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Figure 1. The San-Miguel scene (7,842,744 triangles) overlaid with a visualization of its
Bonsai bounding volume hierarchy (BVH). The Bonsai BVH of San-Miguel is constructed in
478 ms using a 2.6 GHz quad core laptop CPU (Intel 4950HQ) and rendering performance is
107% improved compared to the rendering performance of the same scene using a BVH built
with the sweep SAH method.

Abstract

We present an algorithm, called Bonsai, for rapidly building bounding volume hier-
archies for ray tracing. Our method starts by computing midpoints of the triangle
bounding boxes and then performs a rough hierarchical top-down split using the mid-
points, creating triangle groups with tight bounding boxes. For each triangle group,
a mini tree is built using an improved sweep SAH method. Once all mini trees have
been built, we use them as leaves when building the top tree of the bounding volume
hierarchy. We also introduce a novel and inexpensive optimization technique, called
mini-tree pruning, that can be used to detect and improve poorly built parts of the
tree. We achieve a little better than 100% in ray-tracing performance compared to
a “ground truth” greedy top-down sweep SAH method, and our build times are the
lowest we have seen with comparable tree quality.
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1. Introduction

In order to ray trace [Whitted 1980] a scene with path tracing [Kajiya 1986], for exam-
ple, a spatial acceleration data structure [Kay and Kajiya 1986; Pharr and Humphreys
2010] needs to be built. The task of this structure is to speed up the determination of
what a ray intersects in a three-dimensional scene. One of the most popular spatial
acceleration data structures is the bounding volume hierarchy (BVH). For animated
scenes, the entire BVH, or parts of it, needs to be rebuilt every frame, and therefore,
the BVH generation needs to be fast. However, it is also important that the gener-
ated trees are of high quality so the subsequent ray-tracing process becomes as fast as
possible.

Top-down, greedy sweep surface area heuristic (SAH) methods [MacDonald and
Booth 1990], simply abbreviated sweep SAH here, are known to generate high-quality
trees. We present a highly efficient implementation of the sweep SAH method and
use that as a building block in our new algorithm for generating BVHs. Our algorithm
is surprisingly simple, parallelizes well, and is easy to implement. As we will show
in our results, our BVHs can be built faster than binning SAH methods [Wald 2007],
and our tree quality is better in that the subsequent ray tracing is faster.

In Sections 2 and 3 we review previous work and BVH generation background. In
Section 4, we present our implementation of the sweep SAH method with some extra
optimizations, followed by our novel BVH generation algorithm. Implementation
details are described in Section 6 and results are presented in Section 7. Finally, we
offer some conclusions.

2. Previous Work

An important component of light transport simulation performance is the time it takes
a ray to find the surface intersection. Tremendous gains in ray-tracing performance
have been achieved through improved traversal algorithms and improved data struc-
tures. One of the first uses of hierarchical storage was presented by Clark [1976], who
used them to improve the determination of visible surfaces. Later Rubin and Whit-
ted [1980] developed this idea using parallelepipeds for ray tracing. To ensure that the
best hierarchy was constructed, Goldsmith and Salmon [1987] presented the surface
area heuristic (SAH) that computes the surface area for new nodes to find the best
potential split of a bounding volume. MacDonald and Booth [1990] later formalized
SAH. Walter et al. [2008] used SAH to build trees using a bottom-up, node-merging
approach, but this approach requires long execution times. Recently, Gu et al. [2013]
demonstrated a real-time, multi-threaded CPU approximation to Walter et al.’s ag-
glomerative clustering algorithm. While showing impressive results, we show in our
results, using their provided source code, that our top-down algorithm running on a
multi-threaded CPU can build and trace scenes faster.
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Aila et al. [2013] extended the SAH metric by proposing additional quality met-
rics for tree construction and, hence, improved ways to measure ray-tracing perfor-
mance. They introduced two terms—the first term accounted for the fact that many
rays start or terminate inside the scene, whereas SAH assumes they do not. They
called the first term end-point overlap (EPO); it takes into account the area of the
surfaces within each node. Second, they showed how to model SIMD performance
by taking into account the number of leaf nodes intersected by a ray, using their leaf-
count variability (LCV) term. LCV is computed as ray tracing is performed, which
makes it a good measure for explaining performance, but impractical for BVH con-
struction.

