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Abstract

A survey of the theory of propagation of transient transverse electromagnetic
waves in temporally dispersive, bi-isotropic slabs is given, and a novel wave
splitting, which completely separates right-going and left-going waves in the
dispersive medium, is proposed. The new approach leads to a simple scat-
tering relation in terms of wave propagators and single-interface scattering
operators only. These temporal integral operators are related to the four time-
dependent susceptibility kernels of the medium through non-linear Volterra
equations of the second kind. In a subsequent article, the corresponding in-
verse scattering problem is addressed on the basis of the new results.

1 Introduction

The study of the electromagnetic properties of chiral media or, more generally, bi-
an-isotropic media, and the potential use for these materials in various electronic
components, is an active research field. An extensive amount of articles have been
published during the latter part of the 1980’s and during the 1990’s, and several
new books with the stress on microwave applications are available as well, see, e.g.,
Lakhtakia et al. [13] and Lindell et al. [14]. The present paper concerns the
bi-isotropic medium, which is both chiral and isotropic. For a review, see the article
by Engheta and Jaggard [3] or the one by Lakhtakia [12].

The characteristic property of the isotropic chiral medium is the chirality, which
continuously twists and distorts the plane of polarization of an initially linearly
polarized electromagnetic wave. At fixed frequency, these phenomena are interpreted
as the result of the superposition of one left-circularly polarized (LCP) wave and
one right-circularly polarized (RCP) wave, traveling through the complex medium
with different phase velocities and subject to unequal absorption. If, standing at
the receiver and looking towards the source, the plane of polarization is rotated
clockwise, the medium is said to be dextro-rotatory; otherwise, it is levo-rotatory.
The transmitted wave is elliptically polarized except for lossless (non-absorbing)
media, which merely rotate the plane of polarization. Although intimately tied
together — both effects are explained by the presence of the chirality parameter
in the constitutive relations — the rotation and absorption phenomena have been
given special names: optical rotatory power (ORP) and circular dichroism (CD),
respectively. Media that exhibit these effects in the optical regime are said to be
optically active, and the epithet electromagnetic activity has been suggested in the
general electromagnetic case [13, 14].

The physical origin of electromagnetic activity is resonance phenomena in the
handed (chiral) structure of the medium; therefore, chirality is presumed to be a
highly dispersive property. In particular, the rotatory dispersion is anomalous in
the sense that the angle of rotation may change sign in a narrow frequency-band.
Thus, the chiral medium is both dextro-rotatory and levo-rotatory depending on
frequency. In natural isotropic chiral media, e.g., maple syrup, ORP occurs in the
optical regime, due to the presence of randomly oriented chiral molecules. In order
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to observe electromagnetic activity at lower frequencies, the dimensions of the chiral
scatterers must be considerably larger, see, e.g., Lindman’s pioneer works [15, 16].
For applications in the microwave regime, man-made chiral media are required.

In recent years, the interaction between electromagnetic pulses and bi-isotropic
media has attracted certain attention [4, 5, 9–11, 18–21]. One interesting line of
research within this field is the study of the early time behavior of the signal in these
media. Knowledge of these transients may be of significance in technical applications
such as pulsed radars and ultrafast lasers. Both traditional methods [5, 21] and time-
domain techniques [19] have been employed. As far as the Sommerfeld forerunners
are concerned, the time-domain approach has proved to be very efficient; results are
available even for general stratified bi-isotropic slabs subject to arbitrary normal
incidence [19].

The study of the inverse problem of reconstructing the time-dependent mater-
ial parameters of the bi-isotropic slab is another active time-domain research field.
The accessibility of reliable inverse algorithms is, naturally, of importance for many
applications. Specifically, an inverse algorithm using transient TEM scattering data
has been developed, and examples of excellent reconstructions with synthetic scat-
tering data have been presented [10, 18]. However, unique solubility of this inverse
problem has not been proven yet. Neither has transient experimental scattering
data been presented.

The propagation of transient TEM-waves in dispersive bi-isotropic slabs has been
studied extensively using time-domain methods based on the wave splitting tech-
nique, see, e.g., Refs 9, 10, 18,19. In the present article, these studies are developed
further. As a result, a scattering relation in terms of wave propagators and single-
interface reflection operators at the boundary is obtained. This is accomplished
with the aid of a new wave splitting, which completely separates right-going and
left-going waves in the medium. The wave propagators and the single-interface
scattering operators are temporal integral operators, which are related to the four
time-dependent susceptibility kernels of the bi-isotropic medium through non-linear
Volterra equations of the second kind.

The obtained scattering relation has a simple structure, which admits derivation
of all the well-known features of TEM-wave propagation in bi-isotropic media both
in the time domain and at fixed frequency. In a second article, the corresponding
inverse problem is addressed on the basis of this scattering relation. Specifically,
it is shown that the generic inverse scattering problem is, indeed, uniquely soluble.
Furthermore, additional examples of successful reconstructions are presented.

In Section 2 of the present article, a brief outline of the time-domain meth-
ods employed in the Refs 9–11, 18–20 mentioned above is given. In Section 3, the
wave propagation problem for the (optically) impedance matched bi-isotropic slab
is formulated. In Section 4, the new wave splitting for the dispersive bi-isotropic
medium is presented. The wave propagators of the bi-isotropic medium are defined
in Section 5 and the scattering relation is derived in Section 6. Explicit integral rep-
resentations of the Green functions and the imbedding kernels used in Refs 10,18 are
given in Section 7. In Section 8, the special results for the semi-infinite medium are
emphasized. Finally, in an appendix, the scattering relation obtained in Section 6
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is generalized to the high-frequency mismatch case.

2 Survey of the time-domain analysis

In this section, the time-domain methods employed in the above references are
reviewed.

The time-domain analysis is based on the wave splitting technique, see Ref. 2. A
wave splitting is a change of the dependent variables — in this context, preferably
the electric and magnetic fields — such that, in the surrounding non-dispersive,
isotropic media, the two new, so called, split vector field variables represent the
right-going and left-going waves, respectively. A wave splitting can be performed
in several ways, and at least two different wave splittings for bi-isotropic media
have been presented so far. The split vector fields satisfy partial integro-differential
equations obtained from the Maxwell equations and from the constitutive relations of
the complex medium. The latter involve temporal convolutions modeling dispersion
and chirality effects. The wave splittings presented so far are based on the principal
part of the intrinsic impedance of the medium only. In other words, the fact that
the medium is dispersive is not considered (at this step). As a result, the right-going
and left-going waves are still coupled inside the dispersive medium.

The next step in the analysis is to define the scattering operators by applying
Duhamel’s principle to the linear, time-invariant, causal scattering problem. The
kernels of these integral operators are generic in the sense that they are independent
of the excitation of the slab, and depend on the time-dependent susceptibility kernels
of the medium only. Similarly, the Green functions and the imbedding kernels are
defined. These functions are the generic quantities of the internal (split) vector fields.
Finally, the Green functions equations and the imbedding equations are derived.
These equations are the partial integro-differential equations for the corresponding
integral kernels.

