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1Abstra
tIn this paper, physi
al limitations on bandwidth, realized gain, Q-fa
tor, anddire
tivity are derived for antennas of arbitrary shape. The produ
t of band-width and realizable gain is shown to be bounded from above by the eigenval-ues of the long wavelength high-
ontrast polarizability dyadi
s. These dyadi
sare proportional to the antenna volume and easily determined for an arbitrarygeometry. Ellipsoidal antenna volumes are analyzed in detail and numeri-
al results for some generi
 geometries are presented. The theory is veri�edagainst the 
lassi
al Chu limitations for spheri
al geometries, and shown toyield sharper bounds for the ratio of the dire
tivity and the Q-fa
tor for non-spheri
al geometries.1 Introdu
tionThe 
on
ept of physi
al limitations for ele
tri
ally small antennas was �rst intro-du
ed more than half a 
entury ago in Refs. 3 and 24, respe
tively. Sin
e then,mu
h attention has been drawn to the subje
t and numerous papers have been pub-lished, see Ref. 12 and referen
es therein. Unfortunately, almost all these papersare restri
ted to the sphere via the spheri
al ve
tor wave expansions, deviating onlyslightly from the pioneering ideas introdu
ed in Ref. 3.The obje
tive of this paper is to derive physi
al limitations on bandwidth, real-ized gain, Q-fa
tor, and dire
tivity for antennas of arbitrary shape. The limitationspresented here generalize in many aspe
ts the 
lassi
al results by Chu. The mostimportant advantage of the new limitations is that they no longer are restri
ted tothe sphere but instead hold for arbitrary antenna volumes. In fa
t, the smallest 
ir-
ums
ribing sphere is far from optimal for many antennas, 
f., the dipole and loopantennas in Se
. 8. Furthermore, the new limitations su

essfully separate the ele
-tri
 and magneti
 material properties of the antennas and quantify them in termsof their polarizability dyadi
s.The new limitations introdu
ed here are also important from a radio systempoint of view. Spe
i�
ally, they are based on the bandwidth and realizable gainas well as the Q-fa
tor and the dire
tivity. The interpretation of the Q-fa
tor interms of the bandwidth is still subje
t to some resear
h, see Ref. 25. Moreover,the new limitations permit the study of polarization e�e
ts and their in�uen
e onthe antenna performan
e. An example of su
h an e�e
t is polarization diversity forappli
ations in MIMO 
ommuni
ation systems.The present paper is a dire
t appli
ation of the physi
al limitations for broad-band s
attering introdu
ed in Refs. 19 and 20, where the integrated extin
tion isrelated to the long wavelength polarizability dyadi
s. The underlying mathemati
aldes
ription is strongly in�uen
ed by the 
onsequen
es of 
ausality and the sum-mation rules and dispersion relations in the s
attering theory for the S
hrödingerequation, see Refs. 16, 17 and 22.
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Figure 1: Illustration of a hypotheti
 antenna subje
t to an in
ident plane-wave inthe k̂-dire
tion.2 S
attering and absorption of antennasThe present theory is inspired by the general s
attering formalism of parti
les andwaves in Refs. 16 and 22. In fa
t, based on the assumptions of linearity, time-translational invarian
e and 
ausality there is no fundamental di�eren
e betweenantennas and properly modeled s
atterers. This kind of fruitful equivalen
e betweenantenna and s
attering theory has already been en
ountered in the literature, 
f.,the limitations on the absorption e�
ien
y in Ref. 2 and its relation to minimums
attering antennas. Without loss of generality, the integrated extin
tion and thetheory introdu
ed in Ref. 19 
an therefore be argued to also hold for antennas ofarbitrary shape. In 
ontrast to Ref. 19, the present paper fo
uses on the absorption
ross se
tion rather than s
attering properties.For this purpose, 
onsider an antenna of arbitrary shape surrounded by freespa
e and subje
t to a plane-wave ex
itation impinging in the k̂-dire
tion, see Fig. 1.The antenna is assumed to be lossless with respe
t to ohmi
 losses and satisfy thefundamental prin
iples of linearity, time-translational invarian
e and 
ausality. Thedynami
s of the antenna is modeled by the Maxwell equations with general re
ipro
alanisotropi
 
onstitutive relations. The 
onstitutive relations are expressed in termsof the ele
tri
 and magneti
 sus
eptibility dyadi
s, χe and χm, respe
tively, whi
hare fun
tions of the material properties of the antenna.The assumption of a lossless antenna is not severe sin
e the analysis 
an bemodi�ed to in
lude ohmi
 losses, see the dis
ussion in Se
. 9. In fa
t, ohmi
 lossesare important for small antennas, and taking su
h e�e
ts into a

ount, suggest thatthe lossless antenna is more advantageous than the 
orresponding antenna withohmi
 losses. Re
all that χe and χm also depend on the angular frequen
y ω of thein
ident plane-wave in the presen
e of losses.The bounding volume V of the antenna is of arbitrary shape with the restri
tionthat the 
omplete absorption of the in
ident wave is 
ontained within V . Thebounding volume is naturally delimited by a referen
e plane or a port at whi
h aunique voltage and 
urrent relation 
an be de�ned, see Fig. 1. The present de�nitionof the antenna stru
ture in
ludes the mat
hing network and is of the same kind as



3the des
riptions in Refs. 3 and 25. The re�e
tion 
oe�
ient Γ at the port is dueto the unavoidable impedan
e mismat
h of the antenna over a given wavelengthinterval, see Ref. 5. The present analysis is restri
ted to single port antennas with as
alar (single) re�e
tion 
oe�
ient. The extension to multiple ports is 
ommentedbrie�y in Se
. 9.For any antenna, the s
attered ele
tri
 �eld Es in the forward dire
tion k̂ 
anbe expressed in terms of the forward s
attering dyadi
 S as, see Appendix A,
Es(k, xk̂) =

eikx

x
S(k, k̂) · E0 + O(x−2) as x→ ∞. (2.1)Here, E0 denotes the Fourier amplitude of the in
ident �eld Ei(c0t−k̂ ·x), and k is a
omplex variable with Re k = ω/c0 and Im k ≥ 0. For a large 
lass of antennas, theelements of S are holomorphi
 in k and Cau
hy's integral theorem 
an be appliedto

̺(k) =
1

k2
p̂∗

e · S(k, k̂) · p̂e, k ∈ C. (2.2)Here, p̂e = E0/|E0| denotes the ele
tri
 polarization, whi
h is assumed to be inde-pendent of k.1 The 
omplex-valued fun
tion (2.2) is referred to as the extin
tionvolume and it provides a holomorphi
 extension of the extin
tion 
ross se
tion to
Im k ≥ 0, see Appendix A.A dispersion relation or summation rule for the extin
tion 
ross se
tion 
an bederived in terms of the ele
tri
 and magneti
 polarizability dyadi
s γe and γm,respe
tively. The derivation is based on energy 
onservation via the opti
al theoremin Refs. 16 and 22. The opti
al theorem σext = 4πk Im ̺ and the asymptoti
 behaviorof the extin
tion volume ̺ in the long wavelength limit, |k| → 0, are the key buildingblo
ks in the derivation. The result is the integrated extin
tion

∫ ∞

0

σext(λ) dλ = π2(p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m), (2.3)where the magneti
 (or 
ross) polarization p̂m = k̂ × p̂e has been introdu
ed. Thefun
tional dependen
e on k̂ and p̂e is for simpli
ity suppressed from the argumenton the left hand side of (2.3). Note that (2.3) also 
an be formulated in k = 2π/λ viathe transformation σext(λ) → 2πσext(2π/k)/k
2. For details on the derivation of (2.3)and de�nition of the extin
tion 
ross se
tion σext and the polarizability dyadi
s γeand γm, see Appendix A and B. The integrated extin
tion applied to s
atteringproblems is exploited in Ref. 19.It is already at this point important to noti
e that the right hand side of (2.3)only depends on the long wavelength limit or stati
 response of the antenna, whilethe left hand side is a dynami
 quantity whi
h in
ludes the absorption and s
atteringproperties of the antenna. Furthermore, ele
tri
 and magneti
 properties are seento be treated on equal footing in (2.3), both in terms of material properties andpolarization des
ription.1Observe that the assumption that p̂

e
is independent of k does not imply that the polarizationof the antenna in Fig. 1 is frequen
y independent.
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Figure 2: Illustration of the two types of physi
al limitations 
onsidered in thispaper: GΛB represented by the shaded box (left �gure) and D/Q related to thedotted resonan
e model (right �gure).The antenna parameters of importan
e in this paper are the partial gain G andthe partial dire
tivity D, see Appendix E and Ref. 13. In general, both G and Ddepend on the in
ident dire
tion k̂ and the ele
tri
 polarization p̂e as well as thewave number k. In addition, the partial realized gain, (1 − |Γ |2)G, depends onthe re�e
tion 
oe�
ient Γ . In the forth
oming analysis, the relative bandwidth B,the Q-fa
tor, and the asso
iated 
enter wavelength λ0 are naturally introdu
ed asintrinsi
 parameters in the sense that neither of them depend on k̂ or p̂e for a givensingle port antenna.Two di�erent types of bounds on the �rst resonan
e of an antenna are addressedin this paper, see Fig. 2. The bounds relate the integral (2.3) of two generi
 in-tegrands to the polarizability dyadi
s. The bound on the partial realized gain,
(1 − |Γ |2)G, in the left �gure takes the form of a box, i.e., it estimates the integralwith the bandwidth times the partial realized gain. The bound in the right �gureutilizes the 
lassi
al resonan
e shape of the integrand giving a bound expressed interms of the partial dire
tivity and the asso
iated Q-fa
tor.3 Limitations on bandwidth and gainFrom the de�nition of the extin
tion 
ross se
tion σext it is 
lear that it is non-negative and bounded from below by the absorption 
ross se
tion σa. For anunmat
hed antenna, σa is redu
ed by the re�e
tion loss 1 − |Γ |2 a

ording to
σa = (1 − |Γ |2)σa0, where σa0 denotes the absorption 
ross se
tion or partial ef-fe
tive area for the 
orresponding perfe
tly mat
hed antenna, see Refs. 18 and 13.The absorption 
ross se
tion σa0 is by re
ipro
ity related to the partial antennadire
tivity D as D = 4πσa0/λ

2, see Ref. 18. Thus, for any wavelength λ ∈ [0,∞),
σext ≥ σa = (1 − |Γ |2)σa0 =

1

4π
(1 − |Γ |2)λ2D. (3.1)



5Re
all that D depends on the ele
tri
 polarization p̂e as well as the in
ident dire
tion
k̂. In the present 
ase of no ohmi
 losses, the partial gainG 
oin
ides with the partialdire
tivity D.Introdu
e the wavelength interval Λ = [λ1, λ2] with 
enter wavelength λ0 =
(λ2 + λ1)/2 and asso
iated relative bandwidth

