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Abstract

In this paper, physical limitations on bandwidth, realized gain, Q-factor, and
directivity are derived for antennas of arbitrary shape. The product of band-
width and realizable gain is shown to be bounded from above by the eigenval-
ues of the long wavelength high-contrast polarizability dyadics. These dyadics
are proportional to the antenna volume and easily determined for an arbitrary
geometry. Ellipsoidal antenna volumes are analyzed in detail and numeri-
cal results for some generic geometries are presented. The theory is verified
against the classical Chu limitations for spherical geometries, and shown to
yield sharper bounds for the ratio of the directivity and the Q-factor for non-
spherical geometries.

1 Introduction

The concept of physical limitations for electrically small antennas was first intro-
duced more than half a century ago in Refs. 3 and 24, respectively. Since then,
much attention has been drawn to the subject and numerous papers have been pub-
lished, see Ref. 12 and references therein. Unfortunately, almost all these papers
are restricted to the sphere via the spherical vector wave expansions, deviating only
slightly from the pioneering ideas introduced in Ref. 3.

The objective of this paper is to derive physical limitations on bandwidth, real-
ized gain, Q-factor, and directivity for antennas of arbitrary shape. The limitations
presented here generalize in many aspects the classical results by Chu. The most
important advantage of the new limitations is that they no longer are restricted to
the sphere but instead hold for arbitrary antenna volumes. In fact, the smallest cir-
cumscribing sphere is far from optimal for many antennas, cf., the dipole and loop
antennas in Sec. 8. Furthermore, the new limitations successfully separate the elec-
tric and magnetic material properties of the antennas and quantify them in terms
of their polarizability dyadics.

The new limitations introduced here are also important from a radio system
point of view. Specifically, they are based on the bandwidth and realizable gain
as well as the Q-factor and the directivity. The interpretation of the Q-factor in
terms of the bandwidth is still subject to some research, see Ref. 25. Moreover,
the new limitations permit the study of polarization effects and their influence on
the antenna performance. An example of such an effect is polarization diversity for
applications in MIMO communication systems.

The present paper is a direct application of the physical limitations for broad-
band scattering introduced in Refs. 19 and 20, where the integrated extinction is
related to the long wavelength polarizability dyadics. The underlying mathematical
description is strongly influenced by the consequences of causality and the sum-
mation rules and dispersion relations in the scattering theory for the Schrodinger
equation, see Refs. 16, 17 and 22.
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Figure 1: Illustration of a hypothetic antenna subject to an incident plane-wave in
the k-direction.

2 Scattering and absorption of antennas

The present theory is inspired by the general scattering formalism of particles and
waves in Refs. 16 and 22. In fact, based on the assumptions of linearity, time-
translational invariance and causality there is no fundamental difference between
antennas and properly modeled scatterers. This kind of fruitful equivalence between
antenna and scattering theory has already been encountered in the literature, cf.,
the limitations on the absorption efficiency in Ref. 2 and its relation to minimum
scattering antennas. Without loss of generality, the integrated extinction and the
theory introduced in Ref. 19 can therefore be argued to also hold for antennas of
arbitrary shape. In contrast to Ref. 19, the present paper focuses on the absorption
cross section rather than scattering properties.

For this purpose, consider an antenna of arbitrary shape surrounded by free
space and subject to a plane-wave excitation impinging in the l;:—direction, see Fig. 1.
The antenna is assumed to be lossless with respect to ohmic losses and satisfy the
fundamental principles of linearity, time-translational invariance and causality. The
dynamics of the antenna is modeled by the Maxwell equations with general reciprocal
anisotropic constitutive relations. The constitutive relations are expressed in terms
of the electric and magnetic susceptibility dyadics, x, and x,,, respectively, which
are functions of the material properties of the antenna.

The assumption of a lossless antenna is not severe since the analysis can be
modified to include ohmic losses, see the discussion in Sec. 9. In fact, ohmic losses
are important for small antennas, and taking such effects into account, suggest that
the lossless antenna is more advantageous than the corresponding antenna with
ohmic losses. Recall that x, and x,, also depend on the angular frequency w of the
incident plane-wave in the presence of losses.

The bounding volume V' of the antenna is of arbitrary shape with the restriction
that the complete absorption of the incident wave is contained within V. The
bounding volume is naturally delimited by a reference plane or a port at which a
unique voltage and current relation can be defined, see Fig. 1. The present definition
of the antenna structure includes the matching network and is of the same kind as



the descriptions in Refs. 3 and 25. The reflection coefficient I" at the port is due
to the unavoidable impedance mismatch of the antenna over a given wavelength
interval, see Ref. 5. The present analysis is restricted to single port antennas with a
scalar (single) reflection coefficient. The extension to multiple ports is commented
briefly in Sec. 9.

For any antenna, the scattered electric field Eg in the forward direction k can
be expressed in terms of the forward scattering dyadic S as, see Appendix A,

ikx

~ €

E (k,zk) = —S(k, k) - Eg+ O(z™?) as & — oo, (2.1)

xZ

Here, E\ denotes the Fourier amplitude of the incident field Ei(cot—l%-w), and kis a
complex variable with Rek = w/cg and Im k& > 0. For a large class of antennas, the
elements of S are holomorphic in k£ and Cauchy’s integral theorem can be applied
to

1 ., A
Q(k) = ﬁpe ’ S(k7k) Doy k€ C. (22)

Here, p, = E,/|Ey| denotes the electric polarization, which is assumed to be inde-
pendent of k.' The complex-valued function (2.2) is referred to as the extinction
volume and it provides a holomorphic extension of the extinction cross section to
Im#k > 0, see Appendix A.

A dispersion relation or summation rule for the extinction cross section can be
derived in terms of the electric and magnetic polarizability dyadics =, and ~,,,
respectively. The derivation is based on energy conservation via the optical theorem
in Refs. 16 and 22. The optical theorem oy = 47k Im p and the asymptotic behavior
of the extinction volume g in the long wavelength limit, |k| — 0, are the key building
blocks in the derivation. The result is the integrated extinction

/ Gent(A) X = 72D - Ve Do+ B - Von - Bra), (2.3)
0

where the magnetic (or cross) polarization p, = k x p, has been introduced. The
functional dependence on k and P, is for simplicity suppressed from the argument
on the left hand side of (2.3). Note that (2.3) also can be formulated in k£ = 27/ via
the transformation ey () — 270y (27/k)/k?. For details on the derivation of (2.3)
and definition of the extinction cross section o and the polarizability dyadics -y,
and 7y, see Appendix A and B. The integrated extinction applied to scattering
problems is exploited in Ref. 19.

It is already at this point important to notice that the right hand side of (2.3)
only depends on the long wavelength limit or static response of the antenna, while
the left hand side is a dynamic quantity which includes the absorption and scattering
properties of the antenna. Furthermore, electric and magnetic properties are seen
to be treated on equal footing in (2.3), both in terms of material properties and
polarization description.

LObserve that the assumption that p, is independent of k£ does not imply that the polarization
of the antenna in Fig. 1 is frequency independent.
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Figure 2: Illustration of the two types of physical limitations considered in this
paper: Gy B represented by the shaded box (left figure) and D/Q related to the
dotted resonance model (right figure).

The antenna parameters of importance in this paper are the partial gain G and
the partial directivity D, see Appendix E and Ref. 13. In general, both G and D
depend on the incident direction k and the electric polarization p, as well as the
wave number k. In addition, the partial realized gain, (1 — |I'|*)G, depends on
the reflection coefficient I'. In the forthcoming analysis, the relative bandwidth B,
the Q-factor, and the associated center wavelength )\q are naturally introduced as
intrinsic parameters in the sense that neither of them depend on k or p, for a given
single port antenna.

Two different types of bounds on the first resonance of an antenna are addressed
in this paper, see Fig. 2. The bounds relate the integral (2.3) of two generic in-
tegrands to the polarizability dyadics. The bound on the partial realized gain,
(1 —|I'|?)G, in the left figure takes the form of a box, i.e., it estimates the integral
with the bandwidth times the partial realized gain. The bound in the right figure
utilizes the classical resonance shape of the integrand giving a bound expressed in
terms of the partial directivity and the associated Q-factor.

3 Limitations on bandwidth and gain

From the definition of the extinction cross section o.y it is clear that it is non-
negative and bounded from below by the absorption cross section o,. For an
unmatched antenna, o, is reduced by the reflection loss 1 — |I'|* according to
0s = (1 — |I']?)0a0, where 0,9 denotes the absorption cross section or partial ef-
fective area for the corresponding perfectly matched antenna, see Refs. 18 and 13.
The absorption cross section o, is by reciprocity related to the partial antenna
directivity D as D = 4mo,9/\?, see Ref. 18. Thus, for any wavelength \ € [0, c0),

1
Oext > 00 = (1 — |T|*) 000 = E(l — [N D. (3.1)



Recall that D depends on the electric polarization p, as well as the incident direction
k. In the present case of no ohmic losses, the partial gain G coincides with the partial
directivity D.