The construction of BVHs typically follows a top-down approach where a bound-
ing volume of the entire object is split into two child volumes. These child volumes
are recursively split, and before splitting, the SAH is used to estimate the cost of each
potential split. While this type of exhaustive search can generate trees with very low
SAH cost, it can take a very long time, so faster methods are often used. A popular
approximation is binned SAH [Wald 2007; Wald 2012], which limits the number of
potential split planes to a fixed number.

To further improve performance and utilize the parallel capacity of GPUs, Lauter-
bach et al. [2009] presented a technique called linear BVH (LBVH), which con-
structed a BVH by first generating a Morton code for each primitive, then using
a parallel GPU algorithm to sort them, and finally recursively bucketing primitives
based on the bits in their Morton codes. HLBVH [Pantaleoni and Luebke 2010]
improved this technique by using a two-level hierarchical sort that used the upper
bits of the Morton code to do an initial sort. Pantaleone et al. [2010] used a similar
two-level build approach in their stream-based out-of-core BVH construction algo-
rithm. Garanzha et al. [2011a] simplified the bookkeeping for the HLBVH algorithm
and used work queues and binary search. Karras [2012] improved parallel construc-
tion time of this group of algorithms by creating node indices and keys using a bi-
nary radix tree that allowed creation of connections between parent and child nodes.
A related hierarchical GPU-based approach is presented by Garanzha et al. [2011b].
In their work, a hierarchical grid is computed over the scene and used to construct the
BVH using SAH.

Triangle splitting is an important technique to handle difficult scenes with a wide
variety of triangle sizes. Havran and Bittner [2002] presented the idea of split clip-
ping, where the bounding box of an object is split to reduce empty overlap between
object bounding boxes and kd-tree nodes. Ernst and Greiner [2007] applied a similar
concept to BVHs by splitting triangle bounding boxes in a preprocess, before using a
typical BVH construction pass. Stich et al. [2009] and Popov et al. [2009] proposed
similar ideas, where primitives are considered for splitting into children during BVH
construction, which resulted in tighter bounding boxes on a larger range of triangles
than previous approaches.
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Further performance enhancement can be achieved by optimizing existing trees.
Kensler [2008] presented a method of improving a BVH by locally rearranging nodes
or using tree rotations. Bittner et al. [2013] also refined existing BVHs by selecting
expensive SAH nodes for optimization, removing them, and then reinserting their
children at locations with minimal cost. Karras and Aila [2013] selected groups of
nodes in treelets and performed an exhaustive search for the optimal treelet in parallel
on GPUs.

3. Background BVH Generation

As background, we first review the surface-area heuristic (SAH) [Goldsmith and
Salmon 1987; MacDonald and Booth 1990], which is used extensively in spatial data
structure generation. The SAH cost for a bounding volume hierarchy (BVH), with
similar notation as Karras and Aila [2013], is

CI ∑
n∈I

A(n)
A(root)

+CL ∑
n∈L

A(n)
A(root)

+CT ∑
n∈L

A(n)
A(root)

N(n). (1)

This formula expresses the expected cost of traversing a random ray through the BVH,
such that the ray does not terminate inside the scene geometry. The set of internal
nodes is denoted by I, and L is the set of leaf nodes. The function A computes the
surface area of a node’s bounding volume and the function N represents the number of
triangles in a leaf node. The constants CI and CL are the traversal costs of an internal
node and a leaf node, respectively, and CT is the cost for intersecting a triangle. Karras
and Aila use CI = 1.2, CL = 0, and CT = 1.

To determine the SAH cost of a node, n, we use the standard formulation, where
we again use a similar notation as Karras and Aila [2013], i.e.,

C(n) =

{
CIA(n)+C(nl)+C(nr), n ∈ I,
CT A(n)N(n), n ∈ L.

The left and right child nodes are denoted nl and nr, respectively. Note that the first
formula is an expression of splitting n into a left and a right child, while the second
represents the cost of making a leaf node of the triangles.