B = 2
λ2 − λ1

λ2 + λ1

= 2
k1 − k2

k2 + k1

,where 0 < B ≤ 2 and k = 2π/λ ∈ K denotes the angular wave number in K =
[k2, k1]. Thus, for any wavelength interval Λ, the estimate σext ≥ σa in (3.1) yields

∫ ∞

0

σext(λ) dλ ≥
∫

Λ

σa(λ) dλ =
1

4π

∫

Λ

(1 − |Γ |2)λ2G(λ) dλ, (3.2)where D = G is used.2In order to simplify the notation, introdu
e GΛ = infλ∈Λ(1− |Γ |2)G as the min-imum partial realized gain over the wavelength interval Λ. Following this notation,the integral on the right hand side of (3.2) 
an be estimated from below as
∫

Λ

(1 − |Γ |2)λ2G(λ) dλ ≥ GΛ

∫

Λ

λ2 dλ = λ3
0GΛB

(
1 +

B2

12

)
. (3.3)Without loss of generality, the fa
tor 1 + B2/12 
an be estimated from below byunity. This estimate is also supported by the fa
t that B ≪ 2 in many appli
ations.Based upon this observation, (2.3), (3.2) and (3.3) 
an be summarized to yield thefollowing limitation on the produ
t GΛB valid for any antenna satisfying the generalassumptions stated in Se
. 2:

GΛB ≤ 4π3

λ3
0

(p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m). (3.4)Relation (3.4) is one of the main results of this paper. Note that the fa
tor 4π3/λ3
0neatly 
an be expressed as k3

0/2 in terms of the angular wave number k0 = 2π/λ0.The estimate 1+B2/12 ≥ 1 in (3.3) is motivated by the simple form of (3.4). Inbroadband appli
ations, B is in general not small 
ompared to unity, and the higherorder term in B should be in
luded on the left hand side of (3.4).The right hand side of (3.4) depends on both p̂e and k̂ = p̂e × p̂m, as well as thelong wavelength limit (stati
 limit with respe
t to k = 2π/λ) material propertiesand shape of the antenna. It is indeed surprising that it is just the long wavelengthlimit properties of the antenna that bound the produ
t GΛB in (3.4). Sin
e γe and
γm are proportional to the volume V of the antenna, see Ref. 19, it follows from (3.4)that the upper bound on the produ
t GΛB is dire
tly proportional to V/λ3

0 or k3
0a

3,where a denotes the radius of the volume-equivalent sphere.2The equality sign on the left hand side in (3.2) is motivated by the broadband absorptione�
ien
y introdu
ed in (3.7).



6In many antenna appli
ations it is desirable to bound the produ
t GΛB inde-pendently of the material properties. For this purpose, introdu
e the high-
ontrastpolarizability dyadi
 γ∞ as the limit of either γe or γm when the elements of χeor χm in the long wavelength limit simultaneously approa
h in�nity.3 Note thatthis de�nition implies that γ∞ is independent of any material properties, dependingonly on the geometry of the antenna. From the variational properties of γe and
γm dis
ussed in Ref. 19 and referen
es therein, it follows that both γe and γm arebounded from above by γ∞. Hen
e, (3.4) yields

GΛB ≤ 4π3

λ3
0

(p̂∗
e · γ∞ · p̂e + p̂∗

m · γ∞ · p̂m). (3.5)The introdu
tion of the high-
ontrast polarizability dyadi
 γ∞ in (3.5) is the startingpoint of the analysis below.The high-
ontrast polarizability dyadi
 γ∞ is real-valued and symmetri
, and
onsequently diagonalizable with real-valued eigenvalues. Let γ1 ≥ γ2 ≥ γ3 denotethe three eigenvalues. Based on the 
onstraint p̂e · p̂m = 0, whi
h is a 
onsequen
e ofthe free spa
e plane-wave ex
itation, the right hand side of (3.5) 
an be estimatedfrom above as
sup

p̂e·p̂m=0

GΛB ≤ 4π3

λ3
0

(γ1 + γ2). (3.6)The interpretation of the operator sup
p̂e·p̂m=0 is polarization mat
hing, i.e., thepolarization of the antenna 
oin
ides with the polarization of the in
ident wave.In the 
ase of non-magneti
 antennas, γm = 0, the se
ond eigenvalue γ2 in (3.6)vanishes. Hen
e, the right hand side of (3.6) 
an be improved by at most a fa
tor oftwo by utilizing magneti
 materials. Note that the upper bounds in (3.5) and (3.6)
oin
ide when γ∞ is isotropi
.Sin
e γ1 and γ2 only depend on the long wavelength properties of the antenna,they 
an easily be 
al
ulated for arbitrary geometries using either the �nite elementmethod (FEM) or the method of moments (MoM). Numeri
al results of γ1 and γ2for the Platoni
 solids, the re
tangular parallelepiped and some 
lassi
al antennasare presented in Se
s. 7 and 8. Important variational properties of γj are dis
ussedin Ref. 19 and referen
es therein. The in�uen
e of supporting ground planes andthe validity of the method of images for high-
ontrast polarizability 
al
ulations arepresented in Appendix C.The estimate in (3.2) 
an be improved based on a priori knowledge of the s
at-tering properties of the antenna. In fa
t, σext ≥ σa in (3.1) may be repla
ed by

σext = σa/η, where 0 < η ≤ 1 denotes the absorption e�
ien
y of the antenna, seeRef. 2. For most antennas at the resonan
e frequen
y, η ≤ 1/2, but ex
eptions fromthis rule of thumb exist. In parti
ular, minimum s
attering antennas (MSA) de�nedby η = 1/2 yield an additional fa
tor of two on the right hand side of (3.1). Theinequality in (3.2) 
an be repla
ed by the equality
∫

Λ

σext(λ) dλ = η̃−1

∫

Λ

σa(λ) dλ. (3.7)3Re
all that χ
e
and χ

m
are real-valued in the long wavelength limit. In the 
ase of �nite orin�nite 
ondu
tivity, see Appendix B.



7The 
onstant η̃ is bounded from above by the absorption e�
ien
y via η̃ ≤ supλ∈Λ η,and provides a broadband generalization of the absorption e�
ien
y. If η̃ is invokedin (3.2), the right hand side of the inequalities (3.4), (3.5), and (3.6) are sharpenedby the multipli
ative fa
tor η̃.4 Limitations on Q-fa
tor and dire
tivityUnder the assumption of N non-interfering resonan
es 
hara
terized by the real-valued angular wave numbers kn, a multiple resonan
e model for the absorption
ross se
tion is
σa(k) = 2π

N∑

n=1

̺n
Qnkn

1 +Q2
n(k/kn − kn/k)2/4

, (4.1)where k is assumed real-valued and ̺n are positive weight fun
tions satisfying∑
n ̺n = ̺(0). Here, the Q-fa
tor of the resonan
e at kn is denoted by Qn, andfor Qn ≫ 1, the asso
iated relative half-power bandwidth is Bn ∼ 2/Qn, see Fig. 3.Re
all that Qn ≥ 1 is 
onsistent with 0 < Bn ≤ 2. For the resonan
e model (4.1),one 
an argue that Qn in fa
t 
oin
ides with the 
orresponding antenna Q-fa
tor inAppendix F when the relative bandwidth 2/Qn is based on the half-power threshold,see also Refs. 6 and 25. In the 
ase of strongly interfering resonan
es, the model (4.1)either has to be modi�ed or the estimates in Se
. 3 have to be used.The absorption 
ross se
tion is the imaginary part, σa = 4πk Im ̺a, of the fun
-tion

̺a(k) =
N∑

n=1

̺n
iQnkn/(2k)

1 − iQn (k/kn − kn/k) /2
, (4.2)for real-valued k. The fun
tion ̺a(k) is holomorphi
 for Im k > 0 and has a symmet-ri
ally distributed pair of poles for Im k < 0, see Fig. 3. The integrated absorption
ross se
tion is

1

4π2

∫ ∞

−∞

σa(k)

k2
dk = ̺a(0) = η̺̃(0) ≤ ̺(0), (4.3)where ̺(0) is given by the long wavelength limit (A.4).For antennas with a dominant �rst resonan
e at k = k1, it follows from (3.1)and (4.1) that the partial realized gain G satis�es

(1 − |Γ |2)G =
k2σa

π
≤ ̺(0)

2k2Qk1

1 +Q2(k/k1 − k1/k)2/4
, (4.4)where ̺1 ≤ ̺(0) has been used. The right hand side of (4.4) rea
hes its maximumvalue ̺(0)2k3

1Q/(1−Q−2) at k0 = k1(1−2Q−2)−1/2 or k0 = k1 +O(Q−2) as Q→ ∞.Hen
e, k0 is a good approximation to k1 if Q ≫ 1. For a lossless antenna whi
h isperfe
tly mat
hed at k = k0, the partial realized gain (1−|Γ |2)G 
oin
ides with thepartial dire
tivity D. Under this assumption, (4.4) yields D/Q ≤ ̺(0)2k3
1/(1−Q−2)whi
h further 
an be estimated from above as

D

Q
≤ k3

0

2π
(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m) , (4.5)
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Figure 3: The symmetri
ally distributed pair of poles (×) of the extin
tion volume
̺ in the 
omplex k-plane (left �gure) and the 
orresponding single resonan
e modelof Im ̺ when Qn ≫ 1 (right �gure).where (A.4) have been used. Relation (4.5) together with (3.5) 
onstitute the mainresults of this paper.Analogous to (3.5) and (3.6), it is 
lear that (4.5) 
an be estimated from aboveby the high-
ontrast polarizability dyadi
 γ∞ and the asso
iated eigenvalues γ1 and
γ2, viz.,

sup
p̂e·p̂m=0

D

Q
≤ k3

0

2π
(γ1 + γ2). (4.6)Here, (4.6) is subje
t to polarization mat
hing and therefore independent of theele
tri
 and magneti
 polarizations, p̂e and p̂m, respe
tively. Note that the upperbounds in (4.5) and (4.6) only di�er from the 
orresponding results in (3.5) and (3.6)by a fa
tor of π, i.e., GΛB ≤ πC and D/Q ≤ C. Hen
e, it is su�
ient to 
onsidereither the GΛB bound or the D/Q bound for a spe
i�
 antenna. The estimates (4.5)and (4.6) 
an be improved by the multipli
ative fa
tor η̃ if a priori knowledge of thes
attering properties of the antenna (3.7) is invoked in (4.4).The resonan
e model for the absorption 
ross se
tion in (4.1) is also dire
tlyappli
able to the theory of broadband s
attering in Ref. 19. In that referen
e, (4.1)
an be used to model absorption and s
attering properties and yield new limitationson broadband s
attering.5 Comparison with Chu and Chu-FanoIn this se
tion, the bounds on GΛB and D/Q subje
t to mat
hed polarizations, i.e.,inequalities (3.6) and (4.6), are 
ompared with the 
orresponding results by Chuand Fano in Refs. 3 and 5, respe
tively.