Introduce the wavelength interval A = [A;, A\y] with center wavelength Ay =
(A2 + A1)/2 and associated relative bandwidth

_2/\2—/\1 _2k1—kz
STt N Tkt k)

where 0 < B < 2 and k = 27/\ € K denotes the angular wave number in K =
[k2, k1]. Thus, for any wavelength interval A, the estimate ou, > 0, in (3.1) yields

/OOO Gon(}) dA > /Aaa()\) ) = %/Aa CIPPRGO) Ay, (3.2)

where D = G is used.?

In order to simplify the notation, introduce G = infycx(1 — |I']*)G as the min-
imum partial realized gain over the wavelength interval A. Following this notation,
the integral on the right hand side of (3.2) can be estimated from below as

/A<1 CIPPRG) dA > GA/ Z

B?
A2 dX\ = A3G B (1 + —> . (3.3)
A

Without loss of generality, the factor 1 + B?/12 can be estimated from below by
unity. This estimate is also supported by the fact that B < 2 in many applications.
Based upon this observation, (2.3), (3.2) and (3.3) can be summarized to yield the
following limitation on the product G B valid for any antenna satisfying the general
assumptions stated in Sec. 2:

473 s R - .
G\B < F(pe Yo Pe T P Y~ Pr)- (3.4)
0

Relation (3.4) is one of the main results of this paper. Note that the factor 473 /)3
neatly can be expressed as kj /2 in terms of the angular wave number kg = 27/ \o.

The estimate 1+ B?*/12 > 1 in (3.3) is motivated by the simple form of (3.4). In
broadband applications, B is in general not small compared to unity, and the higher
order term in B should be included on the left hand side of (3.4).

The right hand side of (3.4) depends on both p, and k= D, X P, as well as the
long wavelength limit (static limit with respect to k& = 27/\) material properties
and shape of the antenna. It is indeed surprising that it is just the long wavelength
limit properties of the antenna that bound the product G, B in (3.4). Since v, and
~,, are proportional to the volume V' of the antenna, see Ref. 19, it follows from (3.4)
that the upper bound on the product Gy B is directly proportional to V/A3 or kja?,
where a denotes the radius of the volume-equivalent sphere.

2The equality sign on the left hand side in (3.2) is motivated by the broadband absorption
efficiency introduced in (3.7).



In many antenna applications it is desirable to bound the product G, B inde-
pendently of the material properties. For this purpose, introduce the high-contrast
polarizability dyadic v, as the limit of either ~, or -+, when the elements of x,
or X,, in the long wavelength limit simultaneously approach infinity.®> Note that
this definition implies that v is independent of any material properties, depending
only on the geometry of the antenna. From the variational properties of ~, and
Y., discussed in Ref. 19 and references therein, it follows that both ~, and «,, are
bounded from above by 7. Hence, (3.4) yields

473

A
The introduction of the high-contrast polarizability dyadic 7, in (3.5) is the starting
point of the analysis below.

The high-contrast polarizability dyadic ~_ is real-valued and symmetric, and
consequently diagonalizable with real-valued eigenvalues. Let v; > 75 > 73 denote
the three eigenvalues. Based on the constraint p,-p,, = 0, which is a consequence of
the free space plane-wave excitation, the right hand side of (3.5) can be estimated
from above as

GaB < 5 (Pe " Yoo " Pe + Pin* Yoo * Pm)- (3:5)

473
sup GaB < F(% + ¥2). (3.6)

DePrn=0 0
The interpretation of the operator SUPy . —0 is polarization matching, i.e., the
polarization of the antenna coincides with the polarization of the incident wave.
In the case of non-magnetic antennas, v, = 0, the second eigenvalue v in (3.6)
vanishes. Hence, the right hand side of (3.6) can be improved by at most a factor of
two by utilizing magnetic materials. Note that the upper bounds in (3.5) and (3.6)

coincide when ~_ is isotropic.

Since y; and 7, only depend on the long wavelength properties of the antenna,
they can easily be calculated for arbitrary geometries using either the finite element
method (FEM) or the method of moments (MoM). Numerical results of v, and 7,
for the Platonic solids, the rectangular parallelepiped and some classical antennas
are presented in Secs. 7 and 8. Important variational properties of 7; are discussed
in Ref. 19 and references therein. The influence of supporting ground planes and
the validity of the method of images for high-contrast polarizability calculations are
presented in Appendix C.

The estimate in (3.2) can be improved based on a priori knowledge of the scat-
tering properties of the antenna. In fact, oe > 0, in (3.1) may be replaced by
Oext = 0a/M, where 0 < n < 1 denotes the absorption efficiency of the antenna, see
Ref. 2. For most antennas at the resonance frequency, < 1/2, but exceptions from
this rule of thumb exist. In particular, minimum scattering antennas (MSA) defined
by n = 1/2 yield an additional factor of two on the right hand side of (3.1). The
inequality in (3.2) can be replaced by the equality

/Aaext(A) dA :ﬁl/aa()\) dA. (3.7)

A

3Recall that x, and X,, are real-valued in the long wavelength limit. In the case of finite or
infinite conductivity, see Appendix B.



The constant 7 is bounded from above by the absorption efficiency via n < sup,¢ 7,
and provides a broadband generalization of the absorption efficiency. If 7 is invoked
n (3.2), the right hand side of the inequalities (3.4), (3.5), and (3.6) are sharpened
by the multiplicative factor 7.

4 Limitations on Q-factor and directivity

Under the assumption of N non-interfering resonances characterized by the real-
valued angular wave numbers k,, a multiple resonance model for the absorption
cross section is

Qnkn

k) = %;anczz(k/kn k)24 (4.1)

where k is assumed real-valued and p, are positive weight functions satisfying
> . 0n = 0(0). Here, the Q-factor of the resonance at k, is denoted by @,, and
for @), > 1, the associated relative half-power bandwidth is B,, ~ 2/Q,,, see Fig. 3.
Recall that @), > 1 is consistent with 0 < B,, < 2. For the resonance model (4.1),
one can argue that @), in fact coincides with the corresponding antenna Q-factor in
Appendix F when the relative bandwidth 2/@),, is based on the half-power threshold,
see also Refs. 6 and 25. In the case of strongly interfering resonances, the model (4.1)
either has to be modified or the estimates in Sec. 3 have to be used.

The absorption cross section is the imaginary part, o, = 47wk Im g,, of the func-
tion

iQ,k,/(2k

Z 0n /(2F) (4.2)
1—1Qy, (k/ky — kn/k) /2

for real-valued k. The funct1on ga(kj) is holomorphic for Im k£ > 0 and has a symmet-

rically distributed pair of poles for Im k < 0, see Fig. 3. The integrated absorption

cross section is

1 [% o.(k)

am? | k2
where 0(0) is given by the long wavelength limit (A.4).
For antennas with a dominant first resonance at k = ky, it follows from (3.1)
and (4.1) that the partial realized gain G satisfies

ko, 2k2Qk
1 -1IP)G = — =07 Q2(k/ky — ki /k)2 /4’

where p; < p(0) has been used. The right hand side of (4.4) reaches its maximum
value 0(0)2k3Q/(1—Q72) at ko = k1(1—2Q72) Y2 or kg = k1 + O(Q72) as Q — 0.
Hence, ky is a good approximation to k; if () > 1. For a lossless antenna which is
perfectly matched at k = ko, the partial realized gain (1 — |I'|?)G coincides with the
partial directivity D. Under this assumption, (4.4) yields D/Q < 0(0)2k3/(1—Q~?)
which further can be estimated from above as

D kj

6 2 (pe Ye pe +pm Ym - pm)? (45)

dk = 0a(0) = 70(0) < ¢(0), (4.3)

(4.4)
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Figure 3: The symmetrically distributed pair of poles (x) of the extinction volume
o0 in the complex k-plane (left figure) and the corresponding single resonance model
of Im o when @,, > 1 (right figure).

where (A.4) have been used. Relation (4.5) together with (3.5) constitute the main
results of this paper.

Analogous to (3.5) and (3.6), it is clear that (4.5) can be estimated from above
by the high-contrast polarizability dyadic v, and the associated eigenvalues ~; and

Yo, VIZ.,
3

sup D 2 (1 + 7). (4.6)

Pe Py =0 i
Here, (4.6) is subject to polarization matching and therefore independent of the
electric and magnetic polarizations, p, and p,,, respectively. Note that the upper
bounds in (4.5) and (4.6) only differ from the corresponding results in (3.5) and (3.6)
by a factor of 7, i.e., GyB < wC and D/Q < C. Hence, it is sufficient to consider
either the Gy B bound or the D /@ bound for a specific antenna. The estimates (4.5)
and (4.6) can be improved by the multiplicative factor 7 if a priori knowledge of the
scattering properties of the antenna (3.7) is invoked in (4.4).

The resonance model for the absorption cross section in (4.1) is also directly
applicable to the theory of broadband scattering in Ref. 19. In that reference, (4.1)
can be used to model absorption and scattering properties and yield new limitations
on broadband scattering.

5 Comparison with Chu and Chu-Fano

In this section, the bounds on G B and D/Q subject to matched polarizations, i.e.,
inequalities (3.6) and (4.6), are compared with the corresponding results by Chu
and Fano in Refs. 3 and 5, respectively.