4. Our Implementation of Sweep SAH

The sweep SAH BVH algorithm was introduced by MacDonald and Booth [1990],
and one often uses a top-down, greedy approach to build such trees. Sweep SAH
is commonly used as a comparison algorithm due to its high-quality trees. How-
ever, most implementations seem relatively slow. In this section, we will adapt a
partitioning trick from kd-tree building to BVHs and then describe a very efficient
implementation.
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Sweep SAH is a top-down recursive algorithm that, at each recursion, tries to
partition a set of primitives into two subsets that minimize the surface area heuristic.
The initial set to be partitioned is all primitives in the scene, and recursion stops
when a partition cannot improve the cost of the tree. The SAH metric is minimized
by sweeping over primitives along the x-, y-, and z-axis. For this sweep to work,
primitives need to be sorted along each coordinate axis. Typical implementations do
this by sorting the primitives along the axis to test before each sweep. However, we
have discovered that this is unnecessary work.

In the spirit of previous work on kd-tree building [Wald and Havran 2006; Zhou
et al. 2008; Wu et al. 2011], we sort all primitives once along each coordinate axis
before any recursion takes place and keep these three arrays sorted within each subset
during recursion. This allows us to improve performance without sacrificing tree
quality, which is in contrast to the binned SAH approach [Wald 2007], where quality
is often reduced. The sweep part of the algorithm simply performs a sweep over
the correctly sorted array, so no additional sorting is required. Once the partition
that minimizes the SAH metric is found, we need to ensure that all three arrays are
correctly partitioned and sorted within the two subsets.

Without loss of generality, we assume that x is the coordinate axis along which
we chose to partition the primitives. This means that the y- and z-arrays need to have
the same primitives in each subset as the x-array, but ordered by the y- and z-axis
within each subset. We do this by flagging all triangles depending on which side of
the pivot they are on along x. Then, using this flag, a partition of the primitives in y
and z is performed, while preserving order. Partitioning is a fast and simple operation
that runs in O(n) time. This is in contrast to any comparison-based sorting algorithm,
which would take O(n logn) time at best. Thus, the sweep recursion is improved from
running in O(n log2 n) time to instead execute in O(n logn) time.

In addition to the algorithmic improvements, we have found that many parts of
the SAH algorithm lends itself well to vectorization and threading. Instruction-level
parallelism and SIMD is exploited during SAH minimization by sweeping over mul-
tiple triangles at the same time. In our implementation, we successfully utilize 8-wide
AVX2 instructions for the sweep. Thread-level parallelism is achieved by branching
off the two subsets as new thread tasks at each recursion. Threads are then coordinated
using a work list with task information. Since each subset can be processed indepen-
dently, little synchronization is required. Additionally, the initial sorting along each
coordinate axis can be performed using a parallel sorting algorithm. We currently use
a radix sorter, where each axis (x,y,z) is sorted in a separate thread. Further details
relevant to the implementation are presented in Section 6.

5. Bonsai BVH Algorithm

The basic idea of our approach to rapidly building bounding volume hierarchies
(BVHs) is illustrated in Figure 2. Very briefly, the triangles are partitioned into groups
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top tree

bottom tree

(a)

(b)

(c)

mini tree

Figure 2. Illustration of our BVH tree builder in two dimensions. (a) In an initial pass, groups
of triangles are generated. (b) For each group of triangles, an SAH-optimized mini tree is built
using the algorithm in Section 4. (c) The top tree is built using an SAH-optimized builder as
well. Pruning is not shown in this illustration.

with a user-defined size, and then a mini tree is built for each group, and finally, the
mini trees can be seen as leaf nodes in a top-tree build. If a bounding box is computed
for each triangle group as part of the grouping, then the top tree and all the mini trees
can be built in parallel. To improve tree quality further, we have developed a novel
mini tree pruning algorithm (Section 5.4), which can be applied before the top tree is
built. However, the pruning algorithm is dependent on the mini trees, and therefore,
the top tree must be built after the mini trees. We make extensive use of mini trees
and pruning, and hence decided to call the entire algorithm Bonsai.