95.1 Limitations on Q-fa
tor and dire
tivityThe 
lassi
al limitations derived by Chu in Ref. 3 relate the Q-fa
tor and the di-re
tivity D to the quantity k0a of the smallest 
ir
ums
ribing sphere. Using thenotation of Se
s. 3 and 4, the 
lassi
al result by Chu for an omni-dire
tional an-tenna (for example in the azimuth plane) reads
sup

p̂e·p̂m=0

D

Q
≤ 3

2

k3
0a

3

k2
0a

2 + 1
=

3

2
k3

0a
3 + O(k5

0a
5) as k0a→ 0. (5.1)In the general 
ase of both TE- and TM-modes, (5.1) must be modi�ed, see Ref. 12,viz.,

sup
p̂e·p̂m=0

D

Q
≤ 6k3

0a
3

2k2
0a

2 + 1
= 6k3

0a
3 + O(k5

0a
5) as k0a→ 0. (5.2)Note that (5.2) di�ers from (5.1) by approximately a fa
tor of four when k0a≪ 1.The bounds in (5.1) and (5.2) should be 
ompared with the 
orresponding resultin Se
. 4 for the sphere. For a sphere of radius a, the eigenvalues γ1 and γ2 aredegenerated and equal to 4πa3, see Se
. 6. Insertion of γ1 = γ2 = 4πa3 into (4.6)yields sup

p̂e·p̂m=0D/Q ≤ C, where the 
onstant C is given by
C = 4k3

0a
3, C = 2k3

0a
3, C = k3

0a
3. (5.3)The three di�erent 
ases in (5.3) 
orrespond to both ele
tri
 and magneti
 materialproperties (C = 4k3

0a
3), pure ele
tri
 material properties (C = 2k3

0a
3), and pureele
tri
 material properties with a priori knowledge of minimum s
attering 
hara
-teristi
s (C = k3

0a
3 with η̃ = 1/2), respe
tively. Note that the third 
ase in (5.3)more generally 
an be expressed as C = 2k3

0a
3η̃ for any broadband absorption e�-
ien
y 0 < η̃ ≤ 1. The bounds in (5.2) and (5.3) are 
omparable although the newlimitations (5.3) are sharper. In the omni-dire
tional 
ase, (5.1) provides a sharperbound than (5.3), ex
ept for the pure ele
tri
 
ase with absorption e�
ien
y η̃ < 3/4.5.2 Limitations on bandwidth and gainThe limitation (3.6) should also be 
ompared with the result of Chu when the Fanotheory of broadband mat
hing is used. The Fano theory in
ludes the impedan
evariation over the frequen
y interval to yield limitations on the bandwidth, seeRef. 5. For a resonan
e 
ir
uit model, the Fano theory yields that the relationbetween B and Q is, see Ref. 6,

B ≤ π

Q ln 1/|Γ | . (5.4)The re�e
tion 
oe�
ient Γ is due to mismat
h of the antenna. It is related to thestanding wave ratio SWR as |Γ | = (SWR − 1)/(1 + SWR).Introdu
e Qs as the Q-fa
tor of the smallest 
ir
ums
ribing sphere with 1/Qs =
k3

0a
3 +O(k5

0a
5) as k0a→ 0 for omni-dire
tional antennas. Under this assumption, it



10follows from (5.1) that sup
p̂e·p̂m=0D ≤ 3Q/2Qs. Insertion of this inequality into (5.4)then yields
sup

p̂e·p̂m=0

GΛB ≤ 3π

2

1 − |Γ |2
ln 1/|Γ | k

3
0a

3. (5.5)For a given k0a, the right hand side of (5.5) is monotone in |Γ | and bounded fromabove by 3πk3
0a

3. However, note that the Chu-Fano limitation (5.5) is restri
ted toomni-dire
tional antennas with k0a≪ 1.Inequality (5.5) should be 
ompared with the 
orresponding result in Se
. 3 forthe smallest 
ir
ums
ribing sphere. Sin
e the upper bounds (3.6) and (4.6) onlydi�er by a fa
tor of π, i.e., sup
p̂e·p̂m=0GΛB ≤ C ′ and sup

p̂e·p̂m=0D/Q ≤ C where
C ′ = πC, it follows from (5.3) that

C ′ = 4πk3
0a

3, C ′ = 2πk3
0a

3, C ′ = πk3
0a

3. (5.6)The three 
ases in (5.3) 
orrespond to both ele
tri
 and magneti
 material properties(C ′ = 4πk3
0a

3), pure ele
tri
 material properties (C ′ = 2πk3
0a

3), and pure ele
tri
material properties with a priori knowledge of minimum s
attering 
hara
teristi
s(C ′ = πk3
0a

3), respe
tively.The limitations on GΛB based on (5.6) are 
omparable with (5.5) for most re-�e
tions 
oe�
ients |Γ |. For |Γ | < 0.65 the Chu-Fano limitation (5.5) provides aslightly sharper bound on GΛB than (5.6) for pure ele
tri
 materials. However, re-
all that the spheri
al geometry gives an unfavorable 
omparison with the presenttheory, sin
e for many antennas the eigenvalues γ1 and γ2 are redu
ed 
onsiderably
ompared with the smallest 
ir
ums
ribing sphere, 
f., the dipole in Se
. 8.1 and theloop antenna in Se
. 8.2.6 Ellipsoidal geometriesClosed-form expressions of γe and γm exist for the ellipsoidal geometries, see Ref. 19,viz.,
γe = V χe · (I + L · χe)

−1, γm = V χm · (I + L · χm)−1. (6.1)Here, I denotes the unit dyadi
 and V = 4πa1a2a3/3 is the volume of ellipsoid interms of the semi-axes aj. The depolarizability dyadi
 L is real-valued and symmet-ri
, and hen
e diagonalizable with real-valued eigenvalues. The eigenvalues of L arethe depolarizing fa
tors Lj, given by
Lj =

a1a2a3

2

∫ ∞

0

ds

(s+ a2
j)
√

(s+ a2
1)(s+ a2

2)(s+ a2
3)
, j = 1, 2, 3. (6.2)The depolarizing fa
tors Lj satisfy 0 ≤ Lj ≤ 1 and∑j Lj = 1. The semi-axes aj areassumed to be ordered su
h that L1 ≤ L2 ≤ L3. Closed-form expressions of (6.2)in terms of the semi-axis ratio ξ = (minj aj)/(maxj aj) exist for the ellipsoids ofrevolution, i.e., the prolate spheroids (L2 = L3) and the oblate spheroids (L1 = L2),see Appendix G.
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» Figure 4: The eigenvalues γ1 ≥ γ2 ≥ γ3 (left �gure) and the quotient D/Q (right�gure) for the prolate and oblate spheroids as fun
tion of the semi-axis ratio ξ.Note the normalization with the volume Vs = 4πa3/3 of the smallest 
ir
ums
ribingsphere.The high-
ontrast polarizability dyadi
 γ∞ is given by (6.1) as the elements of χeor χm simultaneously approa
h in�nity. From (6.1) it is 
lear that the eigenvaluesof γ∞ are given by γj = V/Lj. For the prolate and oblate spheroids, V is neatlyexpressed in terms of the volume Vs = 4πa3/3 of the smallest 
ir
ums
ribing sphere.The results are V = ξ2Vs and V = ξVs for the prolate and oblate spheroids, respe
-tively. The eigenvalues γ1 and γ2 for the prolate and oblate spheroids are depi
tedin the left �gure in Fig. 4. Note that the 
urves for the oblate spheroid approa
h
4/π in the limit as ξ → 0, see Appendix G. The 
orresponding limiting value forthe 
urves as ξ → 1 is 3.The general bound on GΛB for arbitrary ellipsoidal geometries is obtained byinserting (6.1) into (3.4), i.e.,
GΛB ≤ 4π3V

λ3
0

(
p̂∗

e · χe · (I + L · χe)
−1 · p̂e + p̂∗

m · χm · (I + L · χm)−1 · p̂m

)
. (6.3)Independent of both material properties and polarization e�e
ts, the right hand sideof (6.3) 
an be estimated from above in analogy with (3.6). The result is

sup
p̂e·p̂m=0

GΛB ≤ 4π3V

λ3
0

(
1

L1

+
1

L2

)
. (6.4)In the non-magneti
 
ase, the se
ond term on the right hand side of (6.3) and (6.4)vanishes. For the prolate and oblate spheroids, the 
losed-form expressions of Lj inAppendix G 
an be introdu
ed to yield expli
it upper bounds on GΛB.
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µ

a

k̂

2a
k̂

µ

circular disk circular needleFigure 5: Geometry of the 
ir
ular disk and needle.The 
orresponding results for the quotient D/Q are obtained from the observa-tion that GΛB ≤ πC is equivalent to D/Q ≤ C, see Se
. 4. For the general 
asein
luding polarization and material properties, (6.3) yields
D

Q
≤ k3

0V

2π

(
p̂∗

e · χe · (I + L · χe)
−1 · p̂e + p̂∗

m · χm · (I + L · χm)−1 · p̂m

)
. (6.5)Analogous to (6.4), the restri
tion to mat
hed polarizations for the quotient D/Qreads

sup
p̂e·p̂m=0

D

Q
≤ k3

0V

2π

(
1

L1

+
1

L2

)
. (6.6)The upper bound in (6.6) is depi
ted in the right �gure in Fig. 4 for the prolate andoblate spheroids. The solid 
urves 
orrespond to 
ombined ele
tri
 and magneti
material properties, while the dashed 
urves represent the pure ele
tri
 
ase. Thenon-magneti
 minimum s
attering 
ase (η̃ = 1/2) is given by the dotted 
urves.Note that the three 
urves in the right �gure vanish for the prolate spheroid as

ξ → 0. The 
orresponding limiting values for the oblate spheroid are 16/3π, 8/3πand 4/3π, see Appendix G.The 
urves depi
ted in the right �gure in Fig. 4 should be 
ompared with the
lassi
al results for the sphere in (5.1) and (5.2). The omni-dire
tional bound (5.1)and its generalization (5.2) are marked in Fig. 4 by Chu (TE) and (TE+TM), re-spe
tively. From the �gure, it is 
lear that (6.6) provides a sharper bound than (5.2).For omni-dire
tional antennas, (5.1) is slightly sharper than (6.6) for the sphere, butwhen a priori knowledge of minimum s
attering 
hara
teristi
s (η̃ = 1/2) is used, thereversed 
on
lusion holds. Re
all that the 
lassi
al results in Se
. 5.1 are restri
tedto the sphere, in 
ontrast to the theory introdu
ed in this paper.Based on the results in Appendix G, it is interesting to evaluate (6.4) in the limitas ξ → 0. This limit 
orresponds to the axially symmetri
 needle and 
ir
ular diskin Fig. 5. For a needle of length 2a with semi-axis ξ ≪ 1, (G.3) inserted into (6.4)yields
GΛB ≤ 16π4a3