5.1 Limitations on Q-factor and directivity

The classical limitations derived by Chu in Ref. 3 relate the Q-factor and the di-
rectivity D to the quantity kga of the smallest circumscribing sphere. Using the
notation of Secs. 3 and 4, the classical result by Chu for an omni-directional an-
tenna (for example in the azimuth plane) reads
D 3 kja® 3
— <0 = Tk3ad + Ok’ k 0. 5.1
o G S ama 1 g0 T oW s koo &1
In the general case of both TE- and TM-modes, (5.1) must be modified, see Ref. 12,

ViZ.,
D 3,3
i:ilzlfzo — < % = 6kja® + O(kja®) as koa — 0. (5.2)
Note that (5.2) differs from (5.1) by approximately a factor of four when kya < 1.
The bounds in (5.1) and (5.2) should be compared with the corresponding result
in Sec. 4 for the sphere. For a sphere of radius a, the eigenvalues v, and v, are
degenerated and equal to 4wa®, see Sec. 6. Insertion of v, = 75 = 4mwa® into (4.6)
yields sup,, ; _o D/Q < C, where the constant C' is given by

C = 4kja®, C = 2kja®, C = kja®. (5.3)

The three different cases in (5.3) correspond to both electric and magnetic material
properties (C' = 4kja®), pure electric material properties (C' = 2kja®), and pure
electric material properties with a priori knowledge of minimum scattering charac-
teristics (C' = kja® with 77 = 1/2), respectively. Note that the third case in (5.3)
more generally can be expressed as C' = 2k3a?7 for any broadband absorption effi-
ciency 0 < 77 < 1. The bounds in (5.2) and (5.3) are comparable although the new
limitations (5.3) are sharper. In the omni-directional case, (5.1) provides a sharper
bound than (5.3), except for the pure electric case with absorption efficiency 17 < 3/4.

5.2 Limitations on bandwidth and gain

The limitation (3.6) should also be compared with the result of Chu when the Fano
theory of broadband matching is used. The Fano theory includes the impedance
variation over the frequency interval to yield limitations on the bandwidth, see

Ref. 5. For a resonance circuit model, the Fano theory yields that the relation
between B and () is, see Ref. 6,

™

The reflection coefficient I' is due to mismatch of the antenna. It is related to the
standing wave ratio SWR as |I'| = (SWR —1)/(1 + SWR).

Introduce Qg as the Q-factor of the smallest circumscribing sphere with 1/Qs =
k3a®+ O(k5a®) as kga — 0 for omni-directional antennas. Under this assumption, it



10

follows from (5.1) that sup, ; —o D < 3Q/2Qs. Insertion of this inequality into (5.4)

then yields
3m1— I 5 4
sup GpB < —————kja’. (5.5)
2 /7"
For a given koa, the right hand side of (5.5) is monotone in |I"| and bounded from
above by 3mk3a®. However, note that the Chu-Fano limitation (5.5) is restricted to
omni-directional antennas with kya < 1.

Inequality (5.5) should be compared with the corresponding result in Sec. 3 for
the smallest circumscribing sphere. Since the upper bounds (3.6) and (4.6) only
differ by a factor of 7, i.e., sup;, 5 _oGaAB < C" and supy, 4 _o D/Q < C where
C" = nC, it follows from (5.3) that

C' = drkja®, C' = 2rkja®, C' = nkja®. (5.6)

The three cases in (5.3) correspond to both electric and magnetic material properties
(C" = 4rk3a®), pure electric material properties (C' = 2rkja®), and pure electric
material properties with a priori knowledge of minimum scattering characteristics
(C" = mk3a®), respectively.

The limitations on Gy B based on (5.6) are comparable with (5.5) for most re-
flections coefficients |I'|. For |I'| < 0.65 the Chu-Fano limitation (5.5) provides a
slightly sharper bound on G B than (5.6) for pure electric materials. However, re-
call that the spherical geometry gives an unfavorable comparison with the present
theory, since for many antennas the eigenvalues 7; and , are reduced considerably
compared with the smallest circumscribing sphere, cf., the dipole in Sec. 8.1 and the
loop antenna in Sec. 8.2.

6 Ellipsoidal geometries

Closed-form expressions of 7, and ~y,, exist for the ellipsoidal geometries, see Ref. 19,
viZ.,

Yo=Vxe - T+L-x)™",  Yu=Vxm T+L-x,.) " (6.1)

Here, I denotes the unit dyadic and V' = 4majasas/3 is the volume of ellipsoid in
terms of the semi-axes a;. The depolarizability dyadic L is real-valued and symmet-
ric, and hence diagonalizable with real-valued eigenvalues. The eigenvalues of L are
the depolarizing factors L;, given by

o d
L= ala?a?’/ i . j=1,2,3. (6.2)
2 Jo (s+a2)\/(s+al)(s+a3)(s +a3)

The depolarizing factors L; satisfy 0 < L; < 1 and Zj L; = 1. The semi-axes a; are
assumed to be ordered such that L; < Ly < Lz. Closed-form expressions of (6.2)
in terms of the semi-axis ratio { = (min; a;)/(max; a;) exist for the ellipsoids of
revolution, i.e., the prolate spheroids (Ly = L3) and the oblate spheroids (L = Ly),
see Appendix G.
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Figure 4: The eigenvalues 7, > 79 > 73 (left figure) and the quotient D/Q (right
figure) for the prolate and oblate spheroids as function of the semi-axis ratio &.
Note the normalization with the volume V; = 47wa3/3 of the smallest circumscribing
sphere.

The high-contrast polarizability dyadic -y, is given by (6.1) as the elements of x,
or X,, simultaneously approach infinity. From (6.1) it is clear that the eigenvalues
of v, are given by v; = V/L;. For the prolate and oblate spheroids, V' is neatly
expressed in terms of the volume V, = 47a®/3 of the smallest circumscribing sphere.
The results are V = &2V and V = £V for the prolate and oblate spheroids, respec-
tively. The eigenvalues 7, and 7, for the prolate and oblate spheroids are depicted
in the left figure in Fig. 4. Note that the curves for the oblate spheroid approach
4/m in the limit as £ — 0, see Appendix G. The corresponding limiting value for
the curves as & — 1 1is 3.

The general bound on G\ B for arbitrary ellipsoidal geometries is obtained by
inserting (6.1) into (3.4), i.e.,

A3V

GpB <
A_)\g

(ﬁ:’Xe'(I+L'Xe>_1'ﬁe+f);kn'Xm'(I+L'Xm)_1'ﬁm)' (63)

Independent of both material properties and polarization effects, the right hand side
of (6.3) can be estimated from above in analogy with (3.6). The result is

473V ( 1 1 )
sup Gp\B< ——— | — 4+ — ). 6.4
popg A N \L L (6-4)

In the non-magnetic case, the second term on the right hand side of (6.3) and (6.4)
vanishes. For the prolate and oblate spheroids, the closed-form expressions of L; in
Appendix G can be introduced to yield explicit upper bounds on G B.
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Figure 5: Geometry of the circular disk and needle.

The corresponding results for the quotient D /(@) are obtained from the observa-
tion that GyB < 7(C' is equivalent to D/Q < C, see Sec. 4. For the general case
including polarization and material properties, (6.3) yields

D KV, 1 e e RN
agﬁ(pe-xe-(HL-xe) Pt P X T+ LX) P) - (65)
Analogous to (6.4), the restriction to matched polarizations for the quotient D/Q
reads DBV
1 1
sup — < —— —+—>. 6.6
zbeivfzo Q™ 2« (Ll Ly (6:6)

The upper bound in (6.6) is depicted in the right figure in Fig. 4 for the prolate and
oblate spheroids. The solid curves correspond to combined electric and magnetic
material properties, while the dashed curves represent the pure electric case. The
non-magnetic minimum scattering case (17 = 1/2) is given by the dotted curves.
Note that the three curves in the right figure vanish for the prolate spheroid as
¢ — 0. The corresponding limiting values for the oblate spheroid are 16/3w, 8/37
and 4/3m, see Appendix G.

The curves depicted in the right figure in Fig. 4 should be compared with the
classical results for the sphere in (5.1) and (5.2). The omni-directional bound (5.1)
and its generalization (5.2) are marked in Fig. 4 by Chu (TE) and (TE+TM), re-
spectively. From the figure, it is clear that (6.6) provides a sharper bound than (5.2).
For omni-directional antennas, (5.1) is slightly sharper than (6.6) for the sphere, but
when a priori knowledge of minimum scattering characteristics (7 = 1/2) is used, the
reversed conclusion holds. Recall that the classical results in Sec. 5.1 are restricted
to the sphere, in contrast to the theory introduced in this paper.

Based on the results in Appendix G, it is interesting to evaluate (6.4) in the limit
as & — 0. This limit corresponds to the axially symmetric needle and circular disk
in Fig. 5. For a needle of length 2a with semi-axis { < 1, (G.3) inserted into (6.4)
yields

GAB < 167ta®  f(0)

ST 1n2/§—1+0(€2) as & — 0. (6.7)
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Here, f(0) = sin? for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(#) = 0 for the TE-
and f(f) = sin®@ for the TM-polarization. Note that the sin®# term in (6.7) and
the logarithmic singularity in the denominator agree with the radiation pattern and
the impedance of the dipole antenna in Sec. 8.1, see Ref. 4.

