both
γ1 and γ2 are diretly proportional to the volume of the antenna with a purelygeometry dependent proportionality fator. For the irular disk, it follows fromAppendix G that even though the volume of the disk vanishes, the eigenvalues γ1and γ2 are non-zero. This result is due to the fat that the geometry dependentproportionality fators 1/L1 and 1/L2 approah in�nity in the limit as the semi-axisratio approahes zero. In other words, it is not su�ient to only onsider the volumepart of γ1 and γ2 to draw onlusions of the potential in antenna performane for agiven volume. In addition, also the shape dependent proportionality fator must betaken into aount.Motivated by the disussion above, it is interesting to ompare γ1 and γ2 for thedi�erent geometries disussed in Ses. 7 and 8, and in Ref. 7. The omparison refersto the smallest irumsribing sphere with radius a, for whih γ1 and γ2 are equalto 4πa3, see Ref. 7. For this purpose, introdue γ1/4πa

3, whih, in the ase of pureeletri material properties, yields a diret measure of the antenna performane interms of (3.6) and (4.6). The main question addressed in this setion is therefore:how muh antenna performane an be gained for a given geometry by insteadutilizing the full volume of the smallest irumsribing sphere?In Fig. 7, the goodness number γ1/4πa
3 are presented for the sphere, irulardisk, toroidal ring, and prolate and ylindrial needles, respetively. The generalized
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(1) (0.050) (0.056)(0.42) (0.24)Figure 7: The eigenvalue γ1 in units of 4πa3, where a denotes the radius of thesmallest irumsribing sphere. The prolate spheroid, the irular ring and theirular ylinder orrespond to the generalized semi-axis ratio ξ = 10−3.semi-axis ratio4 for the toroidal ring and the prolate and ylindrial needles are

ξ = 10−3. The values for the prolate needle and the toroidal ring are given by (G.3)and (H.5), respetively, while the ylindrial needle is based on FEM simulation forthe dipole antenna in Se. 8.1. The value for the irular disk is 4/3π ≈ 0.42 givenby (G.4).The results in Fig. 7 should be ompared with the orresponding values in Fig. 6for the Platoni solids. For example, it is seen that the potential of utilizing thetetrahedron is about 20.5% ompared to the smallest irumsribing sphere. Sinethe high-ontrast polarizability dyadis γ∞ are isotropi for the Platoni solids andthe sphere, it follows that the results in Fig. 6 also hold for the seond and thirdeigenvalues, γ2 and γ3, respetively. This is however not the ase for the geometriesdepited in Fig. 7 sine the irular disk, toroidal ring, and the prolate and ylindrialneedles have no isotropi high-ontrast polarizability dyadis. For the irular diskand the toroidal ring, γ1 and γ2 are equal, and therefore yield the same results as inFig. 7 for ombined eletri and magneti material properties.In Fig. 7, it is seen that the physial limitations on GΛB and D/Q for any two-dimensional antenna on�ned to the irular disk orresponds to about 42% of thepotential to utilize the full sphere. This result is rather surprising sine, in ontrastto the sphere, the irular disk has zero volume. In other words, there is only afator of 1/0.42 ≈ 2.4 to gain in antenna performane by utilizing three-dimensionsompared to two for a given maximum dimension a of the antenna. Sine the prolateand ylindrial needles vanish in the limit as the semi-axis ratio approahes zero,the performane of any one-dimensional antenna restrited to the line is negligibleas ompared to the performane of an antenna in the sphere.Sine γ1 and γ2 in the right hand side of (3.6) and (4.6) are determined from sep-arate eletri and magneti problems in the long wavelength limit, see Appendix B,it is lear that eletri and magneti material properties, and hene also γ1 and γ2,an be ombined separately. For example, any antenna with magneti propertieson�ned to the irular disk and eletri properties on�ned to the toroidal ring hasa potential whih is 100(0.42+0.24) = 66% of the sphere with no magneti materialproperties present.4The generalized semi-axis ratio for the ylindrial needle and the toroidal ring are de�ned by
ξ = b/a, where a and b are given in Figs. 9 and 11, respetively.
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Figure 8: The eigenvalues γ1, γ2 and γ3 as funtion of the ratio a2/a1 for a retan-gular parallelepiped of edge lengths a1, a2 and a3. The solid urves are for a1/a3 = 5and the dotted urve is for a1/a3 = 10. Note the normalization with the volume
Vs = πa3