The Bonsai algorithm is summarized by the following list of operations:

1. Compute the midpoint for each triangle.

2. Mini tree selection: split the set of midpoints hierarchically into groups of tri-
angles.
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3. Use efficient implementation of sweep SAH (Section 4) to build a mini tree per
triangle group.

4. [optional] Mini tree pruning, i.e., find and optimize mini trees with subtrees that
cause less optimal ray-tracing performance.

5. Top-tree construction using the mini trees as leaves.

These five steps are described in more detail in the following subsections.

5.1. Compute Midpoints

Initially we loop over all triangles, where the midpoint, i.e., the center point of a trian-
gle’s axis-aligned bounding box, is computed for each triangle. Computing midpoints
maps well to both thread- and instruction-level parallelism.

5.2. Mini Tree Selection

The purpose of the second step is to find a number of relatively small groups of trian-
gles, where the triangles of each group is spatially coherent.

It is common to use triangle bounding-box midpoints to determine the sorted order
of triangles in the x-, y-, and z-dimensions as well as to determine whether a triangle
is to the left or to the right of a plane, but also to determine to which bin a triangle
belongs. However, in many algorithms, the bounding boxes of triangles enlarge the
bins or left and right bounds, and then a hierarchical top-down split follows using
these boxes. We have found that it is considerably faster to use only the triangle
midpoints rather than the minimum and maximum of the bounds of all vertices. In

Figure 3. Our hierarchical split uses the triangle midpoints (colored circles) to generate
triangle groups using a top-down approach. In each step, the bounding box of the triangle
midpoints in the set is computed and used in the next split. We always split along the longest
axis and in the middle.
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addition, long sliver triangles are simply treated as points, which avoids problems
where long boxes do not become subdivided.

In Figure 3, we illustrate our hierarchical split using triangle midpoints. The
bounding box of the current set of triangle midpoints is calculated, and the set of
triangle midpoints are simply split into two subgroups using the center point of the
longest axis of the parent box. Each subgroup computes its own bounding box of
the triangle midpoints, and then the hierarchical split continues until fewer or equal
to N triangles are located in each triangle group. The threshold N is a parameter
that can be chosen for a particular platform, depending on cache sizes, etc. Again,
we achieve a high computational efficiency by exploiting thread-level parallelism at
each hierarchical subdivision and instruction-level parallelism when computing the
triangle midpoint bounds.

5.3. Mini Tree Construction

In the third step of our mini tree BVH algorithm, we compute an SAH-optimized sub-
tree, called a mini tree, for the triangles in each group using our implementation of
sweep SAH (Section 4). In theory, any method, such as, for example, LBVH [Lauter-
bach et al. 2009], HLBVH [Pantaleoni and Luebke 2010; Karras 2012], and binned
SAH [Wald 2007], could be used here. However, our sweep SAH implementation
results in the same tree quality as the greedy, top-down sweep SAH [MacDonald and
Booth 1990], and it is important to generate high-quality trees for the mini trees in
order to get good overall tree quality. It is also possible to introduce triangle-splitting
techniques [Ernst and Greiner 2007; Stich et al. 2009; Karras and Aila 2013] here,
but this is beyond the scope of our work and is something we want to investigate in
the future.

When building mini trees, we get even better hardware utilization and thread-
level parallelism compared to using our implementation of sweep SAH (Section 4)
for all triangles in the scene, since each mini tree is built with only one thread each.
In addition, situations like sorting the three index arrays for a full sweep SAH build,
using only three threads are avoided. As long as there are mini trees to build, all
threads will have completely parallel tasks to process.

5.4. Bonsai Pruning

Mini tree pruning is a novel technique that we introduce in order to recover tree qual-
ity lost due to potentially poorly chosen mini tree triangle groups in the selection
algorithm (Section 5.2). Since the mini tree selection does not take SAH into ac-
count, the separation of large triangles from groups of smaller triangles will be rather
arbitrary. So even though each mini tree is SAH optimized, the initial choice of trian-
gles for a mini tree may be quite poor. As a result, both the top tree and the mini trees
may suffer from reduced tree quality. Although, for some scenes, such as Hairball,
midpoint-split works surprisingly well as a BVH build heuristic.
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Original mini tree

New mini trees

Deleted nodes

Before pruning

After pruning

Figure 4. In mini trees, whose root box has a surface area larger than a threshold, our pruning
algorithm performs a depth-first search in the mini tree to find better nodes to use as mini
tree root nodes. Nodes that have a surface area smaller than the threshold (light blue, dark
blue, and dark green) are found, and their subtrees are selected as new mini trees. The old
mini tree root node (black) and all nodes between it and the new mini tree root nodes (light
green) were parts of a tree created by poor mini tree selection and can be safely deleted. The
remaining nodes (light blue, dark blue, and dark green) are used as new mini tree root nodes
in the subsequent top-tree build.