3λ3
0

f(θ)

ln 2/ξ − 1
+ O(ξ2) as ξ → 0. (6.7)



13Here, f(θ) = sin2 θ for the TE- and TM-polarizations in the 
ase of both ele
tri
and magneti
 material properties. In the non-magneti
 
ase, f(θ) = 0 for the TE-and f(θ) = sin2 θ for the TM-polarization. Note that the sin2 θ term in (6.7) andthe logarithmi
 singularity in the denominator agree with the radiation pattern andthe impedan
e of the dipole antenna in Se
. 8.1, see Ref. 4.The 
orresponding result for the 
ir
ular disk of radius a is non-vanishing in thelimit as ξ → 0, viz.,
GΛB ≤ 64π3a3

3λ3
0

f(θ). (6.8)Here, f(θ) = 1+cos2 θ for the TE- and TM-polarizations in the 
ase of both ele
tri
and magneti
 material properties. In the non-magneti
 
ase, f(θ) = 1 for the TE-and and f(θ) = cos2 θ for the TM-polarization. Note the dire
t appli
ation of (6.8)for planar spiral antennas.7 γ∞ for some generi
 geometriesIn this se
tion, some numeri
al results of γ∞ are presented and analyzed in termsof the physi
al limitations dis
ussed in Se
. 3.7.1 The Platoni
 solidsSin
e the Platoni
 solids are invariant under appropriate point groups, see Ref. 11,their 
orresponding high-
ontrast polarizability dyadi
s γ∞ are isotropi
, i.e., γ∞ =
γ∞I, where I denotes the unit dyadi
 in R

3. Let γ = γj represent the eigenvalues of
γ∞ for j = 1, 2, 3. The Platoni
 solids are depi
ted in Fig. 6 together with the eigen-values γ in terms of the volume V of the solids. The �ve Platoni
 solids are from leftto right the tetrahedron, hexahedron, o
tahedron, dode
ahedron and i
osahedron,with 4, 6, 8, 12 and 20 fa
ets, respe
tively. In
luded in the �gure are also γ in unitsof 4πa3, where a denotes the radius of the smallest 
ir
ums
ribing sphere. This
omparison with the smallest 
ir
ums
ribing sphere is based on straightforward 
al-
ulations whi
h is further dis
ussed in Se
. 7.2. The numeri
al values of γ in Fig. 6are based on Method of Moments (MoM) 
al
ulations, see Ref. 19 and referen
estherein.Sin
e the upper bound in (3.6) is linear in γ, it follows that among the Platoni
solids, the tetrahedron provides the largest upper bound on GΛB for a given volume
V . The eigenvalues γ in Fig. 6 are seen to approa
h 3V as the number of fa
etsin
reases. This observation is 
on�rmed by the variational prin
iple dis
ussed inRef. 19, whi
h states that for a given volume the sphere minimizes the tra
e of γ∞among all isotropi
 high-
ontrast polarizability dyadi
s. Hen
e, a lower bound on γis given by the sphere for whi
h γ = 3V .For mat
hed polarizations, the eigenvalues in Fig. 6 
an dire
tly be appliedto (3.6) to yield an upper bound on the performan
e of any antenna 
ir
ums
ribedby a given Platoni
 solid. For example, the non-magneti
 tetrahedron yields GΛB ≤
624V/λ3

0 or GΛB ≤ 0.19 for V = 1 cm3 and 
enter frequen
y c0/λ0 = 2 GHz. The
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5.029V 3.644V 3.551V 3.178V 3.130V 3V

(0.205) (0.445) (0.377) (0.704) (0.632) (1)Figure 6: The eigenvalues γ (upper row) for the �ve Platoni
 solids and the sphere.The number in parenthesis are γ in units of 4πa3, where a denotes the radius of thesmallest 
ir
ums
ribing sphere.
orresponding bound on the quotient D/Q di�er only by a fa
tor of π, i.e., D/Q ≤
0.059.It is interesting to note that the pertinent point group symmetries of the Platoni
solids are preserved if their geometries are altered appropriately. Su
h symmetri

hanges yield a large 
lass of geometries for whi
h γ∞ is isotropi
 and the upperbound on GΛB is independent of the polarization. This observation together withthe fa
t that the variational prin
iple dis
ussed above also 
an be applied to arbi-trary isotropi
 high-
ontrast polarizability dyadi
s, are parti
ularly interesting froma MIMO-perspe
tive, see Ref. 9 and referen
es therein.7.2 Comparison with the sphereFrom the dis
ussion of the polarizability dyadi
s in Ref. 19, it is 
lear that both
γ1 and γ2 are dire
tly proportional to the volume of the antenna with a purelygeometry dependent proportionality fa
tor. For the 
ir
ular disk, it follows fromAppendix G that even though the volume of the disk vanishes, the eigenvalues γ1and γ2 are non-zero. This result is due to the fa
t that the geometry dependentproportionality fa
tors 1/L1 and 1/L2 approa
h in�nity in the limit as the semi-axisratio approa
hes zero. In other words, it is not su�
ient to only 
onsider the volumepart of γ1 and γ2 to draw 
on
lusions of the potential in antenna performan
e for agiven volume. In addition, also the shape dependent proportionality fa
tor must betaken into a

ount.Motivated by the dis
ussion above, it is interesting to 
ompare γ1 and γ2 for thedi�erent geometries dis
ussed in Se
s. 7 and 8, and in Ref. 7. The 
omparison refersto the smallest 
ir
ums
ribing sphere with radius a, for whi
h γ1 and γ2 are equalto 4πa3, see Ref. 7. For this purpose, introdu
e γ1/4πa

3, whi
h, in the 
ase of pureele
tri
 material properties, yields a dire
t measure of the antenna performan
e interms of (3.6) and (4.6). The main question addressed in this se
tion is therefore:how mu
h antenna performan
e 
an be gained for a given geometry by insteadutilizing the full volume of the smallest 
ir
ums
ribing sphere?In Fig. 7, the goodness number γ1/4πa
3 are presented for the sphere, 
ir
ulardisk, toroidal ring, and prolate and 
ylindri
al needles, respe
tively. The generalized
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(1) (0.050) (0.056)(0.42) (0.24)Figure 7: The eigenvalue γ1 in units of 4πa3, where a denotes the radius of thesmallest 
ir
ums
ribing sphere. The prolate spheroid, the 
ir
ular ring and the
ir
ular 
ylinder 
orrespond to the generalized semi-axis ratio ξ = 10−3.semi-axis ratio4 for the toroidal ring and the prolate and 
ylindri
al needles are

ξ = 10−3. The values for the prolate needle and the toroidal ring are given by (G.3)and (H.5), respe
tively, while the 
ylindri
al needle is based on FEM simulation forthe dipole antenna in Se
. 8.1. The value for the 
ir
ular disk is 4/3π ≈ 0.42 givenby (G.4).The results in Fig. 7 should be 
ompared with the 
orresponding values in Fig. 6for the Platoni
 solids. For example, it is seen that the potential of utilizing thetetrahedron is about 20.5% 
ompared to the smallest 
ir
ums
ribing sphere. Sin
ethe high-
ontrast polarizability dyadi
s γ∞ are isotropi
 for the Platoni
 solids andthe sphere, it follows that the results in Fig. 6 also hold for the se
ond and thirdeigenvalues, γ2 and γ3, respe
tively. This is however not the 
ase for the geometriesdepi
ted in Fig. 7 sin
e the 
ir
ular disk, toroidal ring, and the prolate and 
ylindri
alneedles have no isotropi
 high-
ontrast polarizability dyadi
s. For the 
ir
ular diskand the toroidal ring, γ1 and γ2 are equal, and therefore yield the same results as inFig. 7 for 
ombined ele
tri
 and magneti
 material properties.In Fig. 7, it is seen that the physi
al limitations on GΛB and D/Q for any two-dimensional antenna 
on�ned to the 
ir
ular disk 
orresponds to about 42% of thepotential to utilize the full sphere. This result is rather surprising sin
e, in 
ontrastto the sphere, the 
ir
ular disk has zero volume. In other words, there is only afa
tor of 1/0.42 ≈ 2.4 to gain in antenna performan
e by utilizing three-dimensions
ompared to two for a given maximum dimension a of the antenna. Sin
e the prolateand 
ylindri
al needles vanish in the limit as the semi-axis ratio approa
hes zero,the performan
e of any one-dimensional antenna restri
ted to the line is negligibleas 
ompared to the performan
e of an antenna in the sphere.Sin
e γ1 and γ2 in the right hand side of (3.6) and (4.6) are determined from sep-arate ele
tri
 and magneti
 problems in the long wavelength limit, see Appendix B,it is 
lear that ele
tri
 and magneti
 material properties, and hen
e also γ1 and γ2,
an be 
ombined separately. For example, any antenna with magneti
 properties
on�ned to the 
ir
ular disk and ele
tri
 properties 
on�ned to the toroidal ring hasa potential whi
h is 100(0.42+0.24) = 66% of the sphere with no magneti
 materialproperties present.4The generalized semi-axis ratio for the 
ylindri
al needle and the toroidal ring are de�ned by
ξ = b/a, where a and b are given in Figs. 9 and 11, respe
tively.
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Figure 8: The eigenvalues γ1, γ2 and γ3 as fun
tion of the ratio a2/a1 for a re
tan-gular parallelepiped of edge lengths a1, a2 and a3. The solid 
urves are for a1/a3 = 5and the dotted 
urve is for a1/a3 = 10. Note the normalization with the volume
Vs = πa3