The corresponding result for the circular disk of radius a is non-vanishing in the

limit as & — 0, viz.,
6473 a’
f(0). (6.8)
3N

Here, f(0) = 1+ cos? 6 for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(¢) = 1 for the TE-
and and f(0) = cos?# for the TM-polarization. Note the direct application of (6.8)
for planar spiral antennas.

GpB <

7 7. for some generic geometries

In this section, some numerical results of v are presented and analyzed in terms
of the physical limitations discussed in Sec. 3.

7.1 The Platonic solids

Since the Platonic solids are invariant under appropriate point groups, see Ref. 11,
their corresponding high-contrast polarizability dyadics v, are isotropic, i.e., v, =
YooI, where I denotes the unit dyadic in R3. Let v = v, represent the eigenvalues of
Yo for 7 = 1,2, 3. The Platonic solids are depicted in Fig. 6 together with the eigen-
values 7 in terms of the volume V' of the solids. The five Platonic solids are from left
to right the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron,
with 4, 6, 8, 12 and 20 facets, respectively. Included in the figure are also v in units
of 4ma®, where a denotes the radius of the smallest circumscribing sphere. This
comparison with the smallest circumscribing sphere is based on straightforward cal-
culations which is further discussed in Sec. 7.2. The numerical values of v in Fig. 6
are based on Method of Moments (MoM) calculations, see Ref. 19 and references
therein.

Since the upper bound in (3.6) is linear in , it follows that among the Platonic
solids, the tetrahedron provides the largest upper bound on G B for a given volume
V. The eigenvalues v in Fig. 6 are seen to approach 3V as the number of facets
increases. This observation is confirmed by the variational principle discussed in
Ref. 19, which states that for a given volume the sphere minimizes the trace of v
among all isotropic high-contrast polarizability dyadics. Hence, a lower bound on
is given by the sphere for which v = 3V.

For matched polarizations, the eigenvalues in Fig. 6 can directly be applied
to (3.6) to yield an upper bound on the performance of any antenna circumscribed
by a given Platonic solid. For example, the non-magnetic tetrahedron yields Gy B <
624V/A\3 or GyB < 0.19 for V = 1cm?® and center frequency co/Ag = 2GHz. The
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Figure 6: The eigenvalues v (upper row) for the five Platonic solids and the sphere.
The number in parenthesis are ~ in units of 4wa®, where a denotes the radius of the
smallest circumscribing sphere.

corresponding bound on the quotient D/Q differ only by a factor of 7, i.e., D/Q <
0.059.

It is interesting to note that the pertinent point group symmetries of the Platonic
solids are preserved if their geometries are altered appropriately. Such symmetric
changes yield a large class of geometries for which ~_ is isotropic and the upper
bound on G\ B is independent of the polarization. This observation together with
the fact that the variational principle discussed above also can be applied to arbi-
trary isotropic high-contrast polarizability dyadics, are particularly interesting from
a MIMO-perspective, see Ref. 9 and references therein.

7.2 Comparison with the sphere

From the discussion of the polarizability dyadics in Ref. 19, it is clear that both
~v1 and 7, are directly proportional to the volume of the antenna with a purely
geometry dependent proportionality factor. For the circular disk, it follows from
Appendix G that even though the volume of the disk vanishes, the eigenvalues 7,
and v, are non-zero. This result is due to the fact that the geometry dependent
proportionality factors 1/L; and 1/Ly approach infinity in the limit as the semi-axis
ratio approaches zero. In other words, it is not sufficient to only consider the volume
part of y; and 7, to draw conclusions of the potential in antenna performance for a
given volume. In addition, also the shape dependent proportionality factor must be
taken into account.

Motivated by the discussion above, it is interesting to compare v; and v, for the
different geometries discussed in Secs. 7 and 8, and in Ref. 7. The comparison refers
to the smallest circumscribing sphere with radius a, for which +; and v, are equal
to 4wa?, see Ref. 7. For this purpose, introduce 7;/4mwa®, which, in the case of pure
electric material properties, yields a direct measure of the antenna performance in
terms of (3.6) and (4.6). The main question addressed in this section is therefore:
how much antenna performance can be gained for a given geometry by instead
utilizing the full volume of the smallest circumscribing sphere?

In Fig. 7, the goodness number 7, /4ma® are presented for the sphere, circular
disk, toroidal ring, and prolate and cylindrical needles, respectively. The generalized
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Figure 7: The eigenvalue ~; in units of 4wa3, where a denotes the radius of the
smallest circumscribing sphere. The prolate spheroid, the circular ring and the
circular cylinder correspond to the generalized semi-axis ratio & = 1073,

semi-axis ratio? for the toroidal ring and the prolate and cylindrical needles are
¢ = 1073. The values for the prolate needle and the toroidal ring are given by (G.3)
and (H.5), respectively, while the cylindrical needle is based on FEM simulation for
the dipole antenna in Sec. 8.1. The value for the circular disk is 4/37 ~ 0.42 given
by (G.4).

The results in Fig. 7 should be compared with the corresponding values in Fig. 6
for the Platonic solids. For example, it is seen that the potential of utilizing the
tetrahedron is about 20.5% compared to the smallest circumscribing sphere. Since
the high-contrast polarizability dyadics v, are isotropic for the Platonic solids and
the sphere, it follows that the results in Fig. 6 also hold for the second and third
eigenvalues, 7, and s, respectively. This is however not the case for the geometries
depicted in Fig. 7 since the circular disk, toroidal ring, and the prolate and cylindrical
needles have no isotropic high-contrast polarizability dyadics. For the circular disk
and the toroidal ring, v; and 7, are equal, and therefore yield the same results as in
Fig. 7 for combined electric and magnetic material properties.

In Fig. 7, it is seen that the physical limitations on Gy B and D/Q for any two-
dimensional antenna confined to the circular disk corresponds to about 42% of the
potential to utilize the full sphere. This result is rather surprising since, in contrast
to the sphere, the circular disk has zero volume. In other words, there is only a
factor of 1/0.42 ~ 2.4 to gain in antenna performance by utilizing three-dimensions
compared to two for a given maximum dimension a of the antenna. Since the prolate
and cylindrical needles vanish in the limit as the semi-axis ratio approaches zero,
the performance of any one-dimensional antenna restricted to the line is negligible
as compared to the performance of an antenna in the sphere.

Since 1 and 79 in the right hand side of (3.6) and (4.6) are determined from sep-
arate electric and magnetic problems in the long wavelength limit, see Appendix B,
it is clear that electric and magnetic material properties, and hence also v; and s,
can be combined separately. For example, any antenna with magnetic properties
confined to the circular disk and electric properties confined to the toroidal ring has
a potential which is 100(0.424-0.24) = 66% of the sphere with no magnetic material
properties present.

4The generalized semi-axis ratio for the cylindrical needle and the toroidal ring are defined by
& =b/a, where a and b are given in Figs. 9 and 11, respectively.
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Figure 8: The eigenvalues 7, 72 and 73 as function of the ratio as/a; for a rectan-
gular parallelepiped of edge lengths a1, as and as. The solid curves are for a;/az =5
and the dotted curve is for a;/a3 = 10. Note the normalization with the volume
V., = ma3 /6 of the sphere of radius a; /2.

7.3 The rectangular parallelepiped

The rectangular parallelepiped is a generic geometry that can be used to model, e.g.,
mobile phones, laptops, and PDAs. The eigenvalues 7;, 72 and 73 for a rectangular
parallelepiped with edge lengths aq, as and ag are shown in Fig. 8 as a function of the
ratio as/a;. The solid and dotted curves correspond to a;/az = 5 and a;/az = 10,
respectively. The eigenvalues are ordered 7, > 79 > 73 and the principal axes of
the eigenvalues 7; correspond to the directions parallel to a; if a; > ay > az. The
eigenvalues degenerate if the lengths of the corresponding edges coincide.

The performance of any non-magnetic antenna inscribed in the parallelepiped is
limited as shown by (3.5) with «,, = 0. Specifically, the limitations on antennas
polarized in the a; direction are given by the eigenvalue, ;. Obviously, it is advan-
tageous to utilize the longest dimension of the parallelepiped for the polarization of
single port antennas. The limitation (3.5) also quantifies the degradation in using
the other directions for the polarization. This is useful for the understanding of
fundamental limitations and synthesis of MIMO antennas.