1/6 of the sphere of radius a1/2.7.3 The retangular parallelepipedThe retangular parallelepiped is a generi geometry that an be used to model, e.g.,mobile phones, laptops, and PDAs. The eigenvalues γ1, γ2 and γ3 for a retangularparallelepiped with edge lengths a1, a2 and a3 are shown in Fig. 8 as a funtion of theratio a2/a1. The solid and dotted urves orrespond to a1/a3 = 5 and a1/a3 = 10,respetively. The eigenvalues are ordered γ1 ≥ γ2 ≥ γ3 and the prinipal axes ofthe eigenvalues γi orrespond to the diretions parallel to ai if a1 ≥ a2 ≥ a3. Theeigenvalues degenerate if the lengths of the orresponding edges oinide.The performane of any non-magneti antenna insribed in the parallelepiped islimited as shown by (3.5) with γm = 0. Spei�ally, the limitations on antennaspolarized in the ai diretion are given by the eigenvalue, γi. Obviously, it is advan-tageous to utilize the longest dimension of the parallelepiped for the polarization ofsingle port antennas. The limitation (3.5) also quanti�es the degradation in usingthe other diretions for the polarization. This is useful for the understanding offundamental limitations and synthesis of MIMO antennas.For example, a typial mobile phone is approximately 10 cm high, 5 cm wide,and 1 cm to 2 cm thik. The orresponding eigenvalues γ1, γ2 and γ3 for a1 =
10 cm are seen in Fig. 8 for a3 = 2 cm (solid lines) and a3 = 1 cm (broken lines).The distribution of the eigenvalues γ1, γ2 and γ3 quanti�es the trade o� betweenpattern and polarization diversity for multiple antennas systems in the mobile phone.Pattern diversity utilizes the largest eigenvalue but requires an inreased diretivityat the ost of bandwidth (3.5). Similarly, polarization diversity utilizes at least twoeigenvalues. It is observed that it is advantageous to use polarization and patterndiversity for a2 ≈ a1 and a2 ≪ a1, respetively. For a mobile phone where a2 ≈ a1/2,either pattern diversity or a ombined pattern and polarization diversity as linearombinations of the a1 and a2 diretions an be used. Moreover, note that magneti
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Figure 9: The extintion and absorption ross setions (top �gure) and the realizedgain (bottom �gure) for a ylindrial dipole antenna with axial ratio b/a = 10−3.The di�erent urves orrespond to Hallén's integral equation (solid urves), dire-tivity and Q-fator limitation (4.6) (dashed urves), and gain and bandwidth limi-tation (3.6) (shaded box).materials, inrease the bound (3.5) and o�er additional possibilities.8 Analysis of some lassial antennasIn this setion, numerial simulations of some lassial antennas are presented andanalyzed in terms of the physial limitations disussed in Se. 3.8.1 The dipole antennaThe ylindrial dipole antenna is one of the simplest and most well known antennas.Here, the MoM solution of the Hallén's integral equation in Ref. 10 together with agap feed model is used to determine the ross setions and impedane for a ylindrialdipole antenna with axial ratio b/a = 10−3. The extintion and absorption rosssetions and the realized gain are depited in Fig. 9. The antenna is resonant at
2a ≈ 0.48λ with diretivity D = 1.64 and radiation resistane 73 Ω. The half-powerbandwidth is B = 25% and the orresponding Q-fator is estimated to Q = 8.3 bynumerial di�erentiation of the impedane, see Ref. 25. The absorption e�ieny ηis depited in Fig. 10. It is observed that η ≈ 0.5 at the resonane frequeny and
η̃ = 0.52 for 0 ≤ 4a/λ ≤ 3.The MoM solution is also used to determine the forward sattering properties ofthe antenna. The forward sattering is represented by the extintion volume ̺ inFig. 10. Reall that ̺(0) and Im ̺ diretly are related to the polarizability dyadisand the extintion ross setion, see Se. 3.Moreover, sine Re ̺ ≈ 0 at the resonane frequeny, it follows that the real-valued part of the forward sattering is negligible at this frequeny. This observationis important in the understanding of the absorption e�ieny of antennas, see Ref. 2.
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Figure 10: The extintion volume ̺ (top �gure) and the absorption e�ieny η(bottom �gure) as funtion of 4a/λ for the dipole antenna.FEM simulations are used to determine the polarizability dyadi and the eigen-values of the ylindrial region in Fig. 9. The eigenvalue γ1, orresponding to apolarization along the dipole, is γ1 = 0.71a3 and the other eigenvalues γ2 = γ3are negligible. The result agrees with the integrated extintion (2.3) of the MoMsolution within 2% for 0 ≤ 4a/λ ≤ 3.The eigenvalues γ1 = 0.71a3 and γ2 = 0 inserted into (4.6) give physial lim-itations on the quotient D/Q of any resonant antenna on�ned to the ylindrialregion, i.e.,
sup

p̂e·p̂m=0

D

Q
≤ η̃

k3
0γ1

2π
≈ 0.39η̃. (8.1)The orresponding bound on the Q-fator is Q ≥ 8.1, if D = 1.64 and η̃ = 0.52 areused. In Fig. 9, it is observed that the single resonane model (dashed urves) with

Q = 8.5 is a good approximation of the ross setions and realized gain. The or-responding half-power bandwidth is 24%. The eigenvalue γ1 also gives a limitationon the produt GΛB in (3.6) as illustrated with the retangular region in the right�gure for an arbitrary minimum sattering antenna (η̃ = 0.5). The realized gain
GΛ = 1.64 gives the relative bandwidth B = 38%.It is also illustrative to ompare the physial limitations with the MoM simulationfor a short dipole. The resonane frequeny of the dipole is redued to 2a ≈ 0.2λwith an indutive loading of 5µH onneted in series with the dipole. The MoMimpedane omputations of the short dipole give the half-power bandwidth B =
1.4% and the radiation resistane 8 Ω. The D/Q bound (4.6) gives Q ≥ 110 forthe diretivity D = 1.52 and an absorption e�ieny η̃ = 1/2 orresponding to thehalf-power bandwidth B ≤ 1.8%.Obviously, the simple struture of the dipole and the absene of broadbandmathing networks make the resonane model favorable. The limitation (4.6) is inexellent agreement with the performane of the dipole antenna for the absorptione�ieny η̃ = 0.52, i.e., Q ≥ 8.1 from (4.6) ompared to Q = 8.3 from the MoMsolution. The GΛB bound overestimates the bandwidth, but a broadband mathing