1/6 of the sphere of radius a1/2.7.3 The re
tangular parallelepipedThe re
tangular parallelepiped is a generi
 geometry that 
an be used to model, e.g.,mobile phones, laptops, and PDAs. The eigenvalues γ1, γ2 and γ3 for a re
tangularparallelepiped with edge lengths a1, a2 and a3 are shown in Fig. 8 as a fun
tion of theratio a2/a1. The solid and dotted 
urves 
orrespond to a1/a3 = 5 and a1/a3 = 10,respe
tively. The eigenvalues are ordered γ1 ≥ γ2 ≥ γ3 and the prin
ipal axes ofthe eigenvalues γi 
orrespond to the dire
tions parallel to ai if a1 ≥ a2 ≥ a3. Theeigenvalues degenerate if the lengths of the 
orresponding edges 
oin
ide.The performan
e of any non-magneti
 antenna ins
ribed in the parallelepiped islimited as shown by (3.5) with γm = 0. Spe
i�
ally, the limitations on antennaspolarized in the ai dire
tion are given by the eigenvalue, γi. Obviously, it is advan-tageous to utilize the longest dimension of the parallelepiped for the polarization ofsingle port antennas. The limitation (3.5) also quanti�es the degradation in usingthe other dire
tions for the polarization. This is useful for the understanding offundamental limitations and synthesis of MIMO antennas.For example, a typi
al mobile phone is approximately 10 cm high, 5 cm wide,and 1 cm to 2 cm thi
k. The 
orresponding eigenvalues γ1, γ2 and γ3 for a1 =
10 cm are seen in Fig. 8 for a3 = 2 cm (solid lines) and a3 = 1 cm (broken lines).The distribution of the eigenvalues γ1, γ2 and γ3 quanti�es the trade o� betweenpattern and polarization diversity for multiple antennas systems in the mobile phone.Pattern diversity utilizes the largest eigenvalue but requires an in
reased dire
tivityat the 
ost of bandwidth (3.5). Similarly, polarization diversity utilizes at least twoeigenvalues. It is observed that it is advantageous to use polarization and patterndiversity for a2 ≈ a1 and a2 ≪ a1, respe
tively. For a mobile phone where a2 ≈ a1/2,either pattern diversity or a 
ombined pattern and polarization diversity as linear
ombinations of the a1 and a2 dire
tions 
an be used. Moreover, note that magneti
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Figure 9: The extin
tion and absorption 
ross se
tions (top �gure) and the realizedgain (bottom �gure) for a 
ylindri
al dipole antenna with axial ratio b/a = 10−3.The di�erent 
urves 
orrespond to Hallén's integral equation (solid 
urves), dire
-tivity and Q-fa
tor limitation (4.6) (dashed 
urves), and gain and bandwidth limi-tation (3.6) (shaded box).materials, in
rease the bound (3.5) and o�er additional possibilities.8 Analysis of some 
lassi
al antennasIn this se
tion, numeri
al simulations of some 
lassi
al antennas are presented andanalyzed in terms of the physi
al limitations dis
ussed in Se
. 3.8.1 The dipole antennaThe 
ylindri
al dipole antenna is one of the simplest and most well known antennas.Here, the MoM solution of the Hallén's integral equation in Ref. 10 together with agap feed model is used to determine the 
ross se
tions and impedan
e for a 
ylindri
aldipole antenna with axial ratio b/a = 10−3. The extin
tion and absorption 
rossse
tions and the realized gain are depi
ted in Fig. 9. The antenna is resonant at
2a ≈ 0.48λ with dire
tivity D = 1.64 and radiation resistan
e 73 Ω. The half-powerbandwidth is B = 25% and the 
orresponding Q-fa
tor is estimated to Q = 8.3 bynumeri
al di�erentiation of the impedan
e, see Ref. 25. The absorption e�
ien
y ηis depi
ted in Fig. 10. It is observed that η ≈ 0.5 at the resonan
e frequen
y and
η̃ = 0.52 for 0 ≤ 4a/λ ≤ 3.The MoM solution is also used to determine the forward s
attering properties ofthe antenna. The forward s
attering is represented by the extin
tion volume ̺ inFig. 10. Re
all that ̺(0) and Im ̺ dire
tly are related to the polarizability dyadi
sand the extin
tion 
ross se
tion, see Se
. 3.Moreover, sin
e Re ̺ ≈ 0 at the resonan
e frequen
y, it follows that the real-valued part of the forward s
attering is negligible at this frequen
y. This observationis important in the understanding of the absorption e�
ien
y of antennas, see Ref. 2.
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Figure 10: The extin
tion volume ̺ (top �gure) and the absorption e�
ien
y η(bottom �gure) as fun
tion of 4a/λ for the dipole antenna.FEM simulations are used to determine the polarizability dyadi
 and the eigen-values of the 
ylindri
al region in Fig. 9. The eigenvalue γ1, 
orresponding to apolarization along the dipole, is γ1 = 0.71a3 and the other eigenvalues γ2 = γ3are negligible. The result agrees with the integrated extin
tion (2.3) of the MoMsolution within 2% for 0 ≤ 4a/λ ≤ 3.The eigenvalues γ1 = 0.71a3 and γ2 = 0 inserted into (4.6) give physi
al lim-itations on the quotient D/Q of any resonant antenna 
on�ned to the 
ylindri
alregion, i.e.,
sup

p̂e·p̂m=0

D

Q
≤ η̃

k3
0γ1

2π
≈ 0.39η̃. (8.1)The 
orresponding bound on the Q-fa
tor is Q ≥ 8.1, if D = 1.64 and η̃ = 0.52 areused. In Fig. 9, it is observed that the single resonan
e model (dashed 
urves) with

Q = 8.5 is a good approximation of the 
ross se
tions and realized gain. The 
or-responding half-power bandwidth is 24%. The eigenvalue γ1 also gives a limitationon the produ
t GΛB in (3.6) as illustrated with the re
tangular region in the right�gure for an arbitrary minimum s
attering antenna (η̃ = 0.5). The realized gain
GΛ = 1.64 gives the relative bandwidth B = 38%.It is also illustrative to 
ompare the physi
al limitations with the MoM simulationfor a short dipole. The resonan
e frequen
y of the dipole is redu
ed to 2a ≈ 0.2λwith an indu
tive loading of 5µH 
onne
ted in series with the dipole. The MoMimpedan
e 
omputations of the short dipole give the half-power bandwidth B =
1.4% and the radiation resistan
e 8 Ω. The D/Q bound (4.6) gives Q ≥ 110 forthe dire
tivity D = 1.52 and an absorption e�
ien
y η̃ = 1/2 
orresponding to thehalf-power bandwidth B ≤ 1.8%.Obviously, the simple stru
ture of the dipole and the absen
e of broadbandmat
hing networks make the resonan
e model favorable. The limitation (4.6) is inex
ellent agreement with the performan
e of the dipole antenna for the absorptione�
ien
y η̃ = 0.52, i.e., Q ≥ 8.1 from (4.6) 
ompared to Q = 8.3 from the MoMsolution. The GΛB bound overestimates the bandwidth, but a broadband mat
hing



19network 
an be used to enhan
e the bandwidth of the dipole, see Ref. 5.Observe that the dipole antenna has a 
ir
ums
ribing sphere with ka ≈ 1.5 andis not 
onsidered ele
tri
ally small a

ording to the Chu limitations in Ref. 3. The
orresponding limit for the 2a ≈ 0.2λ0 dipole (ka ≈ 0.63 and D = 1.52) is Q ≥ 5.6and the half-power bandwidth of 36% ≫ 1.4%. In 
on
lusion, the dipole utilizes the
ylindri
al region very e�
iently but obviously not the spheri
al region.8.2 The loop antennaThe magneti
 
ounterpart to the dipole antenna in Se
. 8.1 is the loop antenna. Thegeometry of the loop antenna is 
onveniently des
ribed in toroidal 
oordinates, seeSe
. H. Lapla
e's equation separates in the toroidal 
oordinate system and hen
epermits an expli
it 
al
ulation of the high-
ontrast polarizability dyadi
 γ∞. In thisse
tion the attention is restri
ted to the loop antenna of vanishing thi
kness andnon-magneti
 material properties. Under the assumptions of vanishing thi
kness,the analysis in Se
. H yields 
losed-form expressions of the eigenvalues γ1, γ2 and
γ3. Re
all that the loop antenna 
oin
ides with the magneti
 dipole in the longwavelength limit a/λ≪ 1.In order to quantify the vanishing thi
kness limit, introdu
e the semi-axis ratio
ξ = b/a, where a and b denote the axial and 
ross se
tion radii, respe
tively, seeFig. 11. The three eigenvalues γ1 = γ2 and γ3 are seen to vanish in the limit ξ → 0.However, γ1 and γ2 vanish slower than γ3, see Se
. H. The eigenvalues in the limit
ξ → 0 inserted into (4.5) yields

D

Q
≤ πk3

0a
3 f(θ)

ln 2/ξ − 1
+ O(ξ2) as ξ → 0, (8.2)where f(θ) = 1 for the TE- and f(θ) = cos2 θ for the TM-polarization. Here,

θ ∈ [0, π] is the polar angle measured from the z-axis of symmetry in Fig. 11. Notethat the logarithmi
 singularity in (8.2) is the same as for the dipole antenna, seeSe
. H. Sin
e the axial radius a is the only length s
ale that is present in the loopantenna in the limit ξ → 0, it is natural that γ1, γ2, and γ3 are proportional to a3,see Appendix B.By 
omparing the dis
ussion above with the results in Ref. 7 and Se
. 8.1, itis 
on
luded that there is a strong equivalen
e between the ele
tri
 and magneti
dipoles. For the most advantageous polarization the upper bound on GΛB is a fa
torof 3π/2 larger for the loop antenna 
ompared to the ele
tri
 dipole.The results are exempli�ed for a self-resonant loop with k0a = 1.1 and a 
a-pa
itively loaded loop, C = 10 pF, with k0a = 0.33, both with ξ = 0.01. The
orresponding limitations (4.6) are D/Q ≤ 0.95η̄ and D/Q ≤ 0.025η̄, respe
tively.The MoM is used to determine the impedan
e and realized gain of the loop antennawith a gap feed at φ = 0, see Fig. 11. The Q-fa
tor of the self-resonant antenna isestimated to Q = 5 from numeri
al di�erentiation of the impedan
e, see Ref. 25.The 
orresponding main beam is in the ẑ-dire
tion with a dire
tivity D = 2.36giving D/Q = 0.47. Similarly, the tuned loop has Q ≈ 164 and D = 1.43 in θ = 90◦and φ = 90◦ giving D/Q ≈ 0.0086.
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Figure 11: The realized partial gain of two loop antennas for θ = 0◦, 90◦. One selfresonant (ka ≈ 1) and one 
apa
itively tuned to ka ≈ 1/3.It is observed that the physi
al limitations (4.6) of the loops agree well withthe MoM results. This di�eren
e 
an be redu
ed by introdu
ing the appropriateabsorption e�
ien
y in the physi
al limitation. The 
orresponding results for theChu limitation are D/Q ≤ 2.3 for k0a = 1.1 and D/Q ≤ 0.18 for k0a = 0.33, wherethe 
ombined TE- and TM-
ase have been used as the loops are not omnidire
tional,see Refs. 3 and 12.8.3 Coni
al antennasThe bandwidth of a dipole antenna in
reases with the thi
kness of the antenna. Thebandwidth 
an also be in
reased with 
oni
al dipoles, i.e., the bi
oni
al antenna.The 
orresponding 
oni
al monopole and dis
one antennas are obtained by repla
ingone of the 
ones with a ground plane, see Ref. 21.In Fig. 12, the eigenvalues γx = γy and γz, 
orresponding to horizontal andverti
al polarizations, respe
tively, are shown as a fun
tion of the ground planeradius, b, for the 
oni
al monopoles with angles θ = 10◦ and 30◦. The eigenvaluesare normalized with a3, where a is the height of the 
one. It is observed that theeigenvalues in
rease with the radius, b, of the ground plane and the 
one angle θ.This is a general result as the polarizability dyadi
 is non-de
reasing with in
reasingsus
eptibilities, see Ref. 19.The horizontal eigenvalues γx = γy are dominated by the ground plane andin
rease approximately as b3 a

