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Abstract - When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently
pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture,
and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean
values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed
probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that
reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of
confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization
techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO
developments show its efficiency and applicability in this context. So we present some recent structural engineering

applications demonstrate the efficiency of these developed RBDO methods.

Keywords: reliability-based design optimization, optimum safety factor, reliability analysis.

1.Introduction

Deterministic optimum designs obtained without
consideration of uncertainties could lead to unreliable
designs, therefore calling for Reliability-Based Design
Optimization (RBDO). It is the objective of Reliability-
Based Design Optimization (RBDO) to design structures
that should be both economic and reliable (Feng and
Moses 1986). However, the coupling between the
mechanical modeling, the reliability analyses and the
optimization methods leads to very high computational
cost and weak convergence stability (Kharmanda et al.
2001-2002). To overcome these difficulties, two points
of view have been considered. From a reliability view
point, RBDO involves the evaluation of probabilistic
constraints, which can be executed in two different ways:
either using the Reliability Index Approach (RIA) or
the Performance Measure Approach (PMA) (see Tu et
al. 1999; Youn et al. 2003-2005). The major difficulty
lies in the evaluation of the probabilistic constraints, which
is prohibitively expensive and even diverges for many
applications. However, from an optimization view point,
we have two categories of methods: numerical and semi-
numerical methods. For the first category, a double-
loop method (classical RBDO method) has been used to
solve RBDO problems. It leads to very high computational
cost and weak convergence stability. Fortunately, a
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hybrid method based on simultaneous solution of the
reliability and the optimization problem has successfully
reduced the computational time problem (Kharmanda et
al. 2002). However, the hybrid and improved hybrid
RBDO problems are more complex than that of deterministic
design and may not lead to local optima. For the second
category, an Optimum Safety Factor (OSF) method has
been proposed to compute safety factors satisfying a
required reliability level without demanding additional
computing cost for the reliability evaluation (Kharmanda
et al. 2004). However, the OSF method cannot be used
for all cases such as modal analysis. So a Safest Point
method has been proposed to deal with simple problems
for symmetric cases (Kharmanda et al. 2006). In this
paper, we extend the development of the SP method to
non symmetric cases and show the different RBDO
advantages relative to the DDO procedure. Next, we
apply numerical and semi-numerical method categories
on different structural engineering applications in order
to define the most suitable method for structural designers.
The numerical applications consist of three new
subjects: The first one is a recent application that shows
the advantage of the RBDO integration into biomechanics
area (orthopedics), the second one is to apply the new
developed method so-called SP method to free vibrated
composite aircraft wing for symmetric and non
symmetric displacement/frequency studies and the last
one is to study the RBDO using the OSF method under
the fluid-structure phenomena. The numerical results
allow us to conclude that the RBDO procedure is much
more advantageous than the DDO one because the DDO
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cannot control the required reliability level. The efficient
algorithm selection of RBDO leads to more economic
structures. Finally, the use of numerical methods needs
a much higher computing time than the semi-numerical.

2. Reliability Analysis

The title of paper should be bold-typed in Times font
with the size of 16 point. The author name should be
Times 10, and should be written in the order of the first
name and the last name. After the authors’ name, the
affiliation should follow in the order of email and web
site address, the department name, the institute name,
the city, and the country. It is not necessary to provide
the full postal address.

2.1 Formulation

In structural reliability theory very effective techniques
have been developed during the last 40 years to estimate
the reliability, namely FORM (First Order Reliability
Methods), SORM (Second Order Reliability Method)
and simulation techniques, see e.g. (Madsen and Friis
Hansen 1991, Ditlevsen and Madsen 1996). Here, we
consider two kinds of variables:

1. Design variables x: These variables are deterministic
and represent the control parameters of the mechanical
system (e.g. dimensions, materials, loads) and of the
probabilistic model (e.g. mean values and standard-
deviations of random variables) (Olhoff and Taylor
1983),

2. Random variables y: These variables can be
geometrical dimensions, material characteristics or applied
external loading. The uncertainties of each variable are
modeled by statistical information (Frangopol 1995).