For example, a typical mobile phone is approximately 10cm high, 5cm wide,
and 1cm to 2cm thick. The corresponding eigenvalues vy, 7, and 73 for a; =
10cm are seen in Fig. 8 for a3 = 2cm (solid lines) and a3 = 1cm (broken lines).
The distribution of the eigenvalues 7, 72 and 73 quantifies the trade off between
pattern and polarization diversity for multiple antennas systems in the mobile phone.
Pattern diversity utilizes the largest eigenvalue but requires an increased directivity
at the cost of bandwidth (3.5). Similarly, polarization diversity utilizes at least two
eigenvalues. It is observed that it is advantageous to use polarization and pattern
diversity for ay &~ a1 and ay < ay, respectively. For a mobile phone where ay =~ a;/2,
either pattern diversity or a combined pattern and polarization diversity as linear
combinations of the a; and as directions can be used. Moreover, note that magnetic
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Figure 9: The extinction and absorption cross sections (top figure) and the realized
gain (bottom figure) for a cylindrical dipole antenna with axial ratio b/a = 1073.
The different curves correspond to Hallén’s integral equation (solid curves), direc-
tivity and Q-factor limitation (4.6) (dashed curves), and gain and bandwidth limi-
tation (3.6) (shaded box).

materials, increase the bound (3.5) and offer additional possibilities.

8 Analysis of some classical antennas

In this section, numerical simulations of some classical antennas are presented and
analyzed in terms of the physical limitations discussed in Sec. 3.

8.1 The dipole antenna

The cylindrical dipole antenna is one of the simplest and most well known antennas.
Here, the MoM solution of the Hallén’s integral equation in Ref. 10 together with a
gap feed model is used to determine the cross sections and impedance for a cylindrical
dipole antenna with axial ratio b/a = 1073, The extinction and absorption cross
sections and the realized gain are depicted in Fig. 9. The antenna is resonant at
2a ~ 0.48\ with directivity D = 1.64 and radiation resistance 73 ). The half-power
bandwidth is B = 25% and the corresponding Q-factor is estimated to @) = 8.3 by
numerical differentiation of the impedance, see Ref. 25. The absorption efficiency 7
is depicted in Fig. 10. It is observed that n ~ 0.5 at the resonance frequency and
n =0.52 for 0 < 4a/\ < 3.

The MoM solution is also used to determine the forward scattering properties of
the antenna. The forward scattering is represented by the extinction volume p in
Fig. 10. Recall that o(0) and Im g directly are related to the polarizability dyadics
and the extinction cross section, see Sec. 3.

Moreover, since Re o ~ 0 at the resonance frequency, it follows that the real-
valued part of the forward scattering is negligible at this frequency. This observation
is important in the understanding of the absorption efficiency of antennas, see Ref. 2.
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Figure 10: The extinction volume g (top figure) and the absorption efficiency 7
(bottom figure) as function of 4a/\ for the dipole antenna.

FEM simulations are used to determine the polarizability dyadic and the eigen-
values of the cylindrical region in Fig. 9. The eigenvalue v, corresponding to a
polarization along the dipole, is 7y = 0.71a® and the other eigenvalues v, = 3
are negligible. The result agrees with the integrated extinction (2.3) of the MoM
solution within 2% for 0 < 4a/\ < 3.

The eigenvalues 7; = 0.71a®> and 7, = 0 inserted into (4.6) give physical lim-
itations on the quotient D/@Q of any resonant antenna confined to the cylindrical
region, i.e., ,

sup o < ﬁk(m 7.

b D=0 @ 2m

The corresponding bound on the Q-factor is @ > 8.1, if D = 1.64 and 1 = 0.52 are

used. In Fig. 9, it is observed that the single resonance model (dashed curves) with

@ = 8.5 is a good approximation of the cross sections and realized gain. The cor-

responding half-power bandwidth is 24%. The eigenvalue ; also gives a limitation

on the product GoB in (3.6) as illustrated with the rectangular region in the right

figure for an arbitrary minimum scattering antenna (77 = 0.5). The realized gain
G = 1.64 gives the relative bandwidth B = 38%.

It is also illustrative to compare the physical limitations with the MoM simulation
for a short dipole. The resonance frequency of the dipole is reduced to 2a ~ 0.2\
with an inductive loading of 5 yH connected in series with the dipole. The MoM
impedance computations of the short dipole give the half-power bandwidth B =
1.4% and the radiation resistance 8(2. The D/Q bound (4.6) gives > 110 for
the directivity D = 1.52 and an absorption efficiency 17 = 1/2 corresponding to the
half-power bandwidth B < 1.8%.

Obviously, the simple structure of the dipole and the absence of broadband
matching networks make the resonance model favorable. The limitation (4.6) is in
excellent agreement with the performance of the dipole antenna for the absorption
efficiency 7 = 0.52, i.e., @ > 8.1 from (4.6) compared to ) = 8.3 from the MoM
solution. The G B bound overestimates the bandwidth, but a broadband matching

(8.1)
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network can be used to enhance the bandwidth of the dipole, see Ref. 5.

Observe that the dipole antenna has a circumscribing sphere with ka ~ 1.5 and
is not considered electrically small according to the Chu limitations in Ref. 3. The
corresponding limit for the 2a =~ 0.2\ dipole (ka ~ 0.63 and D = 1.52) is Q > 5.6
and the half-power bandwidth of 36% > 1.4%. In conclusion, the dipole utilizes the
cylindrical region very efficiently but obviously not the spherical region.

8.2 The loop antenna

The magnetic counterpart to the dipole antenna in Sec. 8.1 is the loop antenna. The
geometry of the loop antenna is conveniently described in toroidal coordinates, see
Sec. H. Laplace’s equation separates in the toroidal coordinate system and hence
permits an explicit calculation of the high-contrast polarizability dyadic .. In this
section the attention is restricted to the loop antenna of vanishing thickness and
non-magnetic material properties. Under the assumptions of vanishing thickness,
the analysis in Sec. H yields closed-form expressions of the eigenvalues 7;, 72 and
v3. Recall that the loop antenna coincides with the magnetic dipole in the long
wavelength limit a/\ < 1.

In order to quantify the vanishing thickness limit, introduce the semi-axis ratio
¢ = b/a, where a and b denote the axial and cross section radii, respectively, see
Fig. 11. The three eigenvalues ; = 7, and 73 are seen to vanish in the limit & — 0.
However, v, and 7, vanish slower than vz, see Sec. H. The eigenvalues in the limit
¢ — 0 inserted into (4.5) yields

f(0)

D
— < ki ————
In2/& -1

Q
where f(f) = 1 for the TE- and f(§) = cos?@ for the TM-polarization. Here,
0 € [0, 7] is the polar angle measured from the z-axis of symmetry in Fig. 11. Note
that the logarithmic singularity in (8.2) is the same as for the dipole antenna, see
Sec. H. Since the axial radius a is the only length scale that is present in the loop
antenna in the limit & — 0, it is natural that ~;, 72, and 3 are proportional to a3,
see Appendix B.

By comparing the discussion above with the results in Ref. 7 and Sec. 8.1, it
is concluded that there is a strong equivalence between the electric and magnetic
dipoles. For the most advantageous polarization the upper bound on G B is a factor
of 37/2 larger for the loop antenna compared to the electric dipole.

The results are exemplified for a self-resonant loop with kga = 1.1 and a ca-
pacitively loaded loop, C' = 10pF, with kga = 0.33, both with £ = 0.01. The
corresponding limitations (4.6) are D/Q < 0.957 and D/Q < 0.0257, respectively.
The MoM is used to determine the impedance and realized gain of the loop antenna
with a gap feed at ¢ = 0, see Fig. 11. The Q-factor of the self-resonant antenna is
estimated to Q = 5 from numerical differentiation of the impedance, see Ref. 25.
The corresponding main beam is in the z-direction with a directivity D = 2.36
giving D/ = 0.47. Similarly, the tuned loop has @ =~ 164 and D = 1.43 in § = 90°
and ¢ = 90° giving D/Q ~ 0.0086.

+0(€%) as € —0, (8.2)
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Figure 11: The realized partial gain of two loop antennas for 6 = 0°,90°. One self
resonant (ka =~ 1) and one capacitively tuned to ka =~ 1/3.

It is observed that the physical limitations (4.6) of the loops agree well with
the MoM results. This difference can be reduced by introducing the appropriate
absorption efficiency in the physical limitation. The corresponding results for the
Chu limitation are D/Q < 2.3 for kga = 1.1 and D/Q) < 0.18 for kpa = 0.33, where
the combined TE- and TM-case have been used as the loops are not omnidirectional,
see Refs. 3 and 12.

8.3 Conical antennas

The bandwidth of a dipole antenna increases with the thickness of the antenna. The
bandwidth can also be increased with conical dipoles, i.e., the biconical antenna.
The corresponding conical monopole and discone antennas are obtained by replacing
one of the cones with a ground plane, see Ref. 21.

In Fig. 12, the eigenvalues v, = 7, and 7,, corresponding to horizontal and
vertical polarizations, respectively, are shown as a function of the ground plane
radius, b, for the conical monopoles with angles § = 10° and 30°. The eigenvalues
are normalized with a®, where @ is the height of the cone. It is observed that the
eigenvalues increase with the radius, b, of the ground plane and the cone angle 6.
This is a general result as the polarizability dyadic is non-decreasing with increasing
susceptibilities, see Ref. 19.

The horizontal eigenvalues v = =, are dominated by the ground plane and
increase approximately as b® according to the polarizability of the circular disk, see
Appendix C. The vertical eigenvalue ~, approaches 7,,,/2 as b — oo, where 4,
denotes the vertical eigenvalue of the corresponding biconical antenna.