ording to the polarizability of the 
ir
ular disk, seeAppendix C. The verti
al eigenvalue γz approa
hes γbz/2 as b → ∞, where γbzdenotes the verti
al eigenvalue of the 
orresponding bi
oni
al antenna.It is interesting to 
ompare the D/Q estimate (4.6) for the bi
oni
al antennaand 
oni
al monopole antenna with a large but �nite ground plane. The verti
aleigenvalue γz of the 
oni
al monopole antenna is approximately half of the 
orre-sponding eigenvalue of the bi
onio
al antenna and the Q-fa
tors of the two antennasare similar. The physi
al limitation on the dire
tivity in the θ = 90◦-dire
tion of
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Figure 12: The verti
al and horizontal eigenvalues γz and γx as fun
tion of theradius b for a bi
oni
al antenna of half vertex angle 10◦ and 30◦, respe
tively.the 
oni
al monopole is hen
e half of the dire
tivity of the 
orresponding bi
oni
alantenna. This might appear 
ontradi
tory as it is well known that the maximal di-re
tivity of a monopole is approximately twi
e the dire
tivity of the 
orrespondingdipole. However, the θ = 90◦-dire
tion is on the border between the illuminatedand the shadow regions. The integral representation of the far �eld shows that theindu
ed ground-plane 
urrents do not 
ontribute to the far �eld in this dire
tion,implying that the dire
tivity is redu
ed a fa
tor of four as suggested by the physi
allimitations, see Appendix D.The rapid in
rease in γx = γy with the radius of the ground plane suggests thatit is advantageous to utilize the polarization in the theses dire
tions. This is done bythe dis
one antenna that has an omnidire
tional pattern with a maximal dire
tivityabove θ = 90◦.9 Con
lusion and future workIn this paper, physi
al limitations on re
ipro
al antennas of arbitrary shape are de-rived based on the holomorphi
 properties of the forward s
attering dyadi
. Theresults are very general in the sense that the underlying analysis solely depends onenergy 
onservation and the fundamental prin
iples of linearity, time-translationalinvarian
e, and 
ausality. Several de�
ien
ies and drawba
ks of the 
lassi
al limita-tions of Chu and Wheeler in Refs. 3 and 24 are over
omed with this new formulation.The main advantages of the new limitations are at least �vefold: 1) they hold forarbitrary antenna geometries; 2) they are formulated in the gain and bandwidthas well as the dire
tivity and the Q-fa
tor; 3) they permit study of polarizatione�e
ts su
h as diversity in appli
ations for MIMO 
ommuni
ation systems; 4) theysu

essfully separate ele
tri
 and magneti
 antenna properties in terms of the in-



22trinsi
 material parameters; 5) they are isoperimetri
 from a pra
ti
al point of viewin the sense that for some geometries, physi
al antennas 
an be realized whi
h yieldequality in the limitations.The main results of the present theory are the limitations on the partial real-ized gain and partial dire
tivity in (3.4) and (4.5), respe
tively. Sin
e the upperbounds in (3.4) and (4.5) are proportional to k3
0a

3, where a denotes the radius of,say, the volume equivalent sphere, it is 
lear that no broadband ele
tri
ally smallantennas exist unless gain or dire
tivity is sa
ri�
ed for bandwidth or Q-fa
tor. Thisis also the main 
on
lusion in Ref. 12, but there presented on more vague grounds.Furthermore, the present theory suggests that, in addition to ele
tri
 material prop-erties, also magneti
 materials 
ould be invoked in the antenna design to in
reasethe performan
e, 
f., the ferrite loaded loop antenna in Ref. 4.In 
ontrast to the 
lassi
al results by Chu and Wheeler in Refs. 3 and 24, thesenew limitations are believed to be isoperimetri
 in the sense that the bounds hold forsome physi
al antenna. A striking example of the intrinsi
 a

ura
y of the theoryis illustrated by the dipole antenna in Se
. 8.1. In fa
t, many wire antennas arebelieved to be 
lose to the upper bounds sin
e these antennas make e�e
tive use oftheir volumes.It is important to remember that a priori knowledge of the absorption e�
ien
y
η = σa/σext 
an sharpen the bounds in (3.4) and (4.5), 
f., the half-wave dipoleantenna in Se
. 8.1 for whi
h η̃ ≈ 1/2 is used. Similarly, a priori knowledge of theradiation e�
ien
y, ηr, 
an be used to improve the estimate in (3.2) using G = ηrD.The performan
e of an arbitrary antenna 
an be 
ompared with the upper boundsin Se
s. 3 and 4 using either the method of moments (MoM) or the �nite di�eren
etime domain method (FDTD). For su
h a 
omparison, it is bene�
ial to deter-mine the integrated extin
tion and 
ompare the result using (2.3) rather than (3.4)and (4.5). The reason for this is that the full absorption and s
attering proper-ties are 
ontained within (2.3) in 
ontrast to (3.4) and (4.5). In fa
t, (2.3) is thefundamental physi
al relation and should be the starting point of mu
h analysis.In addition to the broadband absorption e�
ien
y η̃, several impli
ations of thepresent theory remains to investigate. Future work in
lude the e�e
t of non-simple
onne
ted geometries (array antennas) and its relation to 
apa
itive 
oupling, andadditional analysis of 
lassi
al antennas. From a wireless 
ommuni
ation point ofview it is also interesting to investigate the 
onne
tion between the present theoryand the 
on
ept of 
orrelation and 
apa
ity in MIMO 
ommuni
ation systems. Someof the problems mentioned here will be addressed in forth
oming papers.A
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23Appendix A Details on the derivation of (2.3)Consider a plane-wave ex
itation Ei(c0t − k̂ · x) in
ident in the k̂-dire
tion, seeFig. 1. In the far �eld region, the s
attered ele
tri
 �eld Es is des
ribed by the far�eld amplitude F as
Es(t,x) =

F (c0t− x, x̂)

x
+ O(x−2) as x→ ∞, (A.1)where c0 denotes the speed of light in va
uum, and x̂ = x/x with x = |x|. The far�eld amplitude F in the forward dire
tion k̂ is assumed to be 
ausal and related tothe in
ident �eld Ei via the linear and time-translational invariant 
onvolution

F (τ, k̂) =

∫ τ

−∞

St(τ − τ ′, k̂, k̂) · Ei(τ
′) dτ ′.Here, τ = c0t− x and St is the appropriate dimensionless temporal dyadi
.Introdu
e the forward s
attering dyadi
 S as the Fourier transform of St evalu-ated in the forward dire
tion, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (A.2)where k is 
omplex-valued with Re k = ω/c0. Re
all that S(ik, k̂) is real-valuedfor real-valued k and that the 
rossing symmetry S(k, k̂) = S

∗(−k∗, k̂) holds for
omplex-valued k. For a large 
lass of temporal dyadi
s St, the elements of S areholomorphi
 in the upper half plane Im k > 0.From the analysis above, it follows that the Fourier transform of (A.1) in theforward dire
tion reads
Es(k, xk̂) =

eikx

x
S(k, k̂) · E0 + O(x−2) as x→ ∞,where E0 is the Fourier amplitude of the in
ident �eld. Introdu
e the extin
tionvolume ̺(k) = p̂∗

e · S(k, k̂) · p̂e/k
2, where p̂e = E0/|E0| and p̂m = k̂ × p̂e denotethe ele
tri
 and magneti
 polarizations, respe
tively. Sin
e the elements of S areholomorphi
 in k for Im k > 0, it follows that also the extin
tion volume ̺ is aholomorphi
 fun
tion in the upper half plane. The Cau
hy integral theorem withrespe
t to the 
ontour in Fig. 13 then yields

̺(iε) =

∫ π

0

̺(iε− εeiφ)

2π
dφ+

∫ π

0

̺(iε+Reiφ)

2π
dφ+

∫

ε<|k|<R

̺(k + iε)

2πik
dk. (A.3)Here, it is assumed that the extin
tion volume ̺ is su�
iently regular to extendthe 
ontour to the real-axis in the last integral on the right hand side of (A.3).Relation (A.3) is subje
t to the limits as ε→ 0 and R → ∞.The left hand side of (A.3) and the integrand in the �rst integral on the righthand side are well-de�ned in the limit as ε → 0. For a su�
iently regular ̺ in thevi
inity of the origin, the analysis in Ref. 14 yield

̺(iε) =
1

4π
(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m) + O(ε) as ε→ 0. (A.4)
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Figure 13: Integration 
ontour in the 
omplex k-plane used in (A.3).Here, γe and γm denote the ele
tri
 and magneti
 polarizability dyadi
s in Ap-pendix B. Sin
e the short wavelength response of a material is non-unique from amodeling point of view, see Ref. 8, the se
ond term on the right hand side of (A.3) isassumed to approa
h zero in the limit R → ∞. In fa
t, for a large 
lass of temporaldyadi
s St, the integrand ̺(iε+Reiφ)/2π is proportional to the proje
ted area A inthe forward dire
tion, viz.,
̺(k) = −A(k̂)

2πik
+ O(|k|−2) as |k| → ∞, Im k ≥ 0. (A.5)The asymptoti
 behavior (A.5) is known as the extin
tion paradox, see Ref. 23. The
onstant A is real-valued sin
e S(ik, k̂) is real-valued for real-valued k.In order to pro
eed, the s
attering, absorption and extin
tion 
ross se
tionsare introdu
ed. The s
attering 
ross se
tion σs and absorption 
ross se
tion σaare de�ned as the ratio of the s
attered and absorbed power, respe
tively, to thein
ident power �ow density in the forward dire
tion. The sum of the s
attering andabsorption 
ross se
tions is the extin
tion 
ross se
tion σext = σs + σa. The three
ross se
tions σs, σa and σext are by de�nition real-valued and non-negative. Theprin
iple of energy 
onservation takes the form as a relation between the extin
tionvolume ̺ and the extin
tion 
ross se
tion. The relation is known as the opti
altheorem, see Refs. 16 and 22,
σext(k) = 4πk Im ̺(k), (A.6)where k is real-valued.In summary, the real part of (A.3) subje
t to the limits ε→ 0 and R → ∞ yields

̺(0) =
1

π

∫ ∞

−∞

Im ̺(k)

k
dk. (A.7)The opti
al theorem (A.6) applied to (A.7) then implies

̺(0) =
1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (A.8)



25where the wavelength λ = 2π/k has been introdu
ed. Hen
e, invoking (A.4) �nallyyields the integrated extin
tion
∫ ∞

0

σext(λ) dλ = π2 (p̂∗
e · γe · p̂e + p̂∗

m · γm · p̂m) . (A.9)In fa
t, the already weak assumptions on the extin
tion volume ̺ in the analysisabove 
an be relaxed via the introdu
tion of 
ertain 
lasses of distributions, seeRef. 17.Appendix B The polarizability dyadi
sLet τ denote a �nite material dyadi
 (χe without a 
ondu
tivity term, or χm) with
ompa
t support. The entries of the polarizability dyadi
 γ (γe or γm dependingon whether the problem is ele
tri
 or magneti
) are de�ned as the volume integral
êi · γ · êj =