According to a statistical modeling of the studied
random variable (force, material or geometrical parameter),
we approximate to select the suitable distribution law
(normal, lognormal, uniform, Weibull, Gumbel ). Next
the mean value and the standard deviation of the studied
random variable are necessary to do a probabilistic
transformation into a standard normalized space (u-
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Fig. 1. a) & b) are respectively the physical and normalized spaces.

space: Figure 1b). In this space a normalized vector denoted
u, can be calculated by: u=T(y) where T{(.) is the
probabilistic transformation function. For a given failure
scenario, the reliability index S introduced by Hasofer
and Lind 1974, is evaluated by solving a constrained
minimization problem:

min :d(u)

subject to : H(u) <0 (Pb1)

where u is the vector modulus in the normalized space,
measured from the origin (see Figure 1b). The minimum
distance d(u) is given by

f5E i

where n is the variable number. Here, the solution to
problem (1) defines the design point P*, see Figurel.b.
The resulting minimum distance between the limit state
function H(u) and the origin, is called the reliability
index f.

In general, the reliability index /8 can be obtained in
terms of:

p=-0"'(P) @)

where P, is the probability of failure and ® is the
cumulative density function for a given scalar value Z
can be formulated as follows:

z 7
1 =) . .
O(2)=— (e *dz, i=1,...,n with ze]-0,Z]
In many engineering applications, the evaluation of the
failure probability can be carried out in several ways:
numerical simulation techniques (Monte-Carlo), FORM,
SORM (for more details, see Ditlevsen and Madsen 1996).

2.2 Algorithm
The optimization algorithm of problem 1 is presented
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Fig. 2. Reliability index algorithm.

in Figure 2. The solution of this problem is carried out
in the normalized space (u).

1 Input the initial values of the variable vector u of
the studied model,

2 Evaluate the objective function d(u),

3 Calculate the limit state constraint H(u) <0,

4 Test the convergence constraint H(u) <0, if not
converged, update u and go to step 2, else, if converged,
stop.

3. Deterministic Design Optimization

In Deterministic Design Optimization (DDO), the system
safety may be taken into account by assigning safety
factors to certain structural parameters. Using these safety
factors, the optimization problem which is carried out in
the physical space (Figure 1a), consists in minimizing an
objective function f(x) (cost, volume of material) subject
to geometrical, physical or functional constraints gy(x) <0
in the following form:

min : f(x) subjectto: gux)<0, k=1,.,K(Pb3)

where x designates the vector of deterministic design
variables in a physical space (Figure 1a). The values of
the proposed safety factors principally depend on the
engineering experience, but, when designing a new
structure, we cannot pre-determine the real critical points,
and the choice of these coefficients may therefore be
wrong. Over the last ten years there has been an
increasing trend in analyzing structures using probabilistic
information on loads, geometry, material properties, and
boundary conditions. In order to evaluate the structural
safety level (see problem (1)), a reliability analysis must
be carried out without taking into account the safety
factor from problem (3). After having followed the
Deterministic Design Optimization (DDO) procedure
by a reliability analysis, it will be difficult to control the
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reliability level. So there is a strong need to integrate
the reliability analysis in the optimization. In the next
section, we show how this can be performed efficiently.
The integration of reliability analysis into engineering
design optimization is termed Reliability-Based Design
Optimization (RBDO). Two kinds of RBDO methods
are recently developed: numerical and semi-numerical
methods.

4. Numerical RBDO Methods

4.1 Classical method

4.1.1 Formulation

The classical RBDO problem is performed by nesting
the following two sub-problems:

1. Optimization sub-problem:

min f(x)
subject to gi(x) <0 ,k=1,..,K
Bxu) = S, (Pb4a)

The optimization sub-problem seeks to minimize an
objective function f{(x) subject to K associated constraints
24(x) <0 and to a required reliability constraint S(x,u)
> [, where x is the design variable vector and b, is the
target (or allowable) reliability index statistically computed
by equation (2).