In the propagation problem (the direct scattering problem), either of these equa-
tions is solved numerically in space-time for given material parameters (susceptibility
kernels). The method of integration along the characteristics is employed in both
cases. In particular, the scattering kernels, which are seen to be appropriate restric-
tions of the Green functions and imbedding kernels to the boundaries, are obtained.
By convolution of the scattering kernels and the incident electric field, the scattered
fields, i.e., the reflected and transmitted fields, are computed. The accuracy of the
results is confirmed, e.g., by comparing the results of the two employed methods [9].
(It ought to be remarked, that, in spite of being of quite different physical origin, the
Green functions and the imbedding kernels are intimately related mathematically;
specifically, they are obtained from one another by solving Volterra equations of the
second kind, see Ref. 18.) The internal fields are obtained by convolution of the
Green functions and the incident electric field.

In Ref. 20 it is shown that the propagation problem referred to above is uniquely
soluble, and, as a consequence of this, it is proved that the Green functions equations
are uniquely soluble too, given the specific properties of the medium. This fact is
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used in Ref. 18 to prove that the imbedding equations are also uniquely soluble,
and exact solutions to these equations in terms of infinite series were given in the
homogeneous case.

The inverse scattering problem for the impedance matched, but otherwise ar-
bitrary, homogeneous bi-isotropic slab subject to normal incidence is discussed in
Ref. 10 using generic reflection and transmission data, and several examples of good
reconstructions of the four susceptibility kernels that characterize the medium are
presented. The inverse algorithm rests heavily on the direct problem. The discus-
sion of this inverse problem is continued in Ref. 18, where the more realistic case,
when data consists of the physical reflected and transmitted field quantities instead
of the corresponding scattering kernels, is considered. Still, good reconstructions
are obtained. The effect of the ill-posed nature of deconvolution can be minimized
by choosing sharp pulses as incident fields.

In the next section, the wave propagation problem to be discussed is formulated.
The theory presented in, e.g., Ref. 10 is the appropriate starting point. At the
convenience of the reader, the basic equations of this investigation are repeated.

3 Basic equations

A dispersive bi-isotropic slab is located between the surfaces z = 0 and z = d in a
right-handed rectangular coordinate system O(x, y, z), where the three basis vectors
are denoted by ex, ey, and ez, see Figure 1. For the sake of simplicity, the slab is
surrounded by vacuum with permittivity ε0, permeability µ0, and with the speed of
light and intrinsic impedance given by{

c = 1/
√
ε0µ0,

η =
√
µ0/ε0,

(3.1)

respectively. Furthermore, it is assumed that the slab is (optically) impedance
matched, that is, the optical intrinsic impedance of the medium equals the vacuum
value (3.1). Since so called hard reflectors at the front and rear walls can be removed
by appropriate techniques (time-delayed Volterra equations of the second kind in-
volving various scattering kernels), this assumption is not really a restriction [8, 19].
Nevertheless, for completeness, a generalization to the general mismatch case based
on the results obtained in this article is presented in Appendix A.

The constitutive relations of the bi-isotropic medium at the point r ≡ (x, y, z)
and at the time t are{

cηD(r, t) = E(r, t) +
(
(G+ F ) ∗E

)
(r, t) + η

(
(K + L) ∗H

)
(r, t),

cB(r, t) =
(
(−K + L) ∗E

)
(r, t) + ηH(r, t) + η

(
(G− F ) ∗H

)
(r, t),

(3.2)

where the dispersive effects as well as the characteristic properties of the complex
medium are introduced by temporal convolutions, e.g.,

(G ∗E)(r, t) =

∫ t

−∞
G(t− t′)E(r, t′) dt′.
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Figure 1: The infinite bi-isotropic scatterer.

Thus, both the polarization

P (r, t) = c−1η−1
(
(G+ F ) ∗E

)
(r, t) + c−1

(
(K + L) ∗H

)
(r, t)

and the magnetization

M(r, t) = η−1
(
(−K + L) ∗E

)
(r, t) +

(
(G− F ) ∗H

)
(r, t)

of the medium lack direct terms. All electromagnetic fields in the slab are assumed
to be quiescent before the time t = 0.

The susceptibility kernels G(t) and F (t) model the ordinary dispersive effects
of the slab, whereas the chirality K(t) and the non-reciprocity L(t) are the charac-
teristic properties of the bi-isotropic medium. If F = L = 0, then the constitutive
relations (3.2) describe the non-reflective chiral medium, which plays an important
role in the present investigation. The analysis in Section 7 suggests the alternative
names co-reflectivity for F (t) and cross-reflectivity for L(t): if F = 0, then the co-
component of the reflected electric field is zero, and vice versa. The influence of L
on the cross-component of the reflected electric field is analogous.

At non-negative times, the susceptibility kernels G(t), F (t), K(t), and L(t) are
assumed to be twice continuously differentiable functions of time with bounded
derivatives. At negative times, they all equal zero due to causality arguments [6].
By assuming these susceptibility kernels to be integrable, the slab vanishes in the
high-frequency limit (i.e., at optical frequencies) in electromagnetic sense. This is
an immediate consequence of the Riemann-Lebesgue lemma:

lim
ω→∞

∫ ∞

0

e−iωtG(t) dt = 0. (3.3)

The slab is excited by transient transverse plane waves, one right-going and one
left-going, see Figure 2. The reason for the presence of two incident pulses is that
the medium is not entirely symmetric. The electric field of the right-going wave at
the front wall z = 0 at time t is denoted by Ei

left(t), whereas the electric field of
the left-going wave at the rear wall z = d at time t is Ei

right(t). These functions
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Figure 2: Incident, scattered, and internal electric fields.

are continuously differentiable with bounded derivative, except possibly at a finite
number of times. Moreover, they are causal, i.e., identically zero at negative times.

In each bounded time interval, there exists a transverse solution to the source-free
Maxwell equations

∇×E = −∂tB, ∇×H = ∂tD.

This solution is independent of the transverse variables (x, y), that is,

E(r, t) = exEx(z, t) + eyEy(z, t) ≡
(
Ex(z, t)
Ey(z, t)

)
, (3.4)

and similarly for the magnetic field H(r, t), and for the flux densities D(r, t) and
B(r, t). The solution (3.4) to the propagation problem is unique, and the internal
and scattered electromagnetic fields inherit the regularity of the incident electric
field. For future reference, the scattered electric fields at the front and rear walls
are introduced. At the time t, they are denoted by Er(t) and Et(t), respectively, in
agreement with the notation in, e.g., Ref. 10, where Ei

right(t) ≡ 0. The scattering
geometry is depicted in Figure 2.