19network an be used to enhane the bandwidth of the dipole, see Ref. 5.Observe that the dipole antenna has a irumsribing sphere with ka ≈ 1.5 andis not onsidered eletrially small aording to the Chu limitations in Ref. 3. Theorresponding limit for the 2a ≈ 0.2λ0 dipole (ka ≈ 0.63 and D = 1.52) is Q ≥ 5.6and the half-power bandwidth of 36% ≫ 1.4%. In onlusion, the dipole utilizes theylindrial region very e�iently but obviously not the spherial region.8.2 The loop antennaThe magneti ounterpart to the dipole antenna in Se. 8.1 is the loop antenna. Thegeometry of the loop antenna is onveniently desribed in toroidal oordinates, seeSe. H. Laplae's equation separates in the toroidal oordinate system and henepermits an expliit alulation of the high-ontrast polarizability dyadi γ∞. In thissetion the attention is restrited to the loop antenna of vanishing thikness andnon-magneti material properties. Under the assumptions of vanishing thikness,the analysis in Se. H yields losed-form expressions of the eigenvalues γ1, γ2 and
γ3. Reall that the loop antenna oinides with the magneti dipole in the longwavelength limit a/λ≪ 1.In order to quantify the vanishing thikness limit, introdue the semi-axis ratio
ξ = b/a, where a and b denote the axial and ross setion radii, respetively, seeFig. 11. The three eigenvalues γ1 = γ2 and γ3 are seen to vanish in the limit ξ → 0.However, γ1 and γ2 vanish slower than γ3, see Se. H. The eigenvalues in the limit
ξ → 0 inserted into (4.5) yields

D

Q
≤ πk3

0a
3 f(θ)

ln 2/ξ − 1
+ O(ξ2) as ξ → 0, (8.2)where f(θ) = 1 for the TE- and f(θ) = cos2 θ for the TM-polarization. Here,

θ ∈ [0, π] is the polar angle measured from the z-axis of symmetry in Fig. 11. Notethat the logarithmi singularity in (8.2) is the same as for the dipole antenna, seeSe. H. Sine the axial radius a is the only length sale that is present in the loopantenna in the limit ξ → 0, it is natural that γ1, γ2, and γ3 are proportional to a3,see Appendix B.By omparing the disussion above with the results in Ref. 7 and Se. 8.1, itis onluded that there is a strong equivalene between the eletri and magnetidipoles. For the most advantageous polarization the upper bound on GΛB is a fatorof 3π/2 larger for the loop antenna ompared to the eletri dipole.The results are exempli�ed for a self-resonant loop with k0a = 1.1 and a a-paitively loaded loop, C = 10 pF, with k0a = 0.33, both with ξ = 0.01. Theorresponding limitations (4.6) are D/Q ≤ 0.95η̄ and D/Q ≤ 0.025η̄, respetively.The MoM is used to determine the impedane and realized gain of the loop antennawith a gap feed at φ = 0, see Fig. 11. The Q-fator of the self-resonant antenna isestimated to Q = 5 from numerial di�erentiation of the impedane, see Ref. 25.The orresponding main beam is in the ẑ-diretion with a diretivity D = 2.36giving D/Q = 0.47. Similarly, the tuned loop has Q ≈ 164 and D = 1.43 in θ = 90◦and φ = 90◦ giving D/Q ≈ 0.0086.
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Figure 11: The realized partial gain of two loop antennas for θ = 0◦, 90◦. One selfresonant (ka ≈ 1) and one apaitively tuned to ka ≈ 1/3.It is observed that the physial limitations (4.6) of the loops agree well withthe MoM results. This di�erene an be redued by introduing the appropriateabsorption e�ieny in the physial limitation. The orresponding results for theChu limitation are D/Q ≤ 2.3 for k0a = 1.1 and D/Q ≤ 0.18 for k0a = 0.33, wherethe ombined TE- and TM-ase have been used as the loops are not omnidiretional,see Refs. 3 and 12.8.3 Conial antennasThe bandwidth of a dipole antenna inreases with the thikness of the antenna. Thebandwidth an also be inreased with onial dipoles, i.e., the bionial antenna.The orresponding onial monopole and disone antennas are obtained by replaingone of the ones with a ground plane, see Ref. 21.In Fig. 12, the eigenvalues γx = γy and γz, orresponding to horizontal andvertial polarizations, respetively, are shown as a funtion of the ground planeradius, b, for the onial monopoles with angles θ = 10◦ and 30◦. The eigenvaluesare normalized with a3, where a is the height of the one. It is observed that theeigenvalues inrease with the radius, b, of the ground plane and the one angle θ.This is a general result as the polarizability dyadi is non-dereasing with inreasingsuseptibilities, see Ref. 19.The horizontal eigenvalues γx = γy are dominated by the ground plane andinrease approximately as b3 aording to the polarizability of the irular disk, seeAppendix C. The vertial eigenvalue γz approahes γbz/2 as b → ∞, where γbzdenotes the vertial eigenvalue of the orresponding bionial antenna.It is interesting to ompare the D/Q estimate (4.6) for the bionial antennaand onial monopole antenna with a large but �nite ground plane. The vertialeigenvalue γz of the onial monopole antenna is approximately half of the orre-sponding eigenvalue of the bionioal antenna and the Q-fators of the two antennasare similar. The physial limitation on the diretivity in the θ = 90◦-diretion of
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Figure 12: The vertial and horizontal eigenvalues γz and γx as funtion of theradius b for a bionial antenna of half vertex angle 10◦ and 30◦, respetively.the onial monopole is hene half of the diretivity of the orresponding bionialantenna. This might appear ontraditory as it is well known that the maximal di-retivity of a monopole is approximately twie the diretivity of the orrespondingdipole. However, the θ = 90◦-diretion is on the border between the illuminatedand the shadow regions. The integral representation of the far �eld shows that theindued ground-plane urrents do not ontribute to the far �eld in this diretion,implying that the diretivity is redued a fator of four as suggested by the physiallimitations, see Appendix D.The rapid inrease in γx = γy with the radius of the ground plane suggests thatit is advantageous to utilize the polarization in the theses diretions. This is done bythe disone antenna that has an omnidiretional pattern with a maximal diretivityabove θ = 90◦.9 Conlusion and future workIn this paper, physial limitations on reiproal antennas of arbitrary shape are de-rived based on the holomorphi properties of the forward sattering dyadi. Theresults are very general in the sense that the underlying analysis solely depends onenergy onservation and the fundamental priniples of linearity, time-translationalinvariane, and ausality. Several de�ienies and drawbaks of the lassial limita-tions of Chu and Wheeler in Refs. 3 and 24 are overomed with this new formulation.The main advantages of the new limitations are at least �vefold: 1) they hold forarbitrary antenna geometries; 2) they are formulated in the gain and bandwidthas well as the diretivity and the Q-fator; 3) they permit study of polarizatione�ets suh as diversity in appliations for MIMO ommuniation systems; 4) theysuessfully separate eletri and magneti antenna properties in terms of the in-