2. Reliability sub-problem: Using problem (1), the
reliability index is determined by solving the minimization
problem:

ﬂ(x,u)=mim/2u?subject to H(u)<0

The limit state function H(u) =0 in the normalized space
is the image of g(x)=0, the most active associated
constraints (g,(x) < 0) in the physical space, see Fig. 1a.

(Pbdb)

4.1.2 Algorithm

The algorithm of classical approach consists of two
sub-problems presented in Figure 3, can be expressed
according to the following steps:

1 Input the initial values of the variable vector x of
the studied model,

2 Evaluate the objective function f(x),

3 Calculate the deterministic constraint g(x) <0 and
the reliability one S(x,u) > 5,

4 To calculate the reliability constraint B(x,u), input
the initial values of the variable vector u in sub-problem 2

5 Evaluate the limit state function H(u),

6 Calculate the reliability index £(u),

7 Test the convergence constraint H(u) <0, if not
converged, update u and go to step 5, else, if converged,
stop and go back to test the reliability constraint B(x,u)
> B, in sub-problem 1, if converged, stop or update
variables x, and go to step 2.

The classical solution procedure in two separate spaces
requires large computational time, especially for large-
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scale structures (Feng and Moses 1986). At each
iteration of optimization sub-problem (4a), we need to
evaluate the reliability constraint f(x,u) > £, that leads
to a structural reliability evaluation (4b), which is carried
out by a special optimization procedure in the normalized
space. Since very many repeated searches are needed in
the above two spaces to attend the convergence, the
computational time for such an optimization is a big
problem. Therefore, there is a strong motivation to develop
a simultaneous method that can be performed in a
single space (see Kharmanda et al. 2001, 2002).

4.2 Hybrid method

4.2.1 Formulation

In order to improve the numerical performance, a hybrid
approach has been proposed in Kharmanda et al. (2002). It
consists in minimizing a new form of the objective function
F(x,y) subject to a limit state as well as deterministic
and reliability constraints, i.e.,

min F(x,y)=/(x) - dp(xy)
subjectto  G(x,y) <0 ,k=1,..,K
g(x)<0
dp(x,y) = B, (Pb4a)

The minimization of the function F(x,y) is carried out in
the Hybrid Design Space (HDS) of deterministic variables
x and random variables y. Here, d4X,y) is the distance
in the hybrid space between the optimum point and the

[ ¥

/ Initial value x /

7 Hybrid Design Space — \

X
f’y-? Limit state decreasing
4 <

Y

\_Objem've Junction levels

\ XY

Fig. 4. Hybrid design space.

design point, dg(x,y) = d(u). Since the random variables
and the deterministic ones are treated in the same space
(HDS), it is very important to know the types of the
used random variables (continuous and/or discrete) and
the distribution law that has been used.

4.2.2 Algorithm

The algorithm of hybrid approach consists of a multi-
objective optimization problem. The algorithm provides
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\

B !
=
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g T Update u
= Y
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2
Yes

1]

Evaluate the function f{x) 2
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Eval h i s
wvalute the constraints =
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3]

3]

g

2

Q

Reliability analyses

3

g.(x)<0
Alx,u)z 5,

Fig. 3. Classical RBDO algorithm.
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the designer with all numerical information about the
objective function evolution and the convergence of all
(associated and reliability) constraints at each step while
the classical algorithm needs a separate (or an additional)
optimization process to evaluate the reliability constraint.
The considered objective function contains information
about the reliability level, and the required objective
function and considered the most active constraint
(dangerous failure mode) as an equality constraint to
satisfy. This multi-objective optimization problem presented
in Figure 4, can be expressed according to the following
steps:

1 Input the initial values of the variable vector x, and
y, of the studied model

2 Evaluate the objective function F(x,y),

3 Calculate the limit state function G(x,y), deterministic
constraints gx(x) and the reliability one S(x,y),

4 Test the convergence of constraints G(x,y) <0, A(X,y)
> [, if converged, stop or update x and y and go to step 2.

This single loop optimization method had reduced

the computational time by 70~80% relative to the classical
RBDO approach (Kharmanda al et. 2001-2003).