1

E0

êi ·
∫

R3

τ (x) · Ej(x) dVx, i, j = 1, 2, 3. (B.1)Here, the total �eld E has been de
omposed as Ej = E0êj +Esj with respe
t to themutually orthonormal ve
tors êj. In the ele
tri
 and magneti
 
ases, E representsthe ele
tri
 and magneti
 �eld, respe
tively.In the high-
ontrast limit, when the entries of τ simultaneously approa
h in�nityuniformly in x, the pertinent de�nition of the high-
ontrast polarizability dyadi
 γ∞is, see Ref. 14,
êi · γ∞ · êj =

1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x) − xν̂(x) · ∇Φj(x)) dSx. (B.2)The surfa
e integral representation (B.2) holds for N disjun
t bounding surfa
es Snwith outward-dire
ted unit normal ve
tors ν̂. The potential Ψj(x) = Φj(x) −E0xjis for ea
h n = 1, 2, . . . , N the solution to the boundary value problem




∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇Ψj(x) |+ dSx = 0

Ψj(x) → −E0xj + O(|x|−2) as |x| → ∞The presen
e of a �nite or in�nite 
ondu
tivity term in χe is dis
ussed in Ref. 14.The 
on
lusion is that the ele
tri
 polarizability dyadi
 γe should be repla
ed by
γ∞ independently of the real-part of χe when a 
ondu
tivity term is present. Thismay at �rst seem 
ontradi
tory, sin
e there is no 
ontinuity in the limit as the
ondu
tivity vanishes.In Ref. 19, the polarizability dyadi
 γ is proved to be symmetri
 provided τ issymmetri
 at all points x. The dyadi
 γ is real-valued, and hen
e diagonalizablewith real-valued eigenvalues. The 
orresponding set of orthogonal eigenve
tors are
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Figure 14: Illustration of an arbitrary antenna volume supported by a groundplane (left �gure) and its 
orresponding mirror obje
t (right �gure).the prin
ipal axes of the obsta
le under 
onsideration. The prin
ipal axes are parti
-ularly easy to determine for obsta
les with 
ontinuous or dis
rete symmetries, e.g.,the ellipsoids and the Platoni
 solids in Se
. 7.1.An important property of γ whi
h is proved in Ref. 19, is that it is proportionalto the volume of the support of τ . This is a dire
t 
onsequen
e of the absen
e ofany length s
ales in the long wavelength limit.Appendix C Supporting ground planesSupporting ground planes are 
entral stru
tures in many antenna appli
ations. Con-sider an arbitrary volume, modeling the antenna, situated above a supporting groundplane of �nite or in�nite extent, see Fig. 14. To simplify the terminology, usemonopole to denote obje
t with a ground plane and dipole to denote the obje
ttogether with its mirror obje
t. The ground plane is assumed to be a 
ir
ular diskof radius b with vanishing thi
kness. Sin
e γ∞ is independent of any 
oordinaterepresentation, let the ground plane be given by z = 0.For a polarization parallel with the ground plane, i.e., spanned by êx and êy, itis 
lear from the results in Appendix B of the 
ir
ular disk that the 
ontribution to
γ∞ from the ground plane is large. Indeed, a 
ir
ular ground plane of radius b yields
γx = γy = 16b3/3, where γx and γy denote the eigenvalues of γ∞ 
orresponding tothe êx and êy dire
tions, respe
tively (G.4).The polarizability of the monopole for an ele
tri
 polarization parallel with the
êz-dire
tion has one 
ontribution from the 
harge distribution on the obje
t z >
0 and one part from the 
harge distribution on the ground plane z = 0. The
ontribution from the ground plane vanishes in (B.2) sin
e z = 0. For a groundplane of in�nite extent the method of images is appli
able to determine the 
hargedistribution for z > 0. In this method, the ground plane is repla
ed with a 
opy ofthe obje
t pla
ed in the mirror position of the obje
t, i.e., the dipole. The 
hargedistribution is odd in z and the 
harge distribution for z > 0 is identi
al in themonopole and dipole 
ases. The polarizability of the dipole is hen
e exa
tly twi
e



27the polarizability of the 
orresponding monopole.The di�eren
e between the �nite and in�nite ground planes is negligible as longas the 
harge distribution on the monopole 
an be approximated by the 
hargedistribution in the 
orresponding dipole 
ase.Appendix D Dire
tivity along ground planesThe integral representation of the far-�eld 
an be used to analyze the dire
tivity ofantennas in dire
tions along the supporting ground plane. The pertinent integralrepresentation reads
F (r̂) =

ikZ0

4π

∫

S

r̂ × (J(x) × r̂)e−ikr̂·x dSx, (D.1)where J and Z0 denote the indu
ed 
urrent and the free spa
e impedan
e, respe
-tively.Consider a monopole, i.e., an obje
t on a large but �nite ground plane, at z = 0with êz as a symmetry axis, see Fig. 14. The far-�eld of the monopole (D.1) 
anbe written as a sum of one integral over the ground plane and one integral overthe obje
t. Let S+ and S0 denote the 
orresponding surfa
es of the obje
t andthe ground plane, respe
tively. Assume that the ground plane is su�
iently largesu
h that the 
urrents on the monopole 
an be approximated with the 
urrentson the 
orresponding dipole 
ase for z > 0. Moreover, assume that the 
urrent isrotationally symmetri
 and that the 
urrent in the φ-dire
tion is negligible givingan omni-dire
tional radiation pattern. Hen
e, it is su�
ient to 
onsider the far-�eldpattern in the r̂ = êx-dire
tion.The indu
ed 
urrents on the ground plane are in the radial dire
tion giving theterm êx × (J(x) × êx) = êyJρ(ρ) sinφ in (D.1). It is seen that the 
urrents on theground plane does not 
ontribute to the far �eld as
F (êx) = êy

ikη

4π

∫

S0

e−ikρ cos φJρ(ρ) sinφρ dφ dρ = 0. (D.2)The 
ontribution from the 
urrents on the obje
t 
an be analyzed with the methodof images. From (D.2), it is seen the it is only the 
urrents in the êz-dire
tion that
ontributes to the far �eld, i.e.,
F (êx) = êz

ikη

4π

∫

S+

e−ikρ cos φJz(ρ, z) dS, (D.3)where Jzêz = êx × (J × êx). The method of images shows that Jz is even in z sothe z-dire
ted 
urrents above and below the ground plane give equal 
ontributionsto the far �eld. The dire
tivity of the monopole antenna is hen
e a quarter of thedire
tivity of the 
orresponding dipole antenna in the êx-dire
tion.



28Appendix E De�nition of some antenna termsThe following de�nitions of antenna terms are based on the IEEE standard 145-1993 in Ref. 13. The de�nitions refer to the ele
tri
 polarization p̂e (
o-polarization)rather than the magneti
 polarization p̂m = k̂× p̂e (
ross-polarization). The anten-nas are assumed to re
ipro
al, i.e., they have similar properties as transmitting andre
eiving devi
es.Absolute gain G(k̂). The absolute gain is the ratio of the radiation intensity ina given dire
tion to the intensity that would be obtained if the power a

epted bythe antenna was radiated isotropi
ally.Partial gain G(k̂, p̂e). The partial gain in a given dire
tion is the ratio of thepart of the radiation intensity 
orresponding to a given polarization to the radiationintensity that would be obtained if the power a

epted by the antenna was radiatedisotropi
ally. The absolute gain is equal to the sum of the partial gains for twoorthogonal polarizations, i.e., G(k̂) = G(k̂, p̂e) +G(k̂, p̂m).Realized gain G(k̂, Γ ). The realized gain is the absolute gain of an antennaredu
ed by the losses due to impedan
e mismat
h of the antenna, i.e., G(k̂, Γ ) =
(1 − |Γ |2)G(k̂).Partial realized gain G(k̂, p̂e, Γ ). The partial realized gain is the partial gainfor a given polarization redu
ed by the losses due to impedan
e mismat
h of theantenna, i.e., G(k̂, p̂e, Γ ) = (1 − |Γ |2)G(k̂, p̂e).Absolute dire
tivity D(k̂). The absolute dire
tivity is the ratio of the radiationintensity in a given dire
tion to the radiation intensity averaged over all dire
tions.The averaged radiation intensity is equal to the total power radiated divided by 4π.Partial dire
tivity D(k̂, p̂e). The partial dire
tivity in a given dire
tion is theratio of that part of the radiation intensity 
orresponding to a given polarization tothe radiation intensity averaged over all dire
tions. The averaged radiation intensityis equal to the total power radiated divided by 4π.Absorption 
ross se
tion σa(k̂, p̂e, Γ ). The absorption 
ross se
tion for a givenpolarization and in
ident dire
tion is the ratio of the absorbed power in the antennato the in
ident power �ow density when subje
t to a plane-wave ex
itation. For aperfe
tly mat
hed antenna, the absorption 
ross se
tion 
oin
ides with the partiale�e
tive area.S
attering 
ross se
tion σs(k̂, p̂e, Γ ). The s
attering 
ross se
tion for a givenpolarization and in
ident dire
tion is the ratio of the s
attered power by the antennato the in
ident power �ow density when subje
t to a plane-wave ex
itation.
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Figure 15: The RCL 
ir
uits 
orresponding to the plus (left �gure) and minus(right �gure) signs in (F.1).Extin
tion 
ross se
tion σext(k̂, p̂e, Γ ). The extin
tion 
ross se
tion for a givenpolarization and in
ident dire
tion is the sum of the absorbed and s
attered powerof the antenna to the in
ident power �ow density when subje
t to a plane-waveex
itation, i.e., σext(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ ) + σs(k̂, p̂e, Γ ).Absorption e�
ien
y5 η(k̂, p̂, Γ ). The absorption e�
ien
y of an antenna for agiven polarization and in
ident dire
tion is the ratio of the absorbed power to thetotal absorbed and s
attered power when subje
t to a plane-wave ex
itation, i.e.,
η(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ )/σext(k̂, p̂e, Γ ).Quality fa
tor Q. The quality fa
tor of a resonant antenna is the ratio of 2πtimes the energy stored in the �elds ex
ited by the antenna to the energy radiatedand dissipated per 
y
le. For ele
tri
ally small antennas, it is equal to one-half themagnitude of the ratio of the in
remental 
hange in impedan
e to the 
orrespondingin
remental 
hange in frequen
y at resonan
e, divided by the ratio of the antennaresistan
e to the resonant frequen
y.Appendix F Q-fa
tor and bandwidthThe quality fa
tor, or Q-fa
tor, is often used to estimate the bandwidth of an an-tenna. It is de�ned as the ratio of the energy stored in the rea
tive �eld to theradiated energy, i.e., Q = 2ωmax(Wm,We)/P , see Appendix E and Refs. 6 and 25.Here,We andWm denote the stored ele
tri
 and magneti
 energies, respe
tively, P isthe dissipated power, and ω = kc0 the angular frequen
y. At the resonan
e, k = k0,there are equal amounts of stored ele
tri
 and magneti
 energy, i.e., We = Wm.For many appli
ations it is su�
ient to model the antenna as a simple RCLresonan
e 
ir
uit around the resonan
e frequen
y. The re�e
tion 
oe�
ient Γ of theantenna is then given by

Γ =
Z(k) −R

Z(k) +R
= ± 1 − (k/k0)

2

1 − (k/k0)2 − 2ik/(k0Q)
(F.1)5This term is not de�ned in Ref. 13; the present de�nition is instead based on Ref. 2.