22trinsi material parameters; 5) they are isoperimetri from a pratial point of viewin the sense that for some geometries, physial antennas an be realized whih yieldequality in the limitations.The main results of the present theory are the limitations on the partial real-ized gain and partial diretivity in (3.4) and (4.5), respetively. Sine the upperbounds in (3.4) and (4.5) are proportional to k3
0a

3, where a denotes the radius of,say, the volume equivalent sphere, it is lear that no broadband eletrially smallantennas exist unless gain or diretivity is sari�ed for bandwidth or Q-fator. Thisis also the main onlusion in Ref. 12, but there presented on more vague grounds.Furthermore, the present theory suggests that, in addition to eletri material prop-erties, also magneti materials ould be invoked in the antenna design to inreasethe performane, f., the ferrite loaded loop antenna in Ref. 4.In ontrast to the lassial results by Chu and Wheeler in Refs. 3 and 24, thesenew limitations are believed to be isoperimetri in the sense that the bounds hold forsome physial antenna. A striking example of the intrinsi auray of the theoryis illustrated by the dipole antenna in Se. 8.1. In fat, many wire antennas arebelieved to be lose to the upper bounds sine these antennas make e�etive use oftheir volumes.It is important to remember that a priori knowledge of the absorption e�ieny
η = σa/σext an sharpen the bounds in (3.4) and (4.5), f., the half-wave dipoleantenna in Se. 8.1 for whih η̃ ≈ 1/2 is used. Similarly, a priori knowledge of theradiation e�ieny, ηr, an be used to improve the estimate in (3.2) using G = ηrD.The performane of an arbitrary antenna an be ompared with the upper boundsin Ses. 3 and 4 using either the method of moments (MoM) or the �nite di�erenetime domain method (FDTD). For suh a omparison, it is bene�ial to deter-mine the integrated extintion and ompare the result using (2.3) rather than (3.4)and (4.5). The reason for this is that the full absorption and sattering proper-ties are ontained within (2.3) in ontrast to (3.4) and (4.5). In fat, (2.3) is thefundamental physial relation and should be the starting point of muh analysis.In addition to the broadband absorption e�ieny η̃, several impliations of thepresent theory remains to investigate. Future work inlude the e�et of non-simpleonneted geometries (array antennas) and its relation to apaitive oupling, andadditional analysis of lassial antennas. From a wireless ommuniation point ofview it is also interesting to investigate the onnetion between the present theoryand the onept of orrelation and apaity in MIMO ommuniation systems. Someof the problems mentioned here will be addressed in forthoming papers.AknowledgmentThe �nanial support by the Swedish Researh Counil and the SSF Center for HighSpeed Wireless Communiation are gratefully aknowledged. The authors are alsograteful for fruitful disussions with Anders Karlsson and Anders Derneryd at Dept.of Eletrial and Information Tehnology, Lund University, Sweden.



23Appendix A Details on the derivation of (2.3)Consider a plane-wave exitation Ei(c0t − k̂ · x) inident in the k̂-diretion, seeFig. 1. In the far �eld region, the sattered eletri �eld Es is desribed by the far�eld amplitude F as
Es(t,x) =

F (c0t− x, x̂)

x
+ O(x−2) as x→ ∞, (A.1)where c0 denotes the speed of light in vauum, and x̂ = x/x with x = |x|. The far�eld amplitude F in the forward diretion k̂ is assumed to be ausal and related tothe inident �eld Ei via the linear and time-translational invariant onvolution

F (τ, k̂) =

∫ τ

−∞

St(τ − τ ′, k̂, k̂) · Ei(τ
′) dτ ′.Here, τ = c0t− x and St is the appropriate dimensionless temporal dyadi.Introdue the forward sattering dyadi S as the Fourier transform of St evalu-ated in the forward diretion, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (A.2)where k is omplex-valued with Re k = ω/c0. Reall that S(ik, k̂) is real-valuedfor real-valued k and that the rossing symmetry S(k, k̂) = S

∗(−k∗, k̂) holds foromplex-valued k. For a large lass of temporal dyadis St, the elements of S areholomorphi in the upper half plane Im k > 0.From the analysis above, it follows that the Fourier transform of (A.1) in theforward diretion reads
Es(k, xk̂) =

eikx

x
S(k, k̂) · E0 + O(x−2) as x→ ∞,where E0 is the Fourier amplitude of the inident �eld. Introdue the extintionvolume ̺(k) = p̂∗

e · S(k, k̂) · p̂e/k
2, where p̂e = E0/|E0| and p̂m = k̂ × p̂e denotethe eletri and magneti polarizations, respetively. Sine the elements of S areholomorphi in k for Im k > 0, it follows that also the extintion volume ̺ is aholomorphi funtion in the upper half plane. The Cauhy integral theorem withrespet to the ontour in Fig. 13 then yields

̺(iε) =

∫ π

0

̺(iε− εeiφ)

2π
dφ+

∫ π

0

̺(iε+Reiφ)