5. Semi-Numerical RBDO Methods

5.1 Optimum Safety Factor Method

5.1.1 Formulation

It is our aim that the safety factors should be independent of
the engineering experience. In fact the engineering experience
is based on experimental work, design knowledge, etc.
However, when designing a new type of structure, we
usually need some experimental background for proposing
suitable safety factors. Given that, sensitivity analysis
plays a very important role and can provide us with the

( START )

/ / Input initial value of x,v /

Calculate the function F(x,y)

T | Update x,y

< Evaluate the constraints

G(x). dp(x.y)

Hybrid method

G(x)=0
dp(x.¥)=5:

\

STOP

Fig. 5. Hybrid RBDO algorithm.
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influence of the parameters on the structure studied, we
will use this concept in the proper direction and combine
it with the reliability analysis. The main disadvantage of
the Deterministic Design Optimization (DDO) procedure
is that it may not satisfy an appropriate required reliability
level. Although we improve the reliability level of the
structure when using the hybrid RBDO, this approach
leads to a saving of computational time (which may be
then available for the reliability analysis). Thus, our
Optimum Safety Factor (OSF) approach consists in
using both sensitivity analysis and reliability analysis to
overcome the disadvantages of DDO and RBDO. For a
single limit state problem of » design variables,
equation OSF can thus be written in the following form
(Kharmanda et al. 2004):

0G
;i

03
oy,

i=1
Here, the sign = depends on the sign of the derivative,
ie.,

S=1xy-p, , i=l,...,n with y=g/m, (6a)

008,51 & 08, <1i=1,...m
a . Ji a X i

1 1

Using these safety factors, we can satisfy the required
reliability level and avoid the complexity of the problem.
For a multiple limit state problem with » design variables,
equation (6a) can thus be written as follows:

(6b)

_(/
S

Fig. 6. Design point modeling.
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ALz
Infeasible
Domain
P Pp i
Pon_ Hu)=0
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L J

Fig. 7. Optimum solution modeling.

Here, the sign + depends on the sign of the derivative, i.e.,
" 0G; " 0G;
—>085>1 & ) —<0S,<1
/:Zl Y 5 ; Y g

5.1.2 Algorithm

The algorithm of optimum safety factor approach consists
of a simple optimization problem to find the failure
point followed by calculation of the optimum safety factor
and finally reevaluation of the new model using the
safety factors. This optimization problem presented in
Figure 8 can be expressed according to the following steps:

1. Input the initial values of the variable vector y, of
the studied model,

2. Evaluate the objective function f(y),

3. Calculate the deterministic constraints G(y),

4. Test the convergence constraints G(y) <0, if converged,
stop or update y and go to step 2,

5. Compute the safety factors S; using equation (6).
Here, the derivatives of the limit state function are evaluated
at the design point,

6. Reevaluate the new model that presents the optimum
solution.

The Optimum Safety Factor (OSF) approach can be
easily implemented in three principal steps:

1. Determine the design point: we consider the
most active constraint as a limit state function G(y).
The optimization problem is to minimize the objective
function subject to the limit state and the deterministic
constraints. The resulting solution is considered as the
most probable failure point and is termed the design
point (See algorithm, steps: 1, 2, 3 and 4).