It is interesting to compare the D/(@Q estimate (4.6) for the biconical antenna
and conical monopole antenna with a large but finite ground plane. The vertical
eigenvalue v, of the conical monopole antenna is approximately half of the corre-
sponding eigenvalue of the biconiocal antenna and the QQ-factors of the two antennas
are similar. The physical limitation on the directivity in the § = 90°-direction of
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Figure 12: The vertical and horizontal eigenvalues v, and v, as function of the
radius b for a biconical antenna of half vertex angle 10° and 30°, respectively.

the conical monopole is hence half of the directivity of the corresponding biconical
antenna. This might appear contradictory as it is well known that the maximal di-
rectivity of a monopole is approximately twice the directivity of the corresponding
dipole. However, the 8 = 90°-direction is on the border between the illuminated
and the shadow regions. The integral representation of the far field shows that the
induced ground-plane currents do not contribute to the far field in this direction,
implying that the directivity is reduced a factor of four as suggested by the physical
limitations, see Appendix D.

The rapid increase in v, = 7, with the radius of the ground plane suggests that
it is advantageous to utilize the polarization in the theses directions. This is done by
the discone antenna that has an omnidirectional pattern with a maximal directivity
above 6 = 90°.

9 Conclusion and future work

In this paper, physical limitations on reciprocal antennas of arbitrary shape are de-
rived based on the holomorphic properties of the forward scattering dyadic. The
results are very general in the sense that the underlying analysis solely depends on
energy conservation and the fundamental principles of linearity, time-translational
invariance, and causality. Several deficiencies and drawbacks of the classical limita-
tions of Chu and Wheeler in Refs. 3 and 24 are overcomed with this new formulation.
The main advantages of the new limitations are at least fivefold: 1) they hold for
arbitrary antenna geometries; 2) they are formulated in the gain and bandwidth
as well as the directivity and the Q-factor; 3) they permit study of polarization
effects such as diversity in applications for MIMO communication systems; 4) they
successfully separate electric and magnetic antenna properties in terms of the in-
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trinsic material parameters; 5) they are isoperimetric from a practical point of view
in the sense that for some geometries, physical antennas can be realized which yield
equality in the limitations.

The main results of the present theory are the limitations on the partial real-
ized gain and partial directivity in (3.4) and (4.5), respectively. Since the upper
bounds in (3.4) and (4.5) are proportional to kja®, where a denotes the radius of,
say, the volume equivalent sphere, it is clear that no broadband electrically small
antennas exist unless gain or directivity is sacrificed for bandwidth or Q-factor. This
is also the main conclusion in Ref. 12, but there presented on more vague grounds.
Furthermore, the present theory suggests that, in addition to electric material prop-
erties, also magnetic materials could be invoked in the antenna design to increase
the performance, cf., the ferrite loaded loop antenna in Ref. 4.

In contrast to the classical results by Chu and Wheeler in Refs. 3 and 24, these
new limitations are believed to be isoperimetric in the sense that the bounds hold for
some physical antenna. A striking example of the intrinsic accuracy of the theory
is illustrated by the dipole antenna in Sec. 8.1. In fact, many wire antennas are
believed to be close to the upper bounds since these antennas make effective use of
their volumes.

It is important to remember that a priori knowledge of the absorption efficiency
1 = 0a/0ext can sharpen the bounds in (3.4) and (4.5), ¢f., the half-wave dipole
antenna in Sec. 8.1 for which 77 &~ 1/2 is used. Similarly, a priori knowledge of the
radiation efficiency, 7,, can be used to improve the estimate in (3.2) using G = . D.

The performance of an arbitrary antenna can be compared with the upper bounds
in Secs. 3 and 4 using either the method of moments (MoM) or the finite difference
time domain method (FDTD). For such a comparison, it is beneficial to deter-
mine the integrated extinction and compare the result using (2.3) rather than (3.4)
and (4.5). The reason for this is that the full absorption and scattering proper-
ties are contained within (2.3) in contrast to (3.4) and (4.5). In fact, (2.3) is the
fundamental physical relation and should be the starting point of much analysis.

In addition to the broadband absorption efficiency 7, several implications of the
present theory remains to investigate. Future work include the effect of non-simple
connected geometries (array antennas) and its relation to capacitive coupling, and
additional analysis of classical antennas. From a wireless communication point of
view it is also interesting to investigate the connection between the present theory
and the concept of correlation and capacity in MIMO communication systems. Some
of the problems mentioned here will be addressed in forthcoming papers.
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Appendix A Details on the derivation of (2.3)

Consider a plane-wave excitation FEj(cot — k - x) incident in the k-direction, see
Fig. 1. In the far field region, the scattered electric field Ey is described by the far
field amplitude F' as

F(cot — z, )

E t,x) =
x

+O(x7?) asx — oo, (A1)

where ¢g denotes the speed of light in vacuum, and & = x/x with x = |x|. The far
field amplitude F' in the forward direction k is assumed to be causal and related to
the incident field F; via the linear and time-translational invariant convolution

F(r, k) :/ Su(r — ', k. k) - Ex(7') dr.
—0o0
Here, 7 = ¢t — x and S; is the appropriate dimensionless temporal dyadic.
Introduce the forward scattering dyadic S as the Fourier transform of S; evalu-
ated in the forward direction, i.e.,

S(k, k) _/ Si(7, k, k)e* dr, (A.2)
where k is complex-valued with Rek = w/co. Recall that S(ik, k) is real-valued
for real-valued k and that the crossing symmetry S(k, k) = S*(—k*, k) holds for
complex-valued k. For a large class of temporal dyadics S;, the elements of S are
holomorphic in the upper half plane Im k& > 0.

From the analysis above, it follows that the Fourier transform of (A.1) in the
forward direction reads

ikx

(S

E (k, k) = S(k,k) - Eo+O(z7%) as z — oo,

X

where Ej is the Fourier amplitude of the incident field. Introduce the extinction
volume o(k) = p: - S(k, k) - p,/k2, where p, = Eq/|E,| and p,, = k x p, denote
the electric and magnetic polarizations, respectively. Since the elements of S are
holomorphic in k£ for Imk > 0, it follows that also the extinction volume p is a
holomorphic function in the upper half plane. The Cauchy integral theorem with
respect to the contour in Fig. 13 then yields

, ™ o(ie — ee?) /’T o(ie + Re'?) o(k +ie)
= - d - d — dk. (A3
o(ie) /0 o ot | o ¢+ e 27k (4:3)

Here, it is assumed that the extinction volume p is sufficiently regular to extend
the contour to the real-axis in the last integral on the right hand side of (A.3).
Relation (A.3) is subject to the limits as ¢ — 0 and R — oo.

The left hand side of (A.3) and the integrand in the first integral on the right
hand side are well-defined in the limit as ¢ — 0. For a sufficiently regular g in the
vicinity of the origin, the analysis in Ref. 14 yield

1

oie) = = (B e Po+ Dl Y Ba) TOE) 252 =0 (A4)
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Figure 13: Integration contour in the complex k-plane used in (A.3).

Here, v, and ~y,, denote the electric and magnetic polarizability dyadics in Ap-
pendix B. Since the short wavelength response of a material is non-unique from a
modeling point of view, see Ref. 8, the second term on the right hand side of (A.3) is
assumed to approach zero in the limit R — oo. In fact, for a large class of temporal
dyadics Sq, the integrand o(ic + Re'?) /27 is proportional to the projected area A in
the forward direction, viz.,

o(k) = —@

mik
The asymptotic behavior (A.5) is known as the extinction paradox, see Ref. 23. The
constant A is real-valued since S(ik, k) is real-valued for real-valued k.

In order to proceed, the scattering, absorption and extinction cross sections
are introduced. The scattering cross section o, and absorption cross section o,
are defined as the ratio of the scattered and absorbed power, respectively, to the
incident power flow density in the forward direction. The sum of the scattering and
absorption cross sections is the extinction cross section ooy = 05 + 0,. The three
cross sections og, 0, and 0.y are by definition real-valued and non-negative. The
principle of energy conservation takes the form as a relation between the extinction

volume p and the extinction cross section. The relation is known as the optical
theorem, see Refs. 16 and 22,

+ O(|k|7?) as |k] — oo, Imk > 0. (A.5)

Oext (k) = 4k Im o(k), (A.6)

where k is real-valued.
In summary, the real part of (A.3) subject to the limits ¢ — 0 and R — oo yields

1 [ Imo(k)
=— ——= dk. A.
O (A7)
The optical theorem (A.6) applied to (A.7) then implies
1 o O-ext(k> 1 &
_ - A.
0(0) P /_OO 12 dk ), Text (A) dA, (A.8)
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where the wavelength A = 27 /k has been introduced. Hence, invoking (A.4) finally
yields the integrated extinction

/ Gent(A) A= T2 (B - Do+ B - Vs Pra) - (A.9)
0

In fact, the already weak assumptions on the extinction volume o in the analysis
above can be relaxed via the introduction of certain classes of distributions, see

Ref. 17.