With the assumption (3.4), the Maxwell equations for the dispersive bi-isotropic
medium read

c
∂

∂z

(
E
ηJH

)
=
∂

∂t

{(
(−K + L)∗ I + (G− F)∗

I + (G + F)∗ −(K + L)∗

) (
E
ηJH

)}
, (3.5)

where the 2× 2-matrices I and J are defined by

I =

(
1 0
0 1

)
, J = ez × I =

(
0 −1
1 0

)
,

and where the susceptibility matrices are

G = GI, K = KJ, F = F I, L = LJ.

All matrices that appear in this paper are typed in Roman boldface. Vectors are
typed in italic boldface, while calliographic letters are reserved for matrix-valued
operators. The scalar identity operator is denoted by 1.
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A wave splitting with respect to the principal part of the intrinsic impedance of
the medium is now applied:(

E+(z, t)
E−(z, t)

)
= Wopt

(
E(z, t)
ηJH(z, t)

)
, Wopt =

1

2

(
I −I
I I

)
, (3.6)

(
E(z, t)
ηJH(z, t)

)
= W−1

opt

(
E+(z, t)
E−(z, t)

)
, W−1

opt =

(
I I
−I I

)
. (3.7)

This simple change of basis is local both in the space-variable and the time-variable,
and can be referred to as an optical wave splitting. The transformation (3.7) shows
that, in free space, the split vector fields E±(z, t) are the electric fields of the
right-going and left-going waves, respectively. With exception for the non-reflective
medium, this interpretation does not hold inside the dispersive slab, see the dynam-
ical equation (3.8) below. This is hardly surprising, since the dispersive contribution
to the intrinsic impedance of the medium is not considered at optical wave splitting.
Nevertheless, since the only non-vanishing component of the Poynting vector S is

ez · S = ez · (E ×H) = −E · JH =
1

η
(E+ ·E+ −E− ·E−),

the power flow in the +ez-direction at each point (z, t) in the space-time is fully
determined by the vector field E+(z, t). The analogous result holds for E−(z, t).

Combination of the Maxwell equations (3.5) and the wave splitting (3.6)–(3.7)
yields the dynamical equation for the split vector fields E±(z, t) in the bi-isotropic
medium: (

(c∂z + ∂t)E
+

(c∂z − ∂t)E−
)

= ∂t

{(
−G−K −F + L
F + L G−K

)
∗

(
E+

E−

)}
. (3.8)

The free space contribution is recognized as the left term, whereas the right term
represents the medium effects. The 4 × 4-matrix to the right is referred to as the
medium matrix. Note that, since the (tangential components) of the electric and
magnetic fields are continuous in the spatial variable z, the split vector fields are
continuous in this variable too; hence, the boundary values are{

E+(0, t) = Ei
left(t),

E−(0, t) = Er(t),

{
E+(d, t) = Et(t),

E−(d, t) = Ei
right(t).

(3.9)

A generalization of these conditions to various mismatch cases, e.g., the metal-
backed bi-isotropic slab is given in the appendix.

In the next section, a new wave splitting for homogeneous isotropic and bi-
isotropic media, which pays due attention to dispersion effects, is proposed.

4 Dispersive wave splitting

In this section, new dependent vector field variables are introduced with intent to
reduce the dynamical equation in the general bi-isotropic case (3.8) to the dynamics
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of the Non-Reflective Chiral Medium:(
(c∂z + ∂t)E

+
NRCM

(c∂z − ∂t)E−NRCM

)
= ∂t

{(
−N−K 0

0 N−K

)
∗

(
E+
NRCM

E−NRCM

)}
. (4.1)

In the NRCM , which is an isotropic chiral medium, the split vector fields do not
couple. Wave propagation in the NRCM is easy to analyze in terms of wave propa-
gators, see Section 5 below. These operators correspond to the (exponential) prop-
agation factors, which arise at the steady-state analysis of the problem. By equa-
tion (4.1), the new vector field variables E±NRCM(z, t) do not couple in the general
bi-isotropic medium either, except through boundary conditions. In the achiral case,
the NRCM is reduced to the non-reflective isotropic medium, which is the simplest
linear medium.

The matrix-valued integral kernel N introduced in the dynamics (4.1) is uniquely
determined by the susceptibility matrices G, F, and L of the general bi-isotropic
medium. Thus, it depends on time only. Implicitly, N is defined by the non-linear
Volterra equation of the second kind

2N + N ∗N = 2G + G ∗G− F ∗ F + L ∗ L, (4.2)

which is stable numerically. Use of the matrix identity JJ = −I shows that N = N I,
where the scalar integral kernel N(t) satisfies the integral equation

2N +N ∗N = 2G+G ∗G− F ∗ F − L ∗ L. (4.3)

Observe that N(t) can be expanded in a power series of temporal convolutions,
which converges for all finite t, provided the susceptibility kernels are bounded:

N =
∞∑
k=1

(
1
2

k

)
(M∗)k−1M, M = 2G+G ∗G− F ∗ F − L ∗ L.

In the special case of an isotropic medium, and in the sense of operators, equa-
tion (4.3) can be factored as

(1 +N∗)2 =
(
1 + (G+ F ) ∗

)(
1 + (G− F ) ∗

)
.

A fixed frequency analysis now reveals that the operator c(1 + N∗)−1 corresponds
to the spectral density (the inverse Fourier transform) of the complex phase velocity
of the medium as a function of angular frequency. By (1 + N∗)−1 is meant the
temporal integral operator 1 +Nres∗, where the resolvent kernel Nres(t) is uniquely
determined by the kernel N(t) through the Volterra equation of the second kind

Nres(t) +N(t) + (Nres ∗N)(t) = 0.

In other words, the temporal integral operator 1+N∗ is the time-domain equivalent
of the complex index of refraction of the medium as a function of angular frequency.
This notion is well known from the analysis of absorbing isotropic media, see, e.g.,
Brillouin [1, p. 43].
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The Volterra equation (4.2) is now derived in the general bi-isotropic case. Let
the time-dependent matrix-valued functions Wij, 1 ≤ i, j ≤ 2, be arbitrary linear
combinations of the matrices I and J, and consider the change of variables(

E+
NRCM

E−NRCM

)
=

(
I + W11∗ W12∗

W21∗ I + W22∗

) (
E+

E−

)
≡ Wdisp

(
E+

E−

)
. (4.4)

This transformation is non-local in time. Outside the slab, the entries Wij are
defined to be zero, reducing Wdisp to the identity operator in this region.

By equations (3.8) and (4.1), the condition on the integral kernel N becomes

W−1
disp

(
−(I + N∗) 0

0 I + N∗

)
Wdisp =

(
−(I + G∗) (−F + L)∗
(F + L)∗ I + G∗

)
.

Assuming N to be a linear combination of I and J, the square of this operator
identity is precisely equation (4.2), and the derivation is finished. The temporal
integral operators

N±(t) := I + (N±K)∗,
which appear in the dynamical equation (4.1), are referred to as the generalized
indices of refraction of the bi-isotropic medium for right-going and left-going waves,
respectively. N±K are the matrix-valued kernels of these operators.