Our pruning algorithm searches for mini trees that have a surface area larger
than some user-defined threshold, T . For each such mini tree, a depth-first traver-
sal searches for the first nodes that are smaller than T , and such nodes become new
mini trees that are used in the top-tree construction (Section 5.5). All nodes between
the found nodes and the mini tree root node are deleted, and the remaining nodes are
added back as mini trees for the top-tree construction. This is illustrated in Figure 4.
By pruning mini trees, we will find misplaced triangles (or entire misplaced subtrees)
and just add them to the top-tree index list as mini tree roots. The effect is that difficult
(large) triangles or difficult regions of a mini tree will be pushed up in the hierarchy
and rebuilt with the top-tree builder among equally sized nodes. The threshold value,
T , is simply a fraction of the average surface area of all the original mini tree root
boxes. We present results with T = 0.1 and T = 0.01.

The pruning algorithm relies solely on the already computed mini trees (e.g., it
does not split triangles or build any new data structures), and all it really does is
traversing a mini tree at most once, so its addition to the overall build time is very
small for most scenes. There are exceptions to all rules, and the Hairball is one
such case. Since it is evenly tessellated and has an even distribution of triangles,
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the variance of mini tree root node areas is small, and thus Hairball build-time is
quite sensitive to pruning. For future work, we plan to use a fraction of the standard
deviation of the mini tree root box areas as a threshold in order to avoid this.

It could be worth mentioning that mini tree pruning is not exclusive to the mini
tree BVH algorithm. Any already constructed BVH could potentially benefit from
pruning. As an example, pruning could start at any node with less than a user-defined
number of triangles referenced by the sub tree.

5.5. Top-Tree Construction

The top-tree construction is similar to sweep SAH, except that now we have a set
of mini trees, each with an axis-aligned bounding box and a fully built subtree, and
we need to build the top part of the tree based on these. Also, while performing the
sweeps, there is no need to weigh in the SAH cost to the parent surface area as is
done in normal sweep SAH, since the top-tree nodes will always be split as far as
possible. Building the top tree can be done using any appropriate method. We use our
implementation of sweep SAH (Section 4).

6. Implementation

We have implemented both our sweep SAH (Section 4) and Bonsai BVH (Section 5)
with as much focus as possible on both thread-level and instruction-level parallelism.

The first consideration to achieve good parallelism is data layout. We store our
vertex data in three arrays of vertices where each vertex has four values, [x,y,z,0]. A
triangle is composed of the ith vertices from the three arrays where i is the triangle
index. This layout maps well to SIMD execution when computing midpoints and tri-
angle bounds. The midpoints are stored in three float arrays, one for each dimension.
We keep the triangle bounding boxes in an array of eight values per bounding box,
b = [xmin,ymin,zmin,0,xmax,ymax,zmax,0], and all bounds are arranged in an array as
[b0, . . . ,bn−1], where n is the number of triangles in the scene. With this layout, each
triangle bounding box can be loaded into a single 256-bit AVX2 register.