Appendix B The polarizability dyadics

Let 7 denote a finite material dyadic (x, without a conductivity term, or x,,) with
compact support. The entries of the polarizability dyadic « (v, or 7,, depending
on whether the problem is electric or magnetic) are defined as the volume integral

Ey R3
Here, the total field E has been decomposed as E; = Fye; + E; with respect to the
mutually orthonormal vectors e;. In the electric and magnetic cases, E represents
the electric and magnetic field, respectively.
In the high-contrast limit, when the entries of 7 simultaneously approach infinity
uniformly in @, the pertinent definition of the high-contrast polarizability dyadic .,
is, see Ref. 14,

by b — Eioe - Z/ (0(2)®;(x) — 2i(x) - VO, (@) dSe.  (B.2)

The surface integral representation (B.2) holds for N disjunct bounding surfaces S,
with outward-directed unit normal vectors . The potential ¥;(x) = ®,(x) — Eyz;
is for each n =1,2,..., N the solution to the boundary value problem

V2U,(x) =0, x outside S,

/ b(x) - V,(z) |, dSe =0

n

U,(x) = —Eoz; + O(]w\_Q) as |x| — oo

The presence of a finite or infinite conductivity term in X, is discussed in Ref. 14.
The conclusion is that the electric polarizability dyadic -, should be replaced by
v, independently of the real-part of x, when a conductivity term is present. This
may at first seem contradictory, since there is no continuity in the limit as the
conductivity vanishes.

In Ref. 19, the polarizability dyadic ~ is proved to be symmetric provided 7 is
symmetric at all points . The dyadic ~ is real-valued, and hence diagonalizable
with real-valued eigenvalues. The corresponding set of orthogonal eigenvectors are
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Figure 14: Illustration of an arbitrary antenna volume supported by a ground
plane (left figure) and its corresponding mirror object (right figure).

the principal axes of the obstacle under consideration. The principal axes are partic-
ularly easy to determine for obstacles with continuous or discrete symmetries, e.g.,
the ellipsoids and the Platonic solids in Sec. 7.1.

An important property of « which is proved in Ref. 19, is that it is proportional
to the volume of the support of 7. This is a direct consequence of the absence of
any length scales in the long wavelength limit.

Appendix C Supporting ground planes

Supporting ground planes are central structures in many antenna applications. Con-
sider an arbitrary volume, modeling the antenna, situated above a supporting ground
plane of finite or infinite extent, see Fig. 14. To simplify the terminology, use
monopole to denote object with a ground plane and dipole to denote the object
together with its mirror object. The ground plane is assumed to be a circular disk
of radius b with vanishing thickness. Since 4 is independent of any coordinate
representation, let the ground plane be given by z = 0.

For a polarization parallel with the ground plane, i.e., spanned by e, and ¢, it
is clear from the results in Appendix B of the circular disk that the contribution to
v, from the ground plane is large. Indeed, a circular ground plane of radius b yields
Y = 7y = 16b%/3, where , and ~, denote the eigenvalues of v, corresponding to
the e, and e, directions, respectively (G.4).

The polarizability of the monopole for an electric polarization parallel with the
e.-direction has one contribution from the charge distribution on the object z >
0 and one part from the charge distribution on the ground plane z = 0. The
contribution from the ground plane vanishes in (B.2) since z = 0. For a ground
plane of infinite extent the method of images is applicable to determine the charge
distribution for z > 0. In this method, the ground plane is replaced with a copy of
the object placed in the mirror position of the object, i.e., the dipole. The charge
distribution is odd in z and the charge distribution for z > 0 is identical in the
monopole and dipole cases. The polarizability of the dipole is hence exactly twice
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the polarizability of the corresponding monopole.

The difference between the finite and infinite ground planes is negligible as long
as the charge distribution on the monopole can be approximated by the charge
distribution in the corresponding dipole case.

Appendix D Directivity along ground planes

The integral representation of the far-field can be used to analyze the directivity of
antennas in directions along the supporting ground plane. The pertinent integral
representation reads

F(7) = %2y / 7 x (J(x) x 7)e T 48, (D.1)
S

47

where J and Z;, denote the induced current and the free space impedance, respec-
tively.

Consider a monopole, i.e., an object on a large but finite ground plane, at z =0
with €, as a symmetry axis, see Fig. 14. The far-field of the monopole (D.1) can
be written as a sum of one integral over the ground plane and one integral over
the object. Let S, and S denote the corresponding surfaces of the object and
the ground plane, respectively. Assume that the ground plane is sufficiently large
such that the currents on the monopole can be approximated with the currents
on the corresponding dipole case for z > 0. Moreover, assume that the current is
rotationally symmetric and that the current in the ¢-direction is negligible giving
an omni-directional radiation pattern. Hence, it is sufficient to consider the far-field
pattern in the 7 = e,-direction.

The induced currents on the ground plane are in the radial direction giving the
term e, x (J(x) x e;) = &,J,(p)sin¢ in (D.1). It is seen that the currents on the
ground plane does not contribute to the far field as

7 .

F(e,) = éyﬂ/ e HhPeosd 1 5V sin gp dpdp = 0. (D.2)
47 So

The contribution from the currents on the object can be analyzed with the method

of images. From (D.2), it is seen the it is only the currents in the é,-direction that

contributes to the far field, 7.e.,

_ e
4 Sy

F(e,) e hPeosO T (p, ) dS, (D.3)

where J,e, = &, x (J x é&;). The method of images shows that J, is even in z so
the z-directed currents above and below the ground plane give equal contributions
to the far field. The directivity of the monopole antenna is hence a quarter of the
directivity of the corresponding dipole antenna in the e,-direction.
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Appendix E Definition of some antenna terms

The following definitions of antenna terms are based on the IEEE standard 145-
1993 in Ref. 13. The definitions refer to the electric polarization p, (co-polarization)
rather than the magnetic polarization p,, = k x p, (cross-polarization). The anten-
nas are assumed to reciprocal, i.e., they have similar properties as transmitting and
receiving devices.

Absolute gain G(I%) The absolute gain is the ratio of the radiation intensity in
a given direction to the intensity that would be obtained if the power accepted by
the antenna was radiated isotropically.

Partial gain G(k,p,). The partial gain in a given direction is the ratio of the
part of the radiation intensity corresponding to a given polarization to the radiation
intensity that would be obtained if the power accepted by the antenna was radiated
isotropically. The absolute gain is equal to the sum of the partial gains for two
orthogonal polarizations, i.e., G(k) = G(k, p.) + G(k, p,,).

Realized gain G(I%,F). The realized gain is the absolute gain of an antenna
reduced by the losses due to impedance mismatch of the antenna, i.e., Gk, I') =
(1= IP)G(k).

Partial realized gain G(l;:,j)e,F). The partial realized gain is the partial gain
for a given polarization reduced by the losses due to impedance mismatch of the
antenna, i.e., G(k,p,, I') = (1 — |I']>)G(k, p,)-

Absolute directivity D(I;:) The absolute directivity is the ratio of the radiation
intensity in a given direction to the radiation intensity averaged over all directions.
The averaged radiation intensity is equal to the total power radiated divided by 4.

Partial directivity D(l%,ﬁe). The partial directivity in a given direction is the
ratio of that part of the radiation intensity corresponding to a given polarization to
the radiation intensity averaged over all directions. The averaged radiation intensity
is equal to the total power radiated divided by 4.

Absorption cross section aa(l%,ﬁe,F). The absorption cross section for a given
polarization and incident direction is the ratio of the absorbed power in the antenna
to the incident power flow density when subject to a plane-wave excitation. For a
perfectly matched antenna, the absorption cross section coincides with the partial
effective area.

Scattering cross section as(l%,ﬁe,F). The scattering cross section for a given
polarization and incident direction is the ratio of the scattered power by the antenna
to the incident power flow density when subject to a plane-wave excitation.
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3

r_ %R r_ ¢= %R

Figure 15: The RCL circuits corresponding to the plus (left figure) and minus
(right figure) signs in (F.1).

Extinction cross section crext(l%,f)e, I'). The extinction cross section for a given
polarization and incident direction is the sum of the absorbed and scattered power
of the antenna to the incident power flow density when subject to a plane-wave
excitation, i.e., Oex (K, Do, I') = 0a(k, Po, I') + 0(k, o, I).

Absorption efficiency”® 77(1;:,13, I'). The absorption efficiency of an antenna for a
given polarization and incident direction is the ratio of the absorbed power to the
total absorbed and scattered power when subject to a plane-wave excitation, i.e.,

Nk, o, 1) = 0a(k, Do, T') /Ot (K, Doy T).

Quality factor (). The quality factor of a resonant antenna is the ratio of 2w
times the energy stored in the fields excited by the antenna to the energy radiated
and dissipated per cycle. For electrically small antennas, it is equal to one-half the
magnitude of the ratio of the incremental change in impedance to the corresponding
incremental change in frequency at resonance, divided by the ratio of the antenna
resistance to the resonant frequency.