2π
dφ+

∫

ε<|k|<R

̺(k + iε)

2πik
dk. (A.3)Here, it is assumed that the extintion volume ̺ is su�iently regular to extendthe ontour to the real-axis in the last integral on the right hand side of (A.3).Relation (A.3) is subjet to the limits as ε→ 0 and R → ∞.The left hand side of (A.3) and the integrand in the �rst integral on the righthand side are well-de�ned in the limit as ε → 0. For a su�iently regular ̺ in theviinity of the origin, the analysis in Ref. 14 yield

̺(iε) =
1

4π
(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m) + O(ε) as ε→ 0. (A.4)
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Figure 13: Integration ontour in the omplex k-plane used in (A.3).Here, γe and γm denote the eletri and magneti polarizability dyadis in Ap-pendix B. Sine the short wavelength response of a material is non-unique from amodeling point of view, see Ref. 8, the seond term on the right hand side of (A.3) isassumed to approah zero in the limit R → ∞. In fat, for a large lass of temporaldyadis St, the integrand ̺(iε+Reiφ)/2π is proportional to the projeted area A inthe forward diretion, viz.,
̺(k) = −A(k̂)

2πik
+ O(|k|−2) as |k| → ∞, Im k ≥ 0. (A.5)The asymptoti behavior (A.5) is known as the extintion paradox, see Ref. 23. Theonstant A is real-valued sine S(ik, k̂) is real-valued for real-valued k.In order to proeed, the sattering, absorption and extintion ross setionsare introdued. The sattering ross setion σs and absorption ross setion σaare de�ned as the ratio of the sattered and absorbed power, respetively, to theinident power �ow density in the forward diretion. The sum of the sattering andabsorption ross setions is the extintion ross setion σext = σs + σa. The threeross setions σs, σa and σext are by de�nition real-valued and non-negative. Thepriniple of energy onservation takes the form as a relation between the extintionvolume ̺ and the extintion ross setion. The relation is known as the optialtheorem, see Refs. 16 and 22,
σext(k) = 4πk Im ̺(k), (A.6)where k is real-valued.In summary, the real part of (A.3) subjet to the limits ε→ 0 and R → ∞ yields

̺(0) =
1

π

∫ ∞

−∞

Im ̺(k)

k
dk. (A.7)The optial theorem (A.6) applied to (A.7) then implies

̺(0) =
1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (A.8)



25where the wavelength λ = 2π/k has been introdued. Hene, invoking (A.4) �nallyyields the integrated extintion
∫ ∞

0

σext(λ) dλ = π2 (p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m) . (A.9)In fat, the already weak assumptions on the extintion volume ̺ in the analysisabove an be relaxed via the introdution of ertain lasses of distributions, seeRef. 17.Appendix B The polarizability dyadisLet τ denote a �nite material dyadi (χe without a ondutivity term, or χm) withompat support. The entries of the polarizability dyadi γ (γe or γm dependingon whether the problem is eletri or magneti) are de�ned as the volume integral
êi · γ · êj =

1

E0

êi ·
∫

R3

τ (x) · Ej(x) dVx, i, j = 1, 2, 3. (B.1)Here, the total �eld E has been deomposed as Ej = E0êj +Esj with respet to themutually orthonormal vetors êj. In the eletri and magneti ases, E representsthe eletri and magneti �eld, respetively.In the high-ontrast limit, when the entries of τ simultaneously approah in�nityuniformly in x, the pertinent de�nition of the high-ontrast polarizability dyadi γ∞is, see Ref. 14,
êi · γ∞ · êj =

1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x) − xν̂(x) · ∇Φj(x)) dSx. (B.2)The surfae integral representation (B.2) holds for N disjunt bounding surfaes Snwith outward-direted unit normal vetors ν̂. The potential Ψj(x) = Φj(x) −E0xjis for eah n = 1, 2, . . . , N the solution to the boundary value problem




∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇Ψj(x) |+ dSx = 0

Ψj(x) → −E0xj + O(|x|−2) as |x| → ∞The presene of a �nite or in�nite ondutivity term in χe is disussed in Ref. 14.The onlusion is that the eletri polarizability dyadi γe should be replaed by
γ∞ independently of the real-part of χe when a ondutivity term is present. Thismay at �rst seem ontraditory, sine there is no ontinuity in the limit as theondutivity vanishes.In Ref. 19, the polarizability dyadi γ is proved to be symmetri provided τ issymmetri at all points x. The dyadi γ is real-valued, and hene diagonalizablewith real-valued eigenvalues. The orresponding set of orthogonal eigenvetors are
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Figure 14: Illustration of an arbitrary antenna volume supported by a groundplane (left �gure) and its orresponding mirror objet (right �gure).the prinipal axes of the obstale under onsideration. The prinipal axes are parti-ularly easy to determine for obstales with ontinuous or disrete symmetries, e.g.,the ellipsoids and the Platoni solids in Se. 7.1.An important property of γ whih is proved in Ref. 19, is that it is proportionalto the volume of the support of τ . This is a diret onsequene of the absene ofany length sales in the long wavelength limit.Appendix C Supporting ground planesSupporting ground planes are entral strutures in many antenna appliations. Con-sider an arbitrary volume, modeling the antenna, situated above a supporting groundplane of �nite or in�nite extent, see Fig. 14. To simplify the terminology, usemonopole to denote objet with a ground plane and dipole to denote the objettogether with its mirror objet. The ground plane is assumed to be a irular diskof radius b with vanishing thikness. Sine γ∞ is independent of any oordinaterepresentation, let the ground plane be given by z = 0.For a polarization parallel with the ground plane, i.e., spanned by êx and êy, itis lear from the results in Appendix B of the irular disk that the ontribution to
γ∞ from the ground plane is large. Indeed, a irular ground plane of radius b yields
γx = γy = 16b3/3, where γx and γy denote the eigenvalues of γ∞ orresponding tothe êx and êy diretions, respetively (G.4).The polarizability of the monopole for an eletri polarization parallel with the
êz-diretion has one ontribution from the harge distribution on the objet z >
0 and one part from the harge distribution on the ground plane z = 0. Theontribution from the ground plane vanishes in (B.2) sine z = 0. For a groundplane of in�nite extent the method of images is appliable to determine the hargedistribution for z > 0. In this method, the ground plane is replaed with a opy ofthe objet plaed in the mirror position of the objet, i.e., the dipole. The hargedistribution is odd in z and the harge distribution for z > 0 is idential in themonopole and dipole ases. The polarizability of the dipole is hene exatly twie