In our implementation of sweep SAH, denoted SweepSAH from now on, each
recursion in the sweep algorithm spawns a new thread task to the left child, while the
right child is constructed using the current thread. The sweep loop from left to right
operates on eight triangle indices per iteration, that is, eight triangle bounds are loaded
and accumulated to eight potential left-side bounding boxes. The left to right sweep
is quite similar. One situation when SIMD instructions are not used is the sorted
order-preserving index partitioning described in Section 4. Memory reads and writes
while partitioning are simply too scattered to benefit from SIMD instructions, and
the partitioning algorithm does not have good SIMD features. However, partitioning
consumes only a small part of the total run time, and so is generally not a problem.
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In Section 5.1(midpoint computation), we compute four midpoints per loop itera-
tion using 256-bit AVX2 registers. Even though triangle vertices are loaded in order to
compute the midpoints using the triangle bounding boxes, it does not pay off to save
the bounding boxes to memory at this stage of the algorithm. A serial loop operating
on independent data lends itself well to thread-level parallelism, and our threading
scheduler simply assigns the available hardware threads to 1024-sized segments of
the loop range. Once a thread finishes computing its segment, it is assigned a new
segment of 1024 iterations of the loop.

The mini tree selection (Section 5.2) is designed in a recursive fashion, where we
spawn new thread tasks at each recursion. We compute the bounding boxes around
the midpoints using 8-wide AVX2 registers and the 8-wide min and max intrinsic
functions. Since we work with midpoints and not bounding boxes, we can read eight
of them per iteration and find the min and max of all eight midpoints using only six
SIMD instructions (one min and one max AVX2 instruction per dimension). Without
8-wide AVX2, the same computation would require 16 min and max operations per
dimension.

Triangle bounding boxes are computed and stored during mini tree construction
(Section 5.3). The reason why this is not done earlier is that now it is known which
triangles belong to which mini tree, and all data necessary is gathered and computed
in pre-allocated thread local memory. Operating in thread local memory improves
caching and removes false sharing between threads. Each mini tree is built by only
one thread, and so there are no idle threads as long as there are mini trees left to
construct. This is slightly different from SweepSAH, since there is no need to spawn
new thread tasks while recursing down the tree.

It is not straightforward to map the Bonsai pruning algorithm to SIMD instruc-
tions, since the algorithm basically just traverses the constructed mini trees. The aver-
age surface-area computation of mini tree root nodes benefits from SIMD instructions
but is a tiny part of pruning. However, the traversal has thread-level parallelism just
as SweepSAH and mini tree selection, and in addition, each mini tree can be pruned
in parallel. The only synchronization is when a new mini tree root is found, and the
new mini tree root node bounds are written to the top-tree’s bounds array.

The top tree (Section 5.5) is built in a similar manner as SweepSAH.

7. Results

All our results have been generated on a Macbook Pro laptop with Iris Pro 5200 inte-
grated graphics processor. More specifically, the CPU is a 4950HQ, which has eight
hardware threads at 2.6 GHz. All BVH building is done entirely on the CPU cores,
while ray tracing is done using both the CPU cores and the GPU. More precisely,
BVH traversal and triangle intersections are done using the GPU while shading com-

33

http://jcgt.org


Journal of Computer Graphics Techniques
Bonsai: Rapid Bounding Volume Hierarchy Generation using Mini Trees

Vol. 4, No. 3, 2015
http://jcgt.org

putations are done using the CPU. Note that for all our comparisons, we use a path
tracer, which means that the rays are highly incoherent after a few bounces. Our
baseline algorithm for comparison is the efficient implementation of sweep SAH as
described in Section 4. This method is denoted SweepSAH; note that it generates
the same high-quality trees as a standard sweep-based SAH BVH algorithm. Fur-
thermore, we compare to binned SAH [Wald 2007], referred to as binSAH, to Bonsai
(Section 5), and to two versions of Bonsai P (Section 5.4), where Bonsai P is our
algorithm with pruning. For binSAH, we use Intel’s Embree 2.2 implementation of
binned SAH BVH. However, Embree’s fastest BVH builder is designed to build 4-
wide trees, but we only compare to 2-wide trees, since our GPU traversal is faster
for these trees. Although older versions of Embree implement binary tree-builders,
those implementations were not as fast, and we found it fairest to modify the faster
4-wide builder to construct 2-wide trees. We also compare to approximate agglomera-
tive clustering (AAC), using the authors’ source code [Gu et al. 2013], where we used
both the high-quality (HQ) and the low-quality version (LQ), where the latter is faster,
but generates lower-quality trees. The provided source code is single threaded, so to
generate fair build times, giving AAC the benefit of the doubt, we have divided the
single-threaded performance by four, since we have four hardware cores and because
the authors claim linear speed-up with number of cores.

Our first contribution in terms of results is to show the results of our implementa-
tion of the sweep SAH algorithm (Section 4). While it is difficult to compare against
others’ implementations of the same algorithm, we simply note that the Hairball often
takes at least 15× longer to generate [Karras and Aila 2013; Bittner et al. 2013] than
when using our implementation. In fairness, there are differences in CPUs and likely
also in the ambition level of optimization for sweep SAH. Since we will release our
source code, we believe that this is a small but important contribution; the community
will get access to a highly efficient implementation of sweep SAH for BVHs.

All major results are shown in Figure 5 for 14 different scenes, where Bonsai and
Bonsai with pruning (Bonsai P in the table) were generated with a maximum mini tree
size of 512 triangles and Bonsai P* with a maximum of 4096 triangles. The pruning
threshold constants are 0.1 for Bonsai P and 0.01 for Bonsai P*.

For Bonsai, ray tracing performance ranges from 75% up to 95% compared to
SweepSAH. With Bonsai P, ray tracing performance is increased to range between
92% to 105%, with an average of 98.5%. The most difficult scene to build for Bonsai
P and P* is Dragon, which with P* is ray traced at 93% performance compared to
SweepSAH. The other scenes are in the range 97% to 108% for P* and the total
average ray tracing performance is 101.5% to that of SweepSAH. Depending on the
scene, the increase in build time for pruning can range from very little (Bentley)
to nearly double (Hairball). Bonsai build times vary with different mini tree sizes,
and without loss of ray tracing performance, improved build times can be made for
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some scenes by selecting other mini tree sizes. However, with no a priori knowledge
regarding which scene would benefit from which mini tree size, we have found that
a size of 512 is a reasonable compromise across the test scenes. Bonsai P and P*
build times are also affected by the pruning constants, and we base our choices on
empirical observations with regard to both ray-tracing performance and build times.
It is actually not pruning itself that adds to the build time, but it is the increased
number of leaf nodes for the top tree, caused by pruning, that affects build time.
Simply put, more leaf nodes result in more work for the top tree. This effect can be
seen in Figure 6, where we show the timings of each step of the Bonsai and the Bonsai
P algorithms, relative to Bonsai build times of the San Miguel scene.

We found that scenes with a uniform distribution of finely tessellated triangles
with roughly the same size are more sensitive to the pruning algorithm. This is be-
cause we use a fraction of the average surface area of mini tree root nodes as a thresh-
old. If there is little variance among mini tree root nodes sizes, then too many mini
trees may be larger than the threshold, and they simply get over pruned. However,
if a scene has a larger variance in triangle sizes and triangle distribution, then it is

Pe
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Mini Tree Construction 
Mini Tree Select 
Midpoint Computation

Figure 6. While pruning increases ray-tracing performance significantly, it also has an ad-
verse effect on BVH build times. In the bar graph, we show the time of each step of the
Bonsai and Bonsai P algorithms relative to Bonsai’s full build time. We chose San Miguel as
a representative scene. Even though pruning (red) does not take up much more than 1% of the
total build time, the top-tree build time (purple) increases from 1.5% of the total build time
without pruning to 3.3% with pruning.
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Build Times SAH Cost RT Performance

SweepSAH 100% 100% 100.0%

binSAH 61% 106% 92.6%

AAC HQ 101% 106% 80.8%

AAC LQ 42% 108% 75.2%

Bonsai 25% 112% 85.7%

Bonsai P 27% 101% 98.5%

Bonsai P* 32% 99% 101.5%

Figure 7. Average build times, SAH costs, and ray-tracing performance compared to Sweep-
SAH. The algorithms with the best build times, respectively, best ray-tracing performance are
highlighted.

likely that just a smaller number of all the mini trees have a surface area larger than
the threshold, and these mini trees are exactly the ones that need to be pruned.

Average build times, SAH costs, and ray-tracing times for our 14 test scenes are
presented in Figure 7. Build performance for Bonsai compared to SweepSAH is on
average 4× faster and compared to binSAH a little more than 2× faster. Bonsai, Bon-
sai P, and P* all have faster build times than AAC LQ and, in addition, a significantly
higher ray-tracing performance. The SweepSAH implementation is on par with the
build times of AAC HQ, but ray tracing is often much faster for SweepSAH. Note that
we use a full-path tracer, with highly incoherent ray distribution after a few bounces,
for all comparisons, and we measure wall clock rendering time, while Gu et al. [2013]
used 16 diffuse rays and counted BVH node traversal and intersections tests in their
paper. As can be seen, our algorithm is significantly faster than the others at building
and, at the same time, it has the best ray-tracing performance.

Although it is very difficult to make comparisons to algorithms executed on com-
pletely different hardware, it might be worth noting, that on average, in the cases
where we share test scenes, our Bonsai BVH build times are less than 1.4× the build
times of the GPU BVH algorithm by Karras and Aila [2013]. Note that the latter was
executed on an NVIDIA GTX Titan, which has 10×more FLOPS than the CPU cores
that we use. We have similar behavior with Bonsai P, where the shared scenes have
an average build time less than 1.6× to that of Karras and Aila.

It is well known that SAH does not correlate perfectly to ray-tracing performance.
However, it is generally assumed that better ray-tracing performance can be the result
when SAH cost is lowered. Figure 7 shows the average SAH costs for all the tested
algorithms and Figure 8 shows the SAH cost details across all scenes. Although it
is not possible to deduce any clear conclusions on how SAH cost reflects ray-tracing
performance among different algorithms (AAC HQ often has a lower SAH cost than
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Arabic City Battlefield Bentley Conference Crown Dragon Fairy Forest

SweepSAH 113.5 33.9 4.2 53.6 36.6 25.5 47.8

binSAH 119.0 36.4 6.1 57.5 37.5 26.3 47.6

AAC HQ 111.0 41.5 6.1 49.8 41.8 29.1 54.5

AAC LQ 124.5 41.8 6.1 50.9 41.6 28.2 53.5

Bonsai 129.1 39.4 6.0 63.9 37.5 26.0 49.9

Bonsai P 109.3 34.1 5.9 55.9 36.8 25.9 46.6

Bonsai P* 108.2 33.9 5.8 55.4 36.7 26.1 46.3

Hairball Italian City Kalabsha Sala San Miguel Sibenik Sponza

SweepSAH 620.5 90.7 10.4 53.9 95.6 74.9 121.3

binSAH 663.4 96.2 10.8 54.2 96.7 74.2 122.9

AAC HQ 767.1 86.9 8.2 52.3 88.5 80.2 109.5

AAC LQ 785.8 97.5 8.0 52.0 89.0 82.2 112.7

Bonsai 640.5 107.6 10.3 58.3 111.0 79.3 136.5

Bonsai P 610.7 86.2 10.1 51.2 92.6 71.6 114.2

Bonsai P* 595.9 85.2 8.6 51.6 93.0 71.0 113.4

Figure 8. SAH costs, calculated using Equation (1), of all scenes and across all algorithms.
Traversal cost constants used are CI = 2, CL = 0, and the triangle-intersection cost constant is
CT = 1.

SweepSAH but most of the time also lower ray-tracing performance), there seems
to be a clear intra-algorithmic correlation for both Bonsai and AAC, where reduced
SAH costs correlate well to improved ray-tracing performance.

8. Conclusions and Future Work

Bonsai is a highly efficient and simple-to-implement algorithm for building bounding
volume hierarchies. When measuring ray-tracing performance, our algorithm, sup-
plemented with the pruning optimization technique, meets or comes close to, but in
many cases surpasses, the tree quality of SweepSAH. We have shown that Bonsai
maps well to both thread-level and instruction-level parallelism. An observation is
that it may well be that CPU hardware is a better fit to construct high-quality bound-
ing volume hierarchies than GPU hardware. This is based on the comparisons of BVH
build times between Bonsai (with and without pruning) on a laptop CPU and Karras
and Ailas [2013] GPU BVH algorithm. The latter is executed on an NVIDIA GTX
Titan with 10 times more compute capabilities, while Bonsai with pruning only takes
60% longer to execute on a laptop CPU.
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