The vector fields E±(z, t) can be expressed in the new vector field variables
E±NRCM(z, t) in several ways in order to bring the dynamical equation (3.8) into the
non-reflective diagonal form (4.1)–(4.2). The wave splitting presented in this paper
aims at identifying E+

NRCM(z, t) as the right-going electric field and E−NRCM(z, t)
as the left-going electric field. This admits meaningful definitions of transmission
operators and reflection operators at the boundaries, see below.

As a result of this identification, the total electric field E(z, t) becomes

E(z, t) = E+
NRCM(z, t) +E−NRCM(z, t). (4.5)

Moreover, in heuristic agreement with plane-wave propagation in free space, the
total magnetic field H(z, t) is expected to be able to be written in the form

JH(z, t) = −Z+(t)−1E+
NRCM(z, t) + Z−(t)−1E−NRCM(z, t). (4.6)

The introduced temporal integral operators Z± are referred to as the generalized
intrinsic impedances of the bi-isotropic medium associated with right-going and left-
going waves, respectively. The principal form of these operators is

Z±(t) ≡ η(I + Z±∗),

where Z± are the matrix-valued kernels of the generalized intrinsic impedances. By
spatial reflection (z → −z) of the axially symmetric space, one deduces that

Z− = (Z+)t, (4.7)

where (Z+)t denotes the transpose of Z+, i.e., Z− = (Z+)t. Axial symmetry also
implies that the kernels Z± are linear combinations of the matrices I and J.
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In the isotropic case, the definition of the generalized intrinsic impedances is

Z− = Z+ = (1 + Z∗)I,

where I is the identity operator and the scalar kernel Z(t) satisfies the operator
identity

(1 + Z∗)2 =
(
1 + (G+ F ) ∗

)−1(
1 + (G− F ) ∗

)
. (4.8)

In microwave engineering, the Fourier transform of the operator η(1 + Z∗) is the
relevant property. The kernel Z(t) can be expanded in the power series

Z =
∞∑
k=1

(
1
2

k

)
(A∗)k−1A, A = G− F + (G+ F )res + (G− F ) ∗ (G+ F )res,

where (G + F )res(t) is the resolvent kernel of G(t) + F (t). The definition of the
generalized intrinsic impedances of the general bi-isotropic medium is postponed.

As a consequence of the imposed conditions (4.5) and (4.6), the principal form
of the temporally dispersive wave splitting in the bi-isotropic medium becomes(

E+
NRCM

E−NRCM

)
=W

(
E
ηJH

)
,

(
E
ηJH

)
=W−1

(
E+
NRCM

E−NRCM

)
, (4.9)

where

W(t) =
1

2

(
I +

Z+ + Z−

2
∗
)−1

⊗
(

(I + Z+∗) −(I + Z+∗)(I + Z−∗)
(I + Z−∗) (I + Z+∗)(I + Z−∗)

)

and

W−1(t) =

(
I I

−(I + Z+∗)−1 (I + Z−∗)−1

)
.

The introduced notation means, that each of the four 2× 2 matrix operator entries
of the 4 × 4 matrix operator to the right of symbol ⊗ is to be multiplied by the
2 × 2 matrix operator to the left. The change of variables (4.4) is specified by the
composition

W =WdispWopt,

where Wopt is given by equation (3.6). Explicitly,

Wdisp(t) =

(
I +

Z+ + Z−

2
∗
)−1

⊗
(

(I + Z+∗)(I + Z−

2
∗) −(I + Z+∗)Z−

2
∗

−(I + Z−∗)Z+

2
∗ (I + Z+∗)(I + Z+

2
∗)

)
.

The inverse of the transformation (4.4) is(
E+

E−

)
=W−1

disp

(
E+
NRCM

E−NRCM

)
, (4.10)
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where

W−1
disp(t) =

(
(I + Z+∗)−1(I + Z+

2
∗) (I + Z−∗)−1 Z−

2
∗

(I + Z+∗)−1 Z+

2
∗ (I + Z−∗)−1(I + Z−

2
∗)

)
.

By introducing single-interface scattering operators at the boundaries, these trans-
formations are simplified considerably.

In the general bi-isotropic case, the intrinsic impedances are defined in terms of
the temporal integral operators


R0(t) = R0∗ =

(
Z+ + ηI

)−1(Z+ − ηI
)

=

(
I +

Z+

2
∗
)−1

Z+

2
∗

R1(t) = R1∗ =
(
Z− + ηI

)−1(Z− − ηI) =

(
I +

Z−

2
∗
)−1

Z−

2
∗

Explicitly, {
I + Z+∗ = Z+/η = (I −R0)

−1(I +R0),

I + Z−∗ = Z−/η = (I −R1)
−1(I +R1).

(4.11)

The operators R0 and R1 are the reflection operators at the front and rear walls,
z = 0 and z = d, respectively, viewed from the surrounding non-dispersive media.
In terms of these operators, transformation (4.10) reads(

E+

E−

)
=

(
(I +R0)

−1 (I +R1)
−1R1

(I +R0)
−1R0 (I +R1)

−1

) (
E+
NRCM

E−NRCM

)
, (4.12)

with inverse(
E+
NRCM

E−NRCM

)
= (I −R0R1)

−1 ⊗
(

(I +R0) −(I +R0)R1

−(I +R1)R0 (I +R1)

) (
E+

E−

)
. (4.13)

Recall the property (4.7) of the generalized intrinsic impedances of the axially
symmetric medium. Then, by definition,

R1 = Rt
0.

Furthermore, explicit evaluation of the cross-components — the co-components have
already been exploited resulting in the integral equation (4.2) — of the product(

−(I + N∗) 0
0 I + N∗

)
=Wdisp

(
−(I + G∗) (−F + L)∗
(F + L)∗ I + G∗

)
W−1

disp

yields the imbedding equation of the identical semi-infinite bi-isotropic medium z ∈
(0,∞), see Ref. 18, equation (5.11):

2(I + G∗)R0 + F + L + (F− L) ∗R0 ∗R0 = 0. (4.14)

Hence, R0(t) is the imbedding kernel of the right optically impedance-matched bi-
isotropic half-space z ∈ (0,∞). Analogously, R1(t) is the imbedding kernel of the
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left optically impedance-matched bi-isotropic half-space z ∈ (−∞, d). In terms of in-
tegral kernels introduced in this paper, the solution of the imbedding equation (4.14)
is simple to obtain:


R0 = −

(
I +

N + G

2
∗
)−1

F + L

2
= −

(
1 +

N +G

2
∗
)−1

F + L

2
,

R1 = −
(
I +

N + G

2
∗
)−1

F− L

2
= −

(
1 +

N +G

2
∗
)−1

F− L

2
.

(4.15)

Recall that the imbedding equation is uniquely soluble, see the fifth paragraph of
Section 2 for references.

The generalized intrinsic impedances are obtained by substituting the reflection
operators R0 and R1 into definition (4.11). The result, which by equation (4.2) is
reduced to equation (4.8) in the reciprocal case, is

Z± = η(I + Z±∗) =

(
I +

N + G + F± L

2
∗
)−1 (

I +
N + G− F∓ L

2
∗
)
.