2. Compute the safety factors: in order to compute
these factors using equation (6), a sensitivity analysis of
the limit state function with respect to all variables is
required. When the number of the deterministic variables
is equal to that of the random ones, there is no need for
additional computational cost when the gradient calculation
is carried out during the optimization process of the

design point. If the number of the deterministic
variables is different from that of the random ones, we
need only evaluate the sensitivity of the limit state
function with respect to those random variables that are
not common with the deterministic ones (See algorithm,
step: 5).

3. Calculate the optimal solution: in the last step,
we include the values of the safety factors in the
computation of the values of the design variables and
then determine the optimum design of the structure (See
algorithm, step: 6).

Figure 7 presents a graphical illustration of the problem
for a simple case of only two variables. Here, the design
point is considered to be located in the origin of the
normalized space of u, and the limit state G(y) goes
through this point. The optimum solution is a point
found on the circle of radius f,, with its center located
in the design point. The limit state function cuts this
circle into two parts. One of these parts belongs to the
feasible design domain and the other one to the
infeasible domain. The optimal solution point has to be
in the feasible domain but we have here an infinite
number of points. In order to determine the exact position,
a sensitivity analysis for computation of the normalized
vector u is necessary. Equation (6) gives the exact
position of the optimal solution point satisfying the required
reliability level and using the sensitivity concept.

The OSF method has been successfully applied for
several examples (Kharmanda et al. 2003-2004). However,
for modal analysis, it has been applied for a special case
(Kharmanda et al. 2004), where the reliability-based
optimum solution was determined subject to a prescribed
eigen-frequency f,. But if the failure interval [f.f;] is
given, it is also very difficult to determine the safest
solution using the OSF method. So we have to develop
an efficient method to find the best point correspond to
the eigen-frequency for a given frequency interval.

5.2 Safest Point Method

5.2.1 Formulations

In the modal studies (Figure 9), in order to avoid the
failure domain, we consider a frequency interval [f,f;].
Here, the frequency of the vibrated structure should not
work in this interval. When an explicit description
displacement/frequency (/) is supplied to the designer,
it is easy to analytically define a suitable interval [f,, f;]
that corresponds to the safest structure that verifies the
displacement equality J, = J,. However, when we have
an implicit model, we need an optimization procedure
to determine the safest structure. We have two ways to
provide the required frequency constraints: The first way
is to supply the designer with an eigen-frequency value
as a constraint to be respected. Here, we consider a safest
interval as a probabilistic constraint. Then, the hybrid
method can be used with some implementation complexities
and leads to computing time problems (Kharmanda et
al. 2003), but the optimum safety factor method is
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simple to be implemented and to small computing time
(Kharmanda et al. 2004). However, the second way is
to supply the designer with a failure interval [f,.f;] as a
constraint and the eigen-frequency f, corresponding to
the safest position in this interval is needed a probabilistic
equality constraint (5, = f,). Here, the HM can be used
although its big implementation complexity and high
computing time consumption (Kharmanda et al. 2006 &
2007) but the OSF approach cannot be used for the
second data possibility. So there is a strong motivation
to develop a new technique that can overcome these
drawbacks. In this section, we develop a new method,
called Safest Point (SP) method. Now let us consider a
given interval [f,f;]. For the first shape mode, to get the
reliability-based optimum solution for a given interval,
we consider the equality of the reliability indices:

B,= B, with .= /i(u;’)2 and f,= /i(uf)z i=1,....n
= = (7)

Here, we distinguish between two cases respectively: a
general one concerns a non symmetric relationship of
displacement/frequency (figure 9) and a special one
corresponding to symmetric relationship case (figure 10).

General case: Non symmetric curve: ufi—u? or |uf‘:tuf‘
The reliability-based optimum structure under free
vibrations for a given interval of eigen-frequency is
found at the safest position of this interval where the
safest point has the same reliability index relative to
both sides of the interval. A simple method has been

Reliability-Based Design Optimization using Semi-Numerical Strategies.... T

Failure Domain

Safety Domain

By By

5, 7, f, fiHz]

Fig. 9. Non symmetric displacement/frequency relationship.

proposed here to meet the safest point requirements
relative to a given frequency interval. The basic principle
is to decompose the RBDO problem into three simple
optimization problems.