27the polarizability of the orresponding monopole.The di�erene between the �nite and in�nite ground planes is negligible as longas the harge distribution on the monopole an be approximated by the hargedistribution in the orresponding dipole ase.Appendix D Diretivity along ground planesThe integral representation of the far-�eld an be used to analyze the diretivity ofantennas in diretions along the supporting ground plane. The pertinent integralrepresentation reads
F (r̂) =

ikZ0

4π

∫

S

r̂ × (J(x) × r̂)e−ikr̂·x dSx, (D.1)where J and Z0 denote the indued urrent and the free spae impedane, respe-tively.Consider a monopole, i.e., an objet on a large but �nite ground plane, at z = 0with êz as a symmetry axis, see Fig. 14. The far-�eld of the monopole (D.1) anbe written as a sum of one integral over the ground plane and one integral overthe objet. Let S+ and S0 denote the orresponding surfaes of the objet andthe ground plane, respetively. Assume that the ground plane is su�iently largesuh that the urrents on the monopole an be approximated with the urrentson the orresponding dipole ase for z > 0. Moreover, assume that the urrent isrotationally symmetri and that the urrent in the φ-diretion is negligible givingan omni-diretional radiation pattern. Hene, it is su�ient to onsider the far-�eldpattern in the r̂ = êx-diretion.The indued urrents on the ground plane are in the radial diretion giving theterm êx × (J(x) × êx) = êyJρ(ρ) sinφ in (D.1). It is seen that the urrents on theground plane does not ontribute to the far �eld as
F (êx) = êy

ikη

4π

∫

S0

e−ikρ cos φJρ(ρ) sinφρ dφ dρ = 0. (D.2)The ontribution from the urrents on the objet an be analyzed with the methodof images. From (D.2), it is seen the it is only the urrents in the êz-diretion thatontributes to the far �eld, i.e.,
F (êx) = êz

ikη

4π

∫

S+

e−ikρ cos φJz(ρ, z) dS, (D.3)where Jzêz = êx × (J × êx). The method of images shows that Jz is even in z sothe z-direted urrents above and below the ground plane give equal ontributionsto the far �eld. The diretivity of the monopole antenna is hene a quarter of thediretivity of the orresponding dipole antenna in the êx-diretion.



28Appendix E De�nition of some antenna termsThe following de�nitions of antenna terms are based on the IEEE standard 145-1993 in Ref. 13. The de�nitions refer to the eletri polarization p̂e (o-polarization)rather than the magneti polarization p̂m = k̂× p̂e (ross-polarization). The anten-nas are assumed to reiproal, i.e., they have similar properties as transmitting andreeiving devies.Absolute gain G(k̂). The absolute gain is the ratio of the radiation intensity ina given diretion to the intensity that would be obtained if the power aepted bythe antenna was radiated isotropially.Partial gain G(k̂, p̂e). The partial gain in a given diretion is the ratio of thepart of the radiation intensity orresponding to a given polarization to the radiationintensity that would be obtained if the power aepted by the antenna was radiatedisotropially. The absolute gain is equal to the sum of the partial gains for twoorthogonal polarizations, i.e., G(k̂) = G(k̂, p̂e) +G(k̂, p̂m).Realized gain G(k̂, Γ ). The realized gain is the absolute gain of an antennaredued by the losses due to impedane mismath of the antenna, i.e., G(k̂, Γ ) =
(1 − |Γ |2)G(k̂).Partial realized gain G(k̂, p̂e, Γ ). The partial realized gain is the partial gainfor a given polarization redued by the losses due to impedane mismath of theantenna, i.e., G(k̂, p̂e, Γ ) = (1 − |Γ |2)G(k̂, p̂e).Absolute diretivity D(k̂). The absolute diretivity is the ratio of the radiationintensity in a given diretion to the radiation intensity averaged over all diretions.The averaged radiation intensity is equal to the total power radiated divided by 4π.Partial diretivity D(k̂, p̂e). The partial diretivity in a given diretion is theratio of that part of the radiation intensity orresponding to a given polarization tothe radiation intensity averaged over all diretions. The averaged radiation intensityis equal to the total power radiated divided by 4π.Absorption ross setion σa(k̂, p̂e, Γ ). The absorption ross setion for a givenpolarization and inident diretion is the ratio of the absorbed power in the antennato the inident power �ow density when subjet to a plane-wave exitation. For aperfetly mathed antenna, the absorption ross setion oinides with the partiale�etive area.Sattering ross setion σs(k̂, p̂e, Γ ). The sattering ross setion for a givenpolarization and inident diretion is the ratio of the sattered power by the antennato the inident power �ow density when subjet to a plane-wave exitation.