In other words, the kernels Z±(t) are obtained by solving linear matrix-valued
Volterra equations of the second kind.

The change of variables (4.12)–(4.13) and its inverse are now interpreted in terms
of single-interface scattering operators. The result is(

E+

E−

)
=

(
(T +

0 )−1 −(T +
0 )−1R+

0

−(T −1 )−1R−1 (T −1 )−1

) (
E+
NRCM

E−NRCM

)
,(

E+
NRCM

E−NRCM

)
=

(
(T +

1 )−1 −(T +
1 )−1R+

1

−(T −0 )−1R−0 (T −0 )−1

) (
E+

E−

)
.

(4.16)

At both walls, the superscripts ± denote contribution to waves propagating in the
±z-directions, respectively. The scattering operators at the wall z = 0 are endowed
with the subscript 0:



R−0 = the reflection operator viewed from the non-dispersive medium,

T +
0 = the transmission operator for the transition,

from the non-dispersive medium to the dispersive slab,

R+
0 = the reflection operator viewed from the dispersive slab,

T −0 = the transmission operator for the transition,

from the dispersive slab to the non-dispersive medium.

Similarly, the scattering operators at the wall z = d are


R−1 = the reflection operator viewed from the dispersive slab,

T +
1 = the transmission operator for the transition,

from the dispersive slab to the non-dispersive medium,

R+
1 = the reflection operator viewed from the non-dispersive medium,

T −1 = the transmission operator for the transition,

from the non-dispersive medium to the dispersive slab.
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In terms of the reflection operators R0 and R1, one obtains

R−0 = R0,

T +
0 = I +R0,

R+
0 = −(I +R1)

−1(I +R0)R1,

T −0 = (I +R1)
−1(I −R0R1).

(4.17)

Similarly, the scattering operators at the wall z = d are

R−1 = −(I +R0)

−1(I +R1)R0,

T +
1 = (I +R0)

−1(I −R0R1),

R+
1 = R1,

T −1 = I +R1.

(4.18)

Note the special relations between these operators:

T +
0 −R−0 = T −0 −R+

0 = T +
1 −R−1 = T −1 −R+

1 = I. (4.19)

5 Wave propagators

The solution to the transformed dynamical equation (4.1) is easy to obtain. In
appropriate operator notation, it takes the form

E±NRCM

(
z, t± z

c

)
= P±(z, 0; t)E±NRCM(0, t),

where

P±(z, 0; t) = exp
(z
c

d

dt
(∓N−K) ∗

)
=

= exp
(
∓ z
c
(N(0) + N′∗)

)
exp

(
− z
c
(K(0) + K′∗)

)
are the wave propagators for the subslab (0, z). More generally, one has

E±NRCM(z2, t± (z2 − z1)/c) = P±(z2, z1; t)E
±
NRCM(z1, t), (5.1)

for all space points z1, z2 ∈ (0, d), where

P±(z2, z1; t) = P±(z2 − z1, 0; t),

are the wave propagators for the subslab (z1, z2). The invariance of the wave prop-
agators under translations in the spatial variable z is due to homogeneity. Wave
propagators for dielectrics were introduced by Karlsson and Stewart [7].

The wave propagators P± fully determine the propagating fields along the char-
acteristics and satisfy the relations


P±(z3, z2; t)P±(z2, z1; t) = P±(z3, z1; t),

P±(z, z; t) = I,
P±(z2, z1; t)

−1 = P±(z1, z2; t).
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An additional property of the propagators of the axially symmetric medium is

P±(z2, z1; t)
t = P∓(z1, z2; t). (5.2)

The temporal integral operators

G±(t) =
1

c

d

dt

(
∓N−K

)
∗ =

1

c

(
∓N(0)−K(0)

)
+

1

c

(
∓N′(t)−K′(t)

)
∗

are the generators of the wave propagators, and the functions

G±(t) :=
1

c

(
∓N′(t)−K′(t)

)
are referred to as the generator kernels. Thus, in terms of their generators, the wave
propagators are

P±(z2, z1; t) = exp

(∫ z2

z1

G±(t) dz

)
= exp

(
(z2 − z1)G±(t)

)
.

Moreover, they satisfy the operator equations

∂z2P±(z2, z1; t) = G±(t)P±(z2, z1; t).

The generators of the stratified medium depend on the spatial variable z.
The wave propagators can be factored as

P±(z2, z1; t) = Q±(z2, z1)
(
I + P±(z2, z1; t)∗

)
,

where the matrices Q±(z2, z1) determine the attenuation and rotation of the wave
front [18]. Specifically,

Q±(z2, z1) = e
1
c

∫ z2
z1

(∓N(0)−K(0))dz
= e±a(z1,z2)

(
cosφ(z2, z1) − sinφ(z2, z1)
sinφ(z2, z1) cosφ(z2, z1)

)
,

where the attenuation factor is

a(z2, z1) = −N(0)(z2 − z1)/c

and the angle of rotation is

φ(z2, z1) = −K(0)(z2 − z1)/c.

These formulae agree with the heuristic picture of electromagnetic activity.
The operators I + P±(z2, z1; t)∗ involve the generator kernels G±(t):

I + P±(z2, z1; t)∗ = exp
(
(z2 − z1)G± ∗

)
=

= exp
(
∓ (z2 − z1)

c
N ′ ∗

)
exp

(
− (z2 − z1)

c
K′ ∗

)
,
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where the matrix-valued factor is

exp
(
− (z2 − z1)

c
K′ ∗

)
=

(
cos (− (z2−z1)

c
K ′∗) − sin (− (z2−z1)

c
K ′∗)

sin (− (z2−z1)
c
K ′∗) cos (− (z2−z1)

c
K ′∗)

)
.

The functions P±(z2, z1; t) are the propagator kernels for the subslab (z1, z2). These
functions are generalizations of the Green functions of the NRCM , see Section 7.
Observe that the propagator kernels P±(z2, z1; t) are linear combinations of the
matrices I and J in axially symmetric cases.

The formulae presented in this section must be interpreted appropriately as
products of integral operators. The exponentials are expanded in their power series

exp
(
∓ z
c
N ′ ∗

)
= 1∓ z

c
(N ′∗) +

z2

c2
(N ′ ∗N ′∗)

2!
∓ z

3

c3
(N ′ ∗N ′ ∗N ′∗)

3!
+ . . .

Similarly, it is understood that the trigonometrical functions are

cos
(
− z
c
K ′ ∗

)
= 1− z

2

c2
(K ′ ∗K ′∗)

2!
+
z4

c4
(K ′ ∗K ′ ∗K ′ ∗K ′∗)

4!
+ . . .

and

sin
(
− z
c
K ′ ∗

)
= −z

c
(K ′∗) +

z3

c3
(K ′ ∗K ′ ∗K ′∗)

3!
− . . .

respectively.