Problem 1:

- The first problem consists in minimizing the objective
function of the first structure subject to the frequency f,
constraint as follows:

min 1f(Ya)

subject to : freq“(y.) —f. <0 (Pb8a)

Problem 2:

- The second problem consists in minimizing the
objective function of the second structure subject to the
frequency f;, constraint as follows:

min Lf(Yp)

subject to : freq’(y;) —f, <0 (Pb8b)

Problem 3:

- The third is to minimize the objective function of
the third model subject to the equality reliability constraints
and the boundary frequency interval as follows:

min f(x)
subjectto : £,- £=0

and 1/, < freg(®) <f;

(Pb8c)

Special case: Symmetric curve: u; = —uf or uf‘ = |u,b‘

When the relation displacement/frequency is symmetric,
the normalized variables from both sides are equal, we
get the following procedure:

Problem 1:

- The first problem consists in minimizing the objective
function of the first structure subject to the frequency f,
constraint as follows:

min 1 f(Ya)

subject to : freq“(y.) —f. <0 (Pb9a)
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Failure Domain

Safety Domain

f,  fIHZ]

Fig. 10. Symmetric displacement/frequency relationship.

Problem 2:

- The second problem consists in minimizing the objective
function of the second structure subject to the frequency
f» constraint as follows:

min Lf7(Yb)

subject to : fieq®(ys) — £, < 0 (Pbob)

( START )

To verify the equality (7), we propose the equality of
each term. So the normalized vector u can be written as:

a_ b i=1
u,=—u; ,1=1,...,n

According to the distribution law, the mean values are given
by:

Yiox yix
i i iMoo
, or ,i=1,...n

% o

a b
Yi i Y=,

i O;

To obtain equality between the reliability indices (see
equation 7), the mean value of variable corresponds to
the structure at £,. So for normal distribution, the mean
values of safest solution are located in the middle of the
variable interval [y, yf ] as follows:

This equation shows that when using the symmetric
relationship displacement/frequency, we get mathematically
the safest position in the middle of the given interval.

-

Evaluate the objective f(ys

vy
/ Input the initial v, / / Input the initial vy /

Evaluate the objective £(yy)

Evaluate the constraint freg”

Compute Design Point a

{ ) e

) e

Evaluate the constraint freg’

Compuie Design Point b

/ Input initial x, /
Y

Evaluate the objective f*(xp)

< 7

Evaluate the constraint £

Compute Oplinnn Solution

Fig. 11. The safest point algorithm for non symmetric case.
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5.2.2 Algorithms

General case: Non symmetric curvez/; # —u? or (qu‘:tuf‘)

The SP algorithm for non symmetric case (figure 11)
can be expressed by the three following sequential
optimization steps:

1. Compute the design point a: The first optimization
problem is to minimize the objective function subject to
the first bound of the frequency interval f,. The resulting
solution is considered as a most probable point a.

2. Compute the design point b: The second optimization
problem is to minimize the objective function subject to
the second bound of the frequency interval f;,. The
resulting solution is considered as a most probable point b.

3. Compute the optimum solution: The third optimization
problem is to minimize the objective function subject to
the constraint of reliability index equality. The resulting
solution corresponds to the eigen-frequency f,, and
verifies the reliability index equality relative the bounds
of the frequency interval /£, 1,/

b
.

Special case: Symmetric curve: u; = —uf or |uﬂ =u;
The SP algorithm for symmetric case (figure 12) can

‘ START }
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be expressed by the three following steps (two sequential
optimization steps and an analytical evaluation one):

1. Compute the design point a: The first optimization
problem is to minimize the objective function subject to
the first bound of the frequency interval f,. The resulting
solution is considered as a most probable point a.