29
R R

L

L
C

C¡ ¡

Figure 15: The RCL iruits orresponding to the plus (left �gure) and minus(right �gure) signs in (F.1).Extintion ross setion σext(k̂, p̂e, Γ ). The extintion ross setion for a givenpolarization and inident diretion is the sum of the absorbed and sattered powerof the antenna to the inident power �ow density when subjet to a plane-waveexitation, i.e., σext(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ ) + σs(k̂, p̂e, Γ ).Absorption e�ieny5 η(k̂, p̂, Γ ). The absorption e�ieny of an antenna for agiven polarization and inident diretion is the ratio of the absorbed power to thetotal absorbed and sattered power when subjet to a plane-wave exitation, i.e.,
η(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ )/σext(k̂, p̂e, Γ ).Quality fator Q. The quality fator of a resonant antenna is the ratio of 2πtimes the energy stored in the �elds exited by the antenna to the energy radiatedand dissipated per yle. For eletrially small antennas, it is equal to one-half themagnitude of the ratio of the inremental hange in impedane to the orrespondinginremental hange in frequeny at resonane, divided by the ratio of the antennaresistane to the resonant frequeny.Appendix F Q-fator and bandwidthThe quality fator, or Q-fator, is often used to estimate the bandwidth of an an-tenna. It is de�ned as the ratio of the energy stored in the reative �eld to theradiated energy, i.e., Q = 2ωmax(Wm,We)/P , see Appendix E and Refs. 6 and 25.Here,We andWm denote the stored eletri and magneti energies, respetively, P isthe dissipated power, and ω = kc0 the angular frequeny. At the resonane, k = k0,there are equal amounts of stored eletri and magneti energy, i.e., We = Wm.For many appliations it is su�ient to model the antenna as a simple RCLresonane iruit around the resonane frequeny. The re�etion oe�ient Γ of theantenna is then given by

Γ =
Z(k) −R

Z(k) +R
= ± 1 − (k/k0)

2

1 − (k/k0)2 − 2ik/(k0Q)
(F.1)5This term is not de�ned in Ref. 13; the present de�nition is instead based on Ref. 2.



30where Z denotes the frequeny dependent part of the impedane, and the plusand minus signs in (F.1) orrespond to the series and parallel iruits in Fig. 15,respetively. The re�etion oe�ient Γ is holomorphi in the upper half plane
Imω > 0 and haraterized by the poles

k = ±k0

√
1 −Q−2 − ik0/Q, (F.2)whih are symmetrially distributed with respet to the imaginary axis.The bandwidth of the resonanes in (F.2) depends on the threshold level of there�etion oe�ient. The relative bandwidths of half-power, |Γ |2 ≤ 0.5, is given by

B ≈ 2/Q. The orresponding losses due to the antenna mismath are alulatedfrom
1 − |Γ |2 =

1

1 +Q2(k/k0 − k0/k)2/4
. (F.3)The de�nition of the Q-fator in terms of the quotient between stored and radi-ated energies is however not adequate for the present analysis. This is beause thedeomposition of the total energy into the stored and dissipated parts is a funda-mentally di�ult task. As noted in Refs. 6 and 25, the Q-fator at the resonanefrequeny k = k0 an instead be determined by di�erentiating the re�etion oe�-ient or impedane, i.e., ∣∣∣∣

∂Γ

∂k

∣∣∣∣ =
1

2R

∣∣∣∣
∂Z

∂k

∣∣∣∣ =
Q

k0

, (F.4)where the derivatives in (F.4) are evaluated at k = k0. Relation (F.4) is exatfor the single resonane iruit and is also a good approximation for multiple res-onane models if Q is su�iently large. In Se. (4), a multiple resonane model isonsidered for the extintion volume ̺ introdued in Appendix A. The multipleresonane model is obtained by superposition of single resonane terms with polesof the type (F.2).Appendix G The depolarizing fatorsFor the ellipsoids of revolution, i.e., the prolate and oblate spheroids, losed-formexpressions of (6.2) exist in terms of the semi-axis ratio ξ ∈ [0, 1]. The result forthe prolate spheroid is (a2 = a3)




L1(ξ) =
ξ2

2(1 − ξ2)3/2

(
ln

1 +
√

1 − ξ2

1 −
√

1 − ξ2
− 2
√

1 − ξ2

)

L2(ξ) = L3(ξ) =
1

4(1 − ξ2)3/2

(
2
√

1 − ξ2 − ξ2 ln
1 +

√
1 − ξ2

1 −
√

1 − ξ2

) (G.1)
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Figure 16: The depolarizing fators for the prolate (solid) and oblate (dashed)spheroids as funtion of the semi-axis ratio ξ. Note the degeneray for the sphere.while for the oblate spheroid (a1 = a2)




L1(ξ) = L2(ξ) =
ξ2

2(1 − ξ2)

(
−1 +

arcsin
√

1 − ξ2

ξ
√

1 − ξ2

)

L3(ξ) =
1

1 − ξ2

(
1 − ξ arcsin

√
1 − ξ2

√
1 − ξ2

) (G.2)The depolarizing fators (G.1) and (G.2) are depited in Fig. 16. Note that (G.1)and (G.2) di�er in indies from the depolarizing fators in Ref. 19 due to the orderrelation L1 ≤ L2 ≤ L3 assumed in Se. 6 in this paper.Introdue the eigenvalues γj(ξ) = V (ξ)/Lj(ξ) of the high-ontrast polarizabilitydyadi. In terms of the radius a of the smallest irumsribing sphere, the spheroidalvolume V (ξ) is given by ξ24πa3/3 and ξ4πa3/3 for the prolate and oblate spheroids,respetively. For the analysis in Se. 6, the limit of γj(ξ) as ξ → 0 is partiularinteresting, orresponding to the irular needle for the prolate spheroid and theirular disk for the oblate spheroid. The result for the irular needle reads




γ1(ξ) =
4πa3

3

1

ln 2/ξ − 1
+ O(ξ2)