6 Complete solution

The solution to the general wave propagation problem is now derived. It is given
in terms of wave propagators and the single-interface scattering operators. For
convenience, the delta measure δ(t) is employed, and, furthermore, the general time
dependence is suppressed. The notation for time-delay now becomes

δa ∗E+(z) := E+(z, t− a).
All 2× 2-operators that appear commute.

Straightforward use of equations (4.12), (4.13), and (5.1) yields the expansion(
E+(z)
E−(z)

)
= δ z

c
∗ P+(z, 0)(I −R0R1)

−1 ⊗
(
I −R1

R0 −R0R1

) (
E+(0)
E−(0)

)
+

+ δ d−z
c
∗ P−(z, d)(I −R0R1)

−1 ⊗
(
−R0R1 R1

−R0 I

) (
E+(d)
E−(d)

) (6.1)

of the internal split vector fields in terms of their values at the edges. The first
relation in equation (6.1) evaluated at z = d and the second relation evaluated at
z = 0 form the system of equations( I −R1

−R0δ d
c
∗ P−(0, d) δ d

c
∗ P−(0, d)

) (
E+(d)
E−(d)

)
=

(
δ d
c
∗ P+(d, 0) −R1δ d

c
∗ P+(d, 0)

−R0 I

) (
E+(0)
E−(0)

)
,

(6.2)
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which is equivalent to(
I R1δ d

c
∗ P+(d, 0)

R0δ d
c
∗ P−(0, d) I

)(
E+(d)
E−(0)

)
=

(
δ d
c
∗ P+(d, 0) R1

R0 δ d
c
∗ P−(0, d)

)(
E+(0)
E−(d)

)
.

The scattering relation is now easy to obtain. It reads(
E+(d)
E−(0)

)
=M(0, d)⊗ C

(
E+(0)
E−(d)

)
, (6.3)

where
M(0, d; t) =

(
I −R0R1δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

and

C(t) =

(
(I −R0R1)δ d

c
∗ P+(d, 0) R1

(
I − δ2 d

c
∗ P+(d, 0)P−(0, d)

)
R0

(
I − δ2 d

c
∗ P+(d, 0)P−(0, d)

)
(I −R0R1)δ d

c
∗ P−(0, d)

)
.

An equivalent form is(
Et

Er

)
=

(
0 R1

R0 0

) (
Ei

left(t)
Ei

right(t)

)
+ (I −R0R1)M(0, d)⊗

⊗
(

δ d
c
∗ P+(d, 0) −R1δ2 d

c
∗ P+(d, 0)P−(0, d)

−R0δ2 d
c
∗ P+(d, 0)P−(0, d) δ d

c
∗ P−(0, d)

)(
Ei

left

Ei
right

)
,

where the boundary values (3.9) also have been employed. Note that the latter result
can be interpreted heuristically in terms of the scattering operators (4.17)-(4.18):(
Et

Er

)
=

(
0 R+

1

R−0 0

) (
Ei

left

Ei
right

)
+M(0, d)⊗ (6.4)

⊗
(

T +
0 T +

1 δ d
c
∗ P+(d, 0) T +

1 T −1 R+
0 δ2 d

c
∗ P+(d, 0)P−(0, d)

T +
0 T −0 R−1 δ2 d

c
∗ P+(d, 0)P−(0, d) T −0 T −1 δ d

c
∗ P−(0, d)

)(
Ei

left

Ei
right

)
.

Recalling the geometric series, one concludes that the operator

M(0, d) =
(
I −R+

0R−1 δ2 d
c
∗ P+(d, 0)P−(0, d)

)−1
(6.5)

represents multiple propagation through the slab.
With the aid of the relation (5.2), the general scattering relation (6.3) can be

written in the principal form

(
Et

Er

)
=

(
T δ d

c
∗ Rt

R T tδ d
c
∗

)(
Ei

left

Ei
right

)
,
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which coincides with results obtained elsewhere, see, e.g., Ref. 18. Thus, it is not
necessary to refer to Duhamel’s principle when the physical reflection and transmis-
sion operators {

R := R∗,
T := Q+(d, 0)(I + T∗)

are defined. Explicitly, the physical scattering operators are given by{
R = R0 −M(0, d)(I −R0R1)R0δ2 d

c
∗ P+(d, 0)P−(0, d),

T =M(0, d)(I −R0R1)P+(d, 0).

These equations are the appropriate starting point for the inverse scattering problem.
Attention is now focused on the internal fields. If equations (4.13) and (5.1) are

combined, one obtains(
E+
NRCM(z)

E−NRCM(z)

)
= δ z

c
∗ P+(z, 0)(I −R0R1)

−1(I +R0)⊗
(
I −R1

0 0

) (
E+(0)
E−(0)

)
+

+ δ d−z
c
∗ P−(z, d)(I −R0R1)

−1(I +R1)⊗
(

0 0
−R0 I

) (
E+(d)
E−(d)

)
.

(6.6)
Use of the scattering relation (6.3) then yields the relation between the internal elec-
tric fields and the excitation in terms of wave propagators and scattering operators
at the boundary:(

E+
NRCM(z)

E−NRCM(z)

)
=

(
I −R+

0R−1 δ2 d
c
∗ P+(d, 0)P−(0, d)

)−1

⊗ (6.7)

⊗
(

T +
0 δ zc ∗ P

+(z, 0) T −1 R+
0 δ d+z

c
∗ P+(z, 0)P−(0, d)

T +
0 R−1 δ 2d−z

c
∗ P+(d, 0)P−(z, d) T −1 δ d−z

c
∗ P−(z, d)

)(
Ei

left

Ei
right

)
.

This final formula confirms the interpretation of the operators (4.17)–(4.18).

7 Green functions and imbedding kernels

In this section, the explicit expressions for the Green functions and reflection imbed-
ding kernels defined in Refs 11,18 are given. It is assumed that Ei

right(t) ≡ 0.
Substitution of equation (6.7) into equation (4.16) using definitions (4.17)–(4.18)

immediately yields the following formulae for the split vector fields:


E+(z, t+ z/c) = P+(z, 0)
(
I −R0R1δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

(
I −R1R0δ2 d−z

c
∗ P+(d, z)P−(z, d)

)
Ei

left(t),

E−(z, t+ z/c) = R0P+(z, 0)
(
I −R0R1δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

(
I − δ2 d−z

c
∗ P+(d, z)P−(z, d)

)
Ei

left(t).

(7.1)
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The Green functions G+
Green(z, t), defined as{

E+(z, t+ z/c) = Q+(z, 0)
{
E+(0, t) +

(
G+

Green(z, ·) ∗E+(0, ·)
)
(t)

}
,

E−(z, t+ z/c) = Q+(z, 0)
(
G−Green(z, ·) ∗E+(0, ·)

)
(t),

are then easily identified. The result is


Q+(z, 0)
(
I + G+

Green(z, ·)∗
)

= P+(z, 0)
(
I −R0R1δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

(
I −R1R0δ2 d−z

c
∗ P+(d, z)P−(z, d)

)
,

Q+(z, 0)G−Green(z, ·)∗ = R0P+(0, z)
(
I −R0R1δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

(
I − δ2 d−z

c
∗ P+(d, z)P−(z, d)

)
.