Appendix F Q-factor and bandwidth

The quality factor, or Q-factor, is often used to estimate the bandwidth of an an-
tenna. It is defined as the ratio of the energy stored in the reactive field to the
radiated energy, i.e., Q) = 2w max(Wy,, W,)/P, see Appendix E and Refs. 6 and 25.
Here, W, and W}, denote the stored electric and magnetic energies, respectively, P is
the dissipated power, and w = k¢ the angular frequency. At the resonance, k = ko,
there are equal amounts of stored electric and magnetic energy, i.e., W, = Wi,.

For many applications it is sufficient to model the antenna as a simple RCL
resonance circuit around the resonance frequency. The reflection coefficient I of the
antenna is then given by

Z(k)-—R 1 — (k/ko)?
Z(k)y+ R 11— (k/ko)? — 2ik/(koQ)

5This term is not defined in Ref. 13; the present definition is instead based on Ref. 2.

r= (F.1)
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where Z denotes the frequency dependent part of the impedance, and the plus
and minus signs in (F.1) correspond to the series and parallel circuits in Fig. 15,
respectively. The reflection coefficient I" is holomorphic in the upper half plane
Imw > 0 and characterized by the poles

k= :t]{?()\/ 1— Q_2 — 1]€0/Q7 (FQ)

which are symmetrically distributed with respect to the imaginary axis.

The bandwidth of the resonances in (F.2) depends on the threshold level of the
reflection coefficient. The relative bandwidths of half-power, |I'|* < 0.5, is given by
B =~ 2/Q. The corresponding losses due to the antenna mismatch are calculated
from

1

1+ Q*(k/ko — ko/k)? /4

The definition of the Q-factor in terms of the quotient between stored and radi-
ated energies is however not adequate for the present analysis. This is because the
decomposition of the total energy into the stored and dissipated parts is a funda-
mentally difficult task. As noted in Refs. 6 and 25, the Q-factor at the resonance
frequency k = kg can instead be determined by differentiating the reflection coeffi-
cient or impedance, i.e.,

or Q

ok| 2R ‘ " ko

where the derivatives in (F.4) are evaluated at k = ky. Relation (F.4) is exact
for the single resonance circuit and is also a good approximation for multiple res-
onance models if @ is sufficiently large. In Sec. (4), a multiple resonance model is
considered for the extinction volume p introduced in Appendix A. The multiple

resonance model is obtained by superposition of single resonance terms with poles
of the type (F.2).

1— |1 =

(F.3)

(F.4)

Appendix G The depolarizing factors

For the ellipsoids of revolution, i.e., the prolate and oblate spheroids, closed-form
expressions of (6.2) exist in terms of the semi-axis ratio & € [0,1]. The result for
the prolate spheroid is (ay = a3)

£ 1+4/1—¢2 g
Ly (&) = 2(1 — £2)3/2 (hl 1 \/_7 3 >

e 1+4/1-¢
L2(§) = L3(§) 4(1 3/2 (2 § f In \/1_752>

(G.1)
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Figure 16: The depolarizing factors for the prolate (solid) and oblate (dashed)
spheroids as function of the semi-axis ratio £&. Note the degeneracy for the sphere.

while for the oblate spheroid (a1 = as)

Li(€) = Lo(€) = £2 1+arcsin\/1—§2
1 2 2(1 . 5‘2) é /1 - §2
La(€) = 1 ] Earcsin /1 — &2
- Ji-&
The depolarizing factors (G.1) and (G.2) are depicted in Fig. 16. Note that (G.1)
and (G.2) differ in indices from the depolarizing factors in Ref. 19 due to the order
relation L; < Ly < L3 assumed in Sec. 6 in this paper.

Introduce the eigenvalues v,(£) = V(§)/L;(§) of the high-contrast polarizability
dyadic. In terms of the radius a of the smallest circumscribing sphere, the spheroidal
volume V' (€) is given by £247wa®/3 and £4mwa®/3 for the prolate and oblate spheroids,
respectively. For the analysis in Sec. 6, the limit of v;(£) as £ — 0 is particular

interesting, corresponding to the circular needle for the prolate spheroid and the
circular disk for the oblate spheroid. The result for the circular needle reads

Ara® 1

(G.2)

n)= 3 In2/¢—1 +O(E) as £ — 0 (G.3)
12(8) =13(8) = O(&?)
while for the circular disk,
16a*
WO =@ =5 +0O .

(&) = O(8)



32

L)

—J

T3

Figure 17: The toroidal ring and the Cartesian coordinate system (1, xs, z3).

Closed-form expressions of (6.2) can also be evaluated for the elliptic needle and disk
in terms of the complete elliptic integrals of the first and second kind, see Ref. 19.

Appendix H The toroidal ring

The general solution to Laplace’s equation for the electrostatic potential ¢ in toroidal
coordinates® is, see Ref. 15,

oo

(u,v, ) =vcoshv — cosu Z (@, cosmo + by, sinmo) -

n,m=0

(¢m cos nu + d,y, sin nu) (AmnPf_% (coshv) + anQf_% (cosh v)) ,
where an—1/2 and QZ"‘_UQ are the ring functions of the first and second kinds, respec-
tively, see Ref. 1. The toroidal ring of axial radius a and cross section radius b is
given by the surface v = vy, see Fig. 17. Introduce the semi-axis ratio & € [0, 1] as
the quotient & = b/a = 1 cosh vy.

In this appendix, the eigenvalues of the high-contrast polarizability dyadic are
derived for the loop antenna in Sec. 8.2 of vanishing thickness. Due to rotational
symmetry in the x;xo-plane, the analysis is reduced to two exterior boundary value
problems defined by the region v € [0,v9] and u,¢ € [0,27). Due to the singular
behavior of Qnm_l/Q(cosh v) as v — 0 it is required that B, = 0. In addition, the
electrostatic potential must vanish at infinity, i.e., ¥ (u,v,¢) — 0 when w,v — 0
simultaneously. On the surface of the toroidal ring the two different boundary
conditions of interest are, ¥(u, vy, ) = x1 and ¥ (u, vy, $) = x3, see Appendix B.

6The toroidal coordinate system (u,v,®) is defined in terms of the Cartesian coordinates
(x1,$27x3) as

_ (sinhwvcos¢ _ (sinhvsing B (sinu

) 2 ) Ty = B
coshv — cosu coshv — cosu coshv — cosu

where u, ¢ € [0,27) and v € [0,00). The toroidal ring of axial radius a and cross section radius b
is described by the surface v = vg, where a = ( cothvy and b = (/sinhvy. Note that the present
notation (u, v, ¢) differs from (n, i, ¢) in Ref. 15.
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The following representations of the Cartesian coordinates in terms of QT " 1o are
proved to be useful:

8 o0
T, = _m\/cosh Vg — COS U Z EnQ;_l (COSh 'UO) cos nu
T — 2
= (H.1)

V8 - ,
= (T \/COSh Vg — cosu Z nQn_% (cosh vg) sin nu

n=1

Two different boundary value problems are associated with the loop antenna in
Sec. 8.2 depending on whether the magnetic polarization p,, is parallel or orthogonal
to the zz-axis. The solution of these boundary value problems are then closely
related to the components of the electric polarizability dyadic. Only the case when
the thickness of the toroidal ring vanishes, i.e., when & — 0 or equivalently vy — oo,
is treated here.

H.1 Magnetic polarization perpendicular to the rs-axis

A magnetic polarization p,, perpendicular to the xs-axis is via the plane-wave condi-
tion k = p, X p,, equivalent to the electric polarization p, parallel with the x3-axis.
A straightforward calculation to this problem can be proved to yield

(coshvg)

Y(u,v,¢) = \/_\/coshv—cosuZn

P, (coshv) sin nu.

P, 1(coshwg)

N\’—‘ t\.’)\»—t

In terms of the normal derivative 0v)/0v evaluated at v = vy, the third eigenvalue
of v, is given by

2 2 o3
- O 00,0)  Csinhy )
0

v (cosh vy — cos u)”

By insertion of (H.1) into (H.2), the asymptotic behavior of ~5 in the limit £ — 0,
or equivalently vy — 0o, can be proved to be ({ — a as vy — o0)

=0 as & —0. (H.3)

Hence, the third eigenvalue 75 of the high-contrast polarizability dyadic vanishes as
the thickness of the toroidal ring approaches zero.

H.2 Magnetic polarization parallel with the z3-axis

The solution to the boundary value problem with the magnetic polarization p
parallel with the xs-axis, i.e., p, perpendicular to the z;-axis, is

00 Ql
U(u,v,¢) = <\/§COS¢\/coshv — cosuzgn

(coshwg)

(cosh on) P;—% (coshv) cos nu,

w\»—t

l
2
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where €, = 2 — §, is the Neumann factor. In terms of the normal derivative 0v/0v
evaluated at v = vy, the first and second eigenvalues of v are

27 27 2 &
M =2 Z/ / m@w(u,vo,@ ¢ sinh o 5 dodu, (H.4)
o Jo ov (

cosh vy — cos u)

where 1 as function of u and ¢ is given by (H.1). The asymptotic behavior of (H.4)
as £ — 0, or equivalently vy — 00, can be proved to be (¢ — a as vy — o)

2m2a3

Y1 =72

Note that (H.5) vanishes slower than (H.3) as £ — 0 due to the logarithmic singu-
larity.
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