30where Z denotes the frequen
y dependent part of the impedan
e, and the plusand minus signs in (F.1) 
orrespond to the series and parallel 
ir
uits in Fig. 15,respe
tively. The re�e
tion 
oe�
ient Γ is holomorphi
 in the upper half plane
Imω > 0 and 
hara
terized by the poles

k = ±k0

√
1 −Q−2 − ik0/Q, (F.2)whi
h are symmetri
ally distributed with respe
t to the imaginary axis.The bandwidth of the resonan
es in (F.2) depends on the threshold level of there�e
tion 
oe�
ient. The relative bandwidths of half-power, |Γ |2 ≤ 0.5, is given by

B ≈ 2/Q. The 
orresponding losses due to the antenna mismat
h are 
al
ulatedfrom
1 − |Γ |2 =

1

1 +Q2(k/k0 − k0/k)2/4
. (F.3)The de�nition of the Q-fa
tor in terms of the quotient between stored and radi-ated energies is however not adequate for the present analysis. This is be
ause thede
omposition of the total energy into the stored and dissipated parts is a funda-mentally di�
ult task. As noted in Refs. 6 and 25, the Q-fa
tor at the resonan
efrequen
y k = k0 
an instead be determined by di�erentiating the re�e
tion 
oe�-
ient or impedan
e, i.e., ∣∣∣∣

∂Γ

∂k

∣∣∣∣ =
1

2R

∣∣∣∣
∂Z

∂k

∣∣∣∣ =
Q

k0

, (F.4)where the derivatives in (F.4) are evaluated at k = k0. Relation (F.4) is exa
tfor the single resonan
e 
ir
uit and is also a good approximation for multiple res-onan
e models if Q is su�
iently large. In Se
. (4), a multiple resonan
e model is
onsidered for the extin
tion volume ̺ introdu
ed in Appendix A. The multipleresonan
e model is obtained by superposition of single resonan
e terms with polesof the type (F.2).Appendix G The depolarizing fa
torsFor the ellipsoids of revolution, i.e., the prolate and oblate spheroids, 
losed-formexpressions of (6.2) exist in terms of the semi-axis ratio ξ ∈ [0, 1]. The result forthe prolate spheroid is (a2 = a3)




L1(ξ) =
ξ2

2(1 − ξ2)3/2

(
ln

1 +
√

1 − ξ2

1 −
√

1 − ξ2
− 2
√

1 − ξ2

)

L2(ξ) = L3(ξ) =
1

4(1 − ξ2)3/2

(
2
√

1 − ξ2 − ξ2 ln
1 +

√
1 − ξ2

1 −
√

1 − ξ2

) (G.1)
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Figure 16: The depolarizing fa
tors for the prolate (solid) and oblate (dashed)spheroids as fun
tion of the semi-axis ratio ξ. Note the degenera
y for the sphere.while for the oblate spheroid (a1 = a2)




L1(ξ) = L2(ξ) =
ξ2

2(1 − ξ2)

(
−1 +

arcsin
√

1 − ξ2

ξ
√

1 − ξ2

)

L3(ξ) =
1

1 − ξ2

(
1 − ξ arcsin

√
1 − ξ2

√
1 − ξ2

) (G.2)The depolarizing fa
tors (G.1) and (G.2) are depi
ted in Fig. 16. Note that (G.1)and (G.2) di�er in indi
es from the depolarizing fa
tors in Ref. 19 due to the orderrelation L1 ≤ L2 ≤ L3 assumed in Se
. 6 in this paper.Introdu
e the eigenvalues γj(ξ) = V (ξ)/Lj(ξ) of the high-
ontrast polarizabilitydyadi
. In terms of the radius a of the smallest 
ir
ums
ribing sphere, the spheroidalvolume V (ξ) is given by ξ24πa3/3 and ξ4πa3/3 for the prolate and oblate spheroids,respe
tively. For the analysis in Se
. 6, the limit of γj(ξ) as ξ → 0 is parti
ularinteresting, 
orresponding to the 
ir
ular needle for the prolate spheroid and the
ir
ular disk for the oblate spheroid. The result for the 
ir
ular needle reads




γ1(ξ) =
4πa3

3

1

ln 2/ξ − 1
+ O(ξ2)

γ2(ξ) = γ3(ξ) = O(ξ2)

as ξ → 0 (G.3)while for the 
ir
ular disk,



γ1(ξ) = γ2(ξ) =

16a3

3
+ O(ξ)

γ3(ξ) = O(ξ)

as ξ → 0 (G.4)
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2b

a

x1

x2

x3Figure 17: The toroidal ring and the Cartesian 
oordinate system (x1, x2, x3).Closed-form expressions of (6.2) 
an also be evaluated for the ellipti
 needle and diskin terms of the 
omplete ellipti
 integrals of the �rst and se
ond kind, see Ref. 19.Appendix H The toroidal ringThe general solution to Lapla
e's equation for the ele
trostati
 potential ψ in toroidal
oordinates6 is, see Ref. 15,
ψ(u, v, φ) =

√
cosh v − cosu

∞∑

n,m=0

(am cosmφ+ bm sinmφ) ·

(cm cosnu+ dm sinnu)
(
AmnPm

n− 1

2

(cosh v) +BmnQm
n− 1

2

(cosh v)
)
,where Pm

n−1/2 and Qm
n−1/2 are the ring fun
tions of the �rst and se
ond kinds, respe
-tively, see Ref. 1. The toroidal ring of axial radius a and 
ross se
tion radius b isgiven by the surfa
e v = v0, see Fig. 17. Introdu
e the semi-axis ratio ξ ∈ [0, 1] asthe quotient ξ = b/a = 1 cosh v0.In this appendix, the eigenvalues of the high-
ontrast polarizability dyadi
 arederived for the loop antenna in Se
. 8.2 of vanishing thi
kness. Due to rotationalsymmetry in the x1x2-plane, the analysis is redu
ed to two exterior boundary valueproblems de�ned by the region v ∈ [0, v0] and u, φ ∈ [0, 2π). Due to the singularbehavior of Qm

n−1/2(cosh v) as v → 0 it is required that Bmn = 0. In addition, theele
trostati
 potential must vanish at in�nity, i.e., ψ(u, v, φ) → 0 when u, v → 0simultaneously. On the surfa
e of the toroidal ring the two di�erent boundary
onditions of interest are, ψ(u, v0, φ) = x1 and ψ(u, v0, φ) = x3, see Appendix B.6The toroidal 
oordinate system (u, v, φ) is de�ned in terms of the Cartesian 
oordinates
(x1, x2, x3) as

x1 =
ζ sinh v cos φ

cosh v − cos u
, x2 =

ζ sinh v sin φ

cosh v − cos u
, x2 =

ζ sinu

cosh v − cos u
,where u, φ ∈ [0, 2π) and v ∈ [0,∞). The toroidal ring of axial radius a and 
ross se
tion radius bis des
ribed by the surfa
e v = v0, where a = ζ coth v0 and b = ζ/ sinh v0. Note that the presentnotation (u, v, φ) di�ers from (η, µ, φ) in Ref. 15.



33The following representations of the Cartesian 
oordinates in terms of Qm
n−1/2 areproved to be useful:





x1 = −ζ
√

8 cosφ

π

√
cosh v0 − cosu

∞∑

n=0

εnQ1
n− 1

2

(cosh v0) cosnu

x3 =
ζ
√

8

π

√
cosh v0 − cosu

∞∑

n=1

nQn− 1

2

(cosh v0) sinnu

(H.1)Two di�erent boundary value problems are asso
iated with the loop antenna inSe
. 8.2 depending on whether the magneti
 polarization p̂m is parallel or orthogonalto the x3-axis. The solution of these boundary value problems are then 
loselyrelated to the 
omponents of the ele
tri
 polarizability dyadi
. Only the 
ase whenthe thi
kness of the toroidal ring vanishes, i.e., when ξ → 0 or equivalently v0 → ∞,is treated here.H.1 Magneti
 polarization perpendi
ular to the x3-axisA magneti
 polarization p̂m perpendi
ular to the x3-axis is via the plane-wave 
ondi-tion k̂ = p̂e × p̂m equivalent to the ele
tri
 polarization p̂e parallel with the x3-axis.A straightforward 
al
ulation to this problem 
an be proved to yield
ψ(u, v, φ) =

ζ
√

8

π

√
cosh v − cosu

∞∑

n=1

n
Qn− 1

2

(cosh v0)

Pn− 1

2

(cosh v0)
Pn− 1

2

(cosh v) sinnu.In terms of the normal derivative ∂ψ/∂ν evaluated at v = v0, the third eigenvalueof γ∞ is given by
γ3 = 2π

∫ 2π

0

x3

∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cosu)2
du (H.2)By insertion of (H.1) into (H.2), the asymptoti
 behavior of γ3 in the limit ξ → 0,or equivalently v0 → ∞, 
an be proved to be (ζ → a as v0 → ∞)

γ3 = O(ξ2) as ξ → 0. (H.3)Hen
e, the third eigenvalue γ3 of the high-
ontrast polarizability dyadi
 vanishes asthe thi
kness of the toroidal ring approa
hes zero.H.2 Magneti
 polarization parallel with the x3-axisThe solution to the boundary value problem with the magneti
 polarization p̂mparallel with the x3-axis, i.e., p̂e perpendi
ular to the x1-axis, is
ψ(u, v, φ) = −ζ

√
8 cosφ

π

√
cosh v − cosu

∞∑

n=0

εn

Q1
n− 1

2

(cosh v0)

P1
n− 1

2

(cosh v0)
P1

n− 1

2

(cosh v) cosnu,



34where εn = 2− δn0 is the Neumann fa
tor. In terms of the normal derivative ∂ψ/∂νevaluated at v = v0, the �rst and se
ond eigenvalues of γ∞ are
γ1 = γ2 =

∫ 2π

0

∫ 2π

0

x1

∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cosu)2
dφ du, (H.4)where x1 as fun
tion of u and φ is given by (H.1). The asymptoti
 behavior of (H.4)as ξ → 0, or equivalently v0 → ∞, 
an be proved to be (ζ → a as v0 → ∞)

γ1 = γ2 =
2π2a3

ln 2/ξ − 1
+ O(ξ2) as ξ → 0. (H.5)Note that (H.5) vanishes slower than (H.3) as ξ → 0 due to the logarithmi
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