The explicit expression for the reflection imbedding kernel R(z, t) for the sub-
section (z, d) of the physical medium (0, d) is readily obtained from equation (7.1).
Since the imbedding kernels are defined as

E−(z, t) =
(
R(z, ·) ∗E+(z, ·)

)
(t),

the result is

R(z, ·)∗ = R0

(
I −R1R0δ2 d−z

c
∗ P+(d, z)P−(z, d)

)−1

(
I − δ2 d−z

c
∗ P+(d, z)P−(z, d)

)
.

(7.2)

Note that R(0, t) equals the physical reflection kernel R(t). The imbedding kernel
R(z, t) can be represented as

R(z, t) =

(
Rco(z, t) −Rcross(z, t)
Rcross(z, t) Rco(z, t)

)
.

By equations (4.15) and (7.2), the susceptibility kernels F (t) and L(t) can be char-
acterized as follows: F (t) ≡ 0 iff Rco(z, t) ≡ 0 for some z ∈ (0, d) and L(t) ≡ 0 iff
Rcross(z, t) ≡ 0 for some z ∈ (0, d). The result for the non-reciprocity is well-known.

8 The semi-infinite case

If the slab z ∈ (0, d) extends to infinity (d → +∞), the solution (6.7) to the
propagation problem becomes very simple:

E+
NRCM

(
z, t+

z

c

)
= T +

0 P+(z, 0)Ei
left(t) = (I +R0)P+(z, 0)Ei

left(t),

E−NRCM(z, t) = 0.
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By equation (4.12), one obtains

E+

(
z, t+

z

c

)
= P+(z, 0)Ei

left(t),

E−
(
z, t+

z

c

)
= R0P+(z, 0)Ei

left(t)

for the split vector fields. This equation shows explicitly that the reflection imbed-
ding operator R∞ = R0 for the subsection (z,∞) of the physical medium (0,∞)
is independent of the spatial variable z. This result is often proved in imbedding
theory with invariance arguments. Restricted to the first roundtrip, 0 < t < 2d

c
,

this result holds in the finite slab case z ∈ (0, d) as well, see equation (6.7).
Finally, by the optical wave splitting (3.7), the electric and magnetic fields are


E

(
z, t+

z

c

)
= (I +R0)P+(z, 0)Ei

left(t),

ηH
(
z, t+

z

c

)
= (I −R0)P+(z, 0)JEi

left(t).

Appendix A The mismatch case

In Section 3, the optical intrinsic impedance η was required to be constant through-
out space. As a consequence of this limitation, several interesting technical cases
are excluded. Among these cases, the problem with metal (PEC)-backed dispersive
slab particularly deserves to be mentioned. This problem is of importance in radar
applications.

The purpose with this appendix is to extend the analysis to various optical im-
pedance mismatch cases. This is done directly without employing so called Redheffer
star products [17] or other related means for decomposition of the actual problem
into easier ones [8, 19]. In this sense, the approach seems to be new.

The first step in the analysis of the general mismatch problem is to introduce
optical reflection coefficients at the walls. Non-zero reflection coefficients generate
(periodically repeated) non-classical contributions to the impulse responses of the
medium. In the case with non-dispersive, homogeneous, and isotropic embedding of
the bi-isotropic slab, the reflection coefficients at the front and rear walls are

r0 =
η(+0)− η(−0)

η(+0) + η(−0)
and r1 =

η(d− 0)− η(d+ 0)

η(d− 0) + η(d+ 0)
, (A.1)

respectively. The intrinsic impedance of the medium to the left of the dispersive
slab is here denoted by η(−0), whereas the notation for the corresponding property
of the medium to the right is η(d+ 0). Moreover,

η = η(+0) = η(d− 0), (A.2)

since the slab is homogeneous, see the constitutive relations (3.2). All these num-
bers may be chosen arbitrarily (positive). Notice that the reflection coefficients (A.1)
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have been defined with respect to the surrounding non-dispersive media. The re-
flection coefficients viewed from the dispersive slab are −r0 and −r1, respectively.
Similarly, the transmission coefficients for transition from the dispersive slab to the
non-dispersive media are 1 − r0 and 1 − r1, whereas, considering the transition
from non-dispersive media to the dispersive slab, they become 1 + r0 and 1 + r1,
respectively. The reflection coefficient at the rear wall of the PEC-backed slab is
r1 = 1.

Secondly, the optical wave splitting (3.6) is introduced. This wave splitting
is now interpreted local in space, that is, the optical intrinsic impedance is given
by equation (A.2) inside the dispersive slab, and by η(−0) and η(d + 0) in the
surrounding non-dispersive media. This implies that the split vector fields E±(z, t)
still equal the right-going and left-going electric fields outside the slab. In terms of
the optical reflection coefficients, the boundary conditions for the split vector fields
at the front and rear walls are(

E+(0, t)
E−(0, t)

)
=

1

1− r0

(
I −r0I
−r0I I

) (
Ei

left(t)
Er(t)

)
(A.3)

and (
Et(t)
Ei

right(t)

)
=

1

1 + r1

(
I r1I
r1I I

) (
E+(d, t)
E−(d, t)

)
, (A.4)

respectively. These equations, which are reduced to equation (3.9) in the optically
impedance matched case, are immediate consequences of the optical wave split-
ting (3.6) and the continuity in the space-variable of the electric and magnetic fields.
Observe that the functions E±(0, t) and E±(d, t) are the limit values viewed from
the dispersive slab. This notation is used throughout this appendix.

Due to the boundary conditions

E(d, t) = E+(d, t) +E−(d, t) = Et(t) = Ei
right(t) = 0,

equation (A.4) holds for the PEC-backed slab. Hence, this problem does not require
special consideration. The derivation of the general scattering relation is, however,
simplified if equation (A.4) is invertible. Therefore, assume that r1 �= 1, and pass in
the limit r1 → 1 to obtain the results for the PEC-backed slab.

The theory presented in the previous sections can now be applied to the split
vector fields E±(d, t). The solution to the general scattering problem is obtained by
substituting the boundary conditions (A.3) and (A.4) into equation (6.2):

1

1− r1

( I + r1R1 −(r1I +R1)
−(r1I +R0)δ d

c
∗ P−(0, d) (I + r1R0)δ d

c
∗ P−(0, d)

) (
Et

Ei
right

)
=

=
1

1− r0

(
(I + r0R1)δ d

c
∗ P+(d, 0) −(r0I +R1)δ d

c
∗ P+(d, 0)

−(r0I +R0) I + r0R0

) (
Ei

left

Er

)
.