γ2(ξ) = γ3(ξ) = O(ξ2)

as ξ → 0 (G.3)while for the irular disk,



γ1(ξ) = γ2(ξ) =

16a3

3
+ O(ξ)

γ3(ξ) = O(ξ)

as ξ → 0 (G.4)
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2b

a

x1

x2

x3Figure 17: The toroidal ring and the Cartesian oordinate system (x1, x2, x3).Closed-form expressions of (6.2) an also be evaluated for the ellipti needle and diskin terms of the omplete ellipti integrals of the �rst and seond kind, see Ref. 19.Appendix H The toroidal ringThe general solution to Laplae's equation for the eletrostati potential ψ in toroidaloordinates6 is, see Ref. 15,
ψ(u, v, φ) =

√
cosh v − cosu

∞∑

n,m=0

(am cosmφ+ bm sinmφ) ·

(cm cosnu+ dm sinnu)
(
AmnPm

n− 1

2

(cosh v) +BmnQm
n− 1

2

(cosh v)
)
,where Pm

n−1/2 and Qm
n−1/2 are the ring funtions of the �rst and seond kinds, respe-tively, see Ref. 1. The toroidal ring of axial radius a and ross setion radius b isgiven by the surfae v = v0, see Fig. 17. Introdue the semi-axis ratio ξ ∈ [0, 1] asthe quotient ξ = b/a = 1 cosh v0.In this appendix, the eigenvalues of the high-ontrast polarizability dyadi arederived for the loop antenna in Se. 8.2 of vanishing thikness. Due to rotationalsymmetry in the x1x2-plane, the analysis is redued to two exterior boundary valueproblems de�ned by the region v ∈ [0, v0] and u, φ ∈ [0, 2π). Due to the singularbehavior of Qm

n−1/2(cosh v) as v → 0 it is required that Bmn = 0. In addition, theeletrostati potential must vanish at in�nity, i.e., ψ(u, v, φ) → 0 when u, v → 0simultaneously. On the surfae of the toroidal ring the two di�erent boundaryonditions of interest are, ψ(u, v0, φ) = x1 and ψ(u, v0, φ) = x3, see Appendix B.6The toroidal oordinate system (u, v, φ) is de�ned in terms of the Cartesian oordinates
(x1, x2, x3) as

x1 =
ζ sinh v cos φ

cosh v − cos u
, x2 =

ζ sinh v sin φ

cosh v − cos u
, x2 =

ζ sinu

cosh v − cos u
,where u, φ ∈ [0, 2π) and v ∈ [0,∞). The toroidal ring of axial radius a and ross setion radius bis desribed by the surfae v = v0, where a = ζ coth v0 and b = ζ/ sinh v0. Note that the presentnotation (u, v, φ) di�ers from (η, µ, φ) in Ref. 15.



33The following representations of the Cartesian oordinates in terms of Qm
n−1/2 areproved to be useful:





x1 = −ζ
√

8 cosφ

π

√
cosh v0 − cosu

∞∑

n=0

εnQ1
n− 1

2

(cosh v0) cosnu

x3 =
ζ
√

8

π

√
cosh v0 − cosu

∞∑

n=1

nQn− 1

2

(cosh v0) sinnu

(H.1)Two di�erent boundary value problems are assoiated with the loop antenna inSe. 8.2 depending on whether the magneti polarization p̂m is parallel or orthogonalto the x3-axis. The solution of these boundary value problems are then loselyrelated to the omponents of the eletri polarizability dyadi. Only the ase whenthe thikness of the toroidal ring vanishes, i.e., when ξ → 0 or equivalently v0 → ∞,is treated here.H.1 Magneti polarization perpendiular to the x3-axisA magneti polarization p̂m perpendiular to the x3-axis is via the plane-wave ondi-tion k̂ = p̂e × p̂m equivalent to the eletri polarization p̂e parallel with the x3-axis.A straightforward alulation to this problem an be proved to yield
ψ(u, v, φ) =

ζ
√

8

π

√
cosh v − cosu

∞∑

n=1

n
Qn− 1

2

(cosh v0)

Pn− 1

2

(cosh v0)
Pn− 1

2

(cosh v) sinnu.In terms of the normal derivative ∂ψ/∂ν evaluated at v = v0, the third eigenvalueof γ∞ is given by
γ3 = 2π

∫ 2π

0

x3

∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cosu)2
du (H.2)By insertion of (H.1) into (H.2), the asymptoti behavior of γ3 in the limit ξ → 0,or equivalently v0 → ∞, an be proved to be (ζ → a as v0 → ∞)

γ3 = O(ξ2) as ξ → 0. (H.3)Hene, the third eigenvalue γ3 of the high-ontrast polarizability dyadi vanishes asthe thikness of the toroidal ring approahes zero.H.2 Magneti polarization parallel with the x3-axisThe solution to the boundary value problem with the magneti polarization p̂mparallel with the x3-axis, i.e., p̂e perpendiular to the x1-axis, is
ψ(u, v, φ) = −ζ

√
8 cosφ

π

√
cosh v − cosu

∞∑

n=0

εn

Q1
n− 1

2

(cosh v0)

P1
n− 1

2

(cosh v0)
P1

n− 1

2

(cosh v) cosnu,



34where εn = 2− δn0 is the Neumann fator. In terms of the normal derivative ∂ψ/∂νevaluated at v = v0, the �rst and seond eigenvalues of γ∞ are
γ1 = γ2 =

∫ 2π

0

∫ 2π

0

x1

∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cosu)2
dφ du, (H.4)where x1 as funtion of u and φ is given by (H.1). The asymptoti behavior of (H.4)as ξ → 0, or equivalently v0 → ∞, an be proved to be (ζ → a as v0 → ∞)

γ1 = γ2 =
2π2a3

ln 2/ξ − 1
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