2. Compute the design point b: The second optimization
problem is to minimize the objective function subject to
the second bound of the frequency interval f;. The resulting
solution is considered as a most probable point b.

3. Compute the optimum solution: Here, we analytically
determine the optimum solution of the studied structure
using equation (6) for linear distribution case. This
solution corresponds to the eigen-frequency f;, and verifies
the reliability index equality relative the bounds of the
frequency.

In order to evaluate the three optimization problem on
the given interval [f,, /3], we determine three structure
positions: The first structure is located at the first bound
. and the second one presents the best safety location f,
(in the middle of the interval for symmetric case) and
the last one the second bound of the interval f;. To
optimize the three structural geometries corresponding
to the three frequencies £, f, and f;, we use three simple

-
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y ¥
/ Input the initial v, / / Input the initial v /

Compute Design Point a

L

Yes

“ -
¥ ¥ =

Evaluate the objective f(ys) Evaluate the objective f(yy) <
Update y, Update yy &

. . , 2

Evaluate the constraint freg? Evaluate the constraint freq” ":
S

n‘—")_'

,/'

v

/ Input y," & yp' /

Evaluate analytically the vector x

!

Compute Optimum Solution

Evaluate the function /(x) & the frequency freg"

N v

STOP

Fig. 12. The safest point algorithm for symmetric case.



10 International Journal of CAD/CAM Vol. 9, No. 1, pp. 1~16

sequential optimization processes for general case (non
symmetric case) and two simple sequential optimization
processes followed by an analytical expression for the
safest position in the interval while the hybrid method
leads to complex optimization problem.

6. Numerical Applications

The interested reader can refer to a recent work of
Chateauneuf and Aoues (2008) for some analytical RBDO
examples such as bracket and truss structures. However,
in this section, three structural engineering examples are
presented to illustrate the RBDO application and advantages.
The following applications are carried out using ANSYS
as a Finite Element Software. All optimization process is
carried out using a zero order method in ANSY'S optimization
tools. This method uses curve fitting for all dependant
variables. The gradient evaluation is also carried out by
using ANSY'S optimization tools. For simplicity, we consider
that all random variables follow the normal (Gauss)
distribution law and the standard deviations are considered
as proportional of the mean value of the random variables.

6.1. Static analysis: Optimization of an inter-vertebral
disk

In the first application, we demonstrate two advantages:
an improvement of the optimum value of the studied
objective function and the computing time reduction
when using the RBDO model relative to the DDO one
for the same reliability level.

6.1.1 Problem description

The dimensions of this studied disk are DI =50,
D2=46, D3=40 and H=10 mm as illustrated in Figure
13b. The material proprieties are Young’s modulus and
Poisson’s ratio as follow: £ = 100,000 MPa and v=10.2.
The yield stress is: o, = 75MPa and the global safety
factor is: Sf=1.5. Two optimization processes are realized:
Deterministic Design Optimization (DDO) and Reliability-
Based Design Optimization (RBDO). The dimensions
D1 and D2 are regrouped in a random vector y. The
mean values m; of the random variables y; are regrouped in

Intervertebral Disc

a deterministic vector x and the standard deviations are
considered as proportional of the mean values: ;=
0.05m;,i=1,2.

6.1.2 Optimization procedures

1-DDO procedure
In the DDO procedure, it is the objective to minimize
the volume subject to the maximum stress constraint as:

min  Volume(mp,, mp,)

subjec to Omax(Mp1, M) < 0y, = 0,/ Sf (Pb10a)
The associated reliability evaluation without consideration
of the safety factor can be written in the form:

min d(Z/lDl, HDQ)

subjec to 6, — Omax (D1, D2; upy, upy) <0 (Pb10b)
In (10a), we take the value of the global safety factor
applied to the yield stresses to be s,= 1.5. This way the
allowable stress will be: &;, =50 MPa. After having optimized
the structure according to (10a), the resulting volume
was found to be Vppo =388.31 mm’. The reliability index
was found to be: fppo=2.38 that correspond to a
probability of failure: Py=0.9% (see table 1).

2-RBDO procedure

The RBDO by OSF includes three main steps:

1- The first step is to obtain the design point (the
Most Probable Point). Here, we minimize the volume
subject to the design constraints without consideration
of the safety factors. This way the optimization problem
is simply written as:

min  Volume(D1, D2)
subjec to o (D1, D2) < o, (Pbl1)
The design point is found to correspond to the
maximum von Mises stress Opa.x= 74.819 MPa that is
almost equivalent to the given yield stress o, = 75 MPa.
2- The second step is to compute the optimum safety
factors using (6). In this example, the number of the

D1

D3

Fig. 13. Inter vertebral disk: a) disk position in the spine, b) dimensions and ¢) meshing and boundary conditions.
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Fig. 14. Optimal resulting stress distributions: a) Design point, b) DDO solution and ¢) RBDO solution, respectively.

deterministic variables is equal to that of the random
ones. During the optimization process, we obtain the
sensitivity values of the limit state with respect to all
variables. So there is no need for additional computational
cost. Table 2 shows the results leading to the values of
the safety factors, namely the sensitivity results for the
different limit state functions.

3- The third step is to calculate the optimum solution.
This encompasses inclusion of the values of the safety
factors in the values of the design variables in order
evaluate the optimum solution.

Figures 14a,b and ¢ show the stress distribution of the
resulting design point and the DDO & RBDO solutions,
respectively. The corresponding numerical results are
presented in Table 1 where the advantage of the RBDO
model using Optimum Safety Factor (OSF) strategy relative
to the Deterministic Design Optimization (DDO) procedure
is shown. Here, we obtain for the same reliability level
an improvement of the objective function without additional
computing time. In the DDO procedure, two optimization
problems are realized (10a) and (10b) while to solve the
RBDO problem using OSF, we need a single optimization
problem to find the corresponding design point. The
reduction of the computational time is almost 55%. The
calculation the OSF is analytically carried out followed
by a final reevaluation of the optimum solution.

6.2 Modal analysis: Optimization of an aircraft
wing

In the second application, we compare between the
safest point method and the hybrid one relative to the
computational time.

Table 1. DDO & RBDO results of the inter-vertebral disk.

Optimum Solution

Parameters ~ Design Point
DDO RBDO
D1 30.092 32.614 34.002
D2 38.021 41.814 37.87
Volume 358.24 388.31 369.68
Onmax 74.819 49.981 33.55
B - 2.38 2.38
P¢ 50% 0.9% 0.9%
Time(S) 31 69 31
Table 2. Optimum safety factors
Parameters dG/dD; u Sh
Dl -9.975 -1.546 0.885
D2 0.7304 -1.814 1.004

6.2.1 Problem description

The wing is uniform along its length with cross
sectional area as illustrated in Figure 6a. It is firmly
attached to the body of the airplane at one end. The
chord of the airfoil has dimensions and orientation as
shown in Figure 6. The wing is made of tow different
low density polyethylene with the following properties:

Material 1 (Mat 1):

Young’s modulus

Poisson’s ratio :v=03

Density :d = 83E-5 1bf-sec2/in4

Effective plate thickness: t =0.025 m

Material 2 (Mat 2):

Young’s modulus

Poisson’s ratio v =03

Density :d = 8.3E-5 1bf-sec2/in4

Effective plate thickness: t =0.025 m

Assume the side of the wing connected to the plane is
completely fixed in all degrees of freedom. The wing is
solid and material properties are constant and isotropic.
The objective is to find the eigen-frequency for a given
interval [16,18]Hz, that is located on the safest position
of this interval. So the first structure corresponds to the
first frequency value of the given interval f, =16 Hz,
and the third structure corresponds to the last frequency
value of the given interval f,= 18 Hz. However, the
second structure corresponds to the unknown frequency