(A.5)

The final result can be written in the form (6.4)–(6.5), where the single-interface
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scattering operators at the walls z = 0 and z = d are given by

R−0 = (I + r0R0)

−1(r0I +R0),

T +
0 = (1 + r0)(I + r0R0)

−1(I +R0),

R+
0 = −(I +R1)

−1(I +R0)(I + r0R0)
−1(r0I +R1),

T −0 = (1− r0)(I +R1)
−1(I + r0R0)

−1(I −R0R1)

(A.6)

and 

R−1 = −(I +R0)

−1(I +R1)(I + r1R1)
−1(r1I +R0),

T +
1 = (1− r1)(I +R0)

−1(I + r1R1)
−1(I −R0R1),

R+
1 = (I + r1R1)

−1(r1I +R1),

T −1 = (1 + r1)(I + r1R1)
−1(I +R1),

(A.7)

respectively. These definitions are natural: consider the transformations (4.12)–
(4.13) subject to the boundary conditions (A.3) and (A.4), respectively. Notice
that the relations (4.19) hold and that{

R+
0 =

(
Z+ + η(−0)I

)−1(Z+ − η(−0)I
)
,

R−1 =
(
Z− + η(d+ 0)I

)−1(Z− − η(d+ 0)I
)

in the case with isotropic embedding.
The solution (6.4)–(6.5), (A.6)–(A.7) of the general scattering problem is now

derived. An equivalent scattering relation is(
Et

Er

)
=M(0, d)⊗ C

(
Ei

left

Ei
right

)
, (A.8)

where the temporal operator C(t) is

C =

(
T +

0 T +
1 δ d

c
∗ P+(d, 0) R+

1 −R+
0 F1δ2 d

c
∗ P+(d, 0)P−(0, d)

R−0 −R−1 F0δ2 d
c
∗ P+(d, 0)P−(0, d) T −0 T −1 δ d

c
∗ P−(0, d)

)

and {
F0 = R+

0R−0 − T +
0 T −0 ,

F1 = R+
1R−1 − T +

1 T −1 .

By rearranging the terms of equation (A.5), one obtains(
I+r1R1

1−r1
r0I+R1

1−r0 δ dc
∗ P+(d, 0)

r1I+R0

1−r1 δ dc
∗ P−(0, d) I+r0R0

1−r0

)(
Et

Er

)
=

=

(
I+r0R1

1−r0 δ dc
∗ P+(d, 0) r1I+R1

1−r1
r0I+R0

1−r0
I+r1R0

1−r1 δ dc
∗ P−(0, d)

)(
Ei

left

Ei
right

)
.

Straightforward algebraic computations using definitions (A.6)–(A.7) show that
equation (A.8) holds, and the derivation is finished.
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Attention is now paid to some special cases. In the reciprocal case, the reflection
operators are

R−0 =

(
η(1 + Z∗) + η(−0)

)−1(
η(1 + Z∗)− η(−0)

)
I,

R+
1 =

(
η(1 + Z∗) + η(d+ 0)

)−1(
η(1 + Z∗)− η(d+ 0)

)
I, (isotropic backing)

R−1 = −I (PEC-backing),

where η is the optical intrinsic impedance of the dispersive medium defined by
equation (A.2). The integral operator 1 + Z∗ is given by equation (4.8). Moreover,
if the surrounding isotropic media are the same, i.e., if

ηout := η(−0) = η(d+ 0),

then R+
0 = R−1 = RI, where

R =
(
η(1 + Z∗) + ηout

)−1(
η(1 + Z∗)− ηout

)
and equation (6.4) is reduced to(

Et

Er

)
=

(
0 RI
RI 0

) (
Ei

left

Ei
right

)
+ (1−R2)

(
I −R2δ2 d

c
∗ P+(d, 0)P−(0, d)

)−1

⊗

⊗
(

δ d
c
∗ P+(d, 0) −Rδ2 d

c
∗ P+(d, 0)P−(0, d)

−Rδ2 d
c
∗ P+(d, 0)P−(0, d) δ d

c
∗ P−(0, d)

)(
Ei

left

Ei
right

)
.

In the case Ei
right ≡ 0, the expansion of the multiple-propagation operator

M(0, d) with respect to its principal part leads to the representation

Er(t) = r0E
i
left(t) + (1− r0)(1 + r0)

(
Rph ∗Ei

left

)
(t)+

− (1− r0)r1(1 + r0)
∞∑
k=1

(r1r0)
k−1

(
Q−(0, d)Q+(d, 0)

)k
Ei

left(t− ktr)

of the reflected electric field, where tr := 2d
c

is one roundtrip. For the transmitted
electric field, the analogous result is

Et(t+ tr/2) = (1− r1)Q+(d, 0)(1 + r0)
(
Tph(·) ∗Ei

left(·)
)
(t)+

+ (1− r1)Q+(d, 0)(1 + r0)
∞∑
k=0

(
r0Q

−(0, d)r1Q
+(d, 0)

)k
Ei

left(t− ktr).

Both these formulae are in agreement with the results in Ref. 19. In the inverse
scattering problem, finite traces of the physical scattering kernels Rph(t) and Tph(t)
are the input data. The matrix Q+(d, 0) and the coefficients r0, r1 can also be
obtained from scattering data.

The dynamics of the internal electric fields can be written in the form (6.7),
where the single-interface scattering operators are given by equations (A.6)–(A.7).
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This is now proved. If the boundary conditions (A.3) and (A.4) are substituted into
equation (6.6), one readily obtains the relation(
E+
NRCM(z)

E−NRCM(z)

)
=

=
(I −R0R1)

−1(I +R0)

1− r0
δ z
c
∗ P+(z, 0)⊗

(
I + r0R1 −(r0 +R1)

0 0

) (
Ei

left

Er

)
+

+
(I −R0R1)

−1(I +R1)

1− r1
δ d−z

c
∗ P−(z, d)⊗

(
0 0

−(r1 +R0) I + r1R0

) (
Et

Ei
right

)
.

The scattering relation (A.8) then admits elimination of the scattered fields. The
definitions (A.6) and (A.7) finally yield the desired result.

If the slab z ∈ (0, d) extends to infinity (d→ +∞), one readily obtains

E+
NRCM

(
z, t+

z

c

)
= T +

0 P+(z, 0)Ei
left(t), E−NRCM(z, t) = 0.

By equations (4.9)–(4.11), the electric and the magnetic fields are

E

(
z, t+

z

c

)
= T +

0 P+(z, 0)Ei
left(t),

ηH
(
z, t+

z

c

)
= (I +R0)

−1 (I −R0)T +
0 P+(z, 0)JEi

left(t).

Equation (4.12) yields the split vector fields

E+

(
z, t+

z

c

)
= (I +R0)

−1 T +
0 P+(z, 0)Ei

left(t),

E−
(
z, t+

z

c

)
= (I +R0)

−1R0T +
0 P+(z, 0)Ei

left(t).

Note that the imbedding operator still is R0:

E−(z, t) = R0E
+(z, t).

Finally, observe that the theory presented in this appendix can be used to study
wave propagation in a finite collection of homogeneous bi-isotropic slabs placed one
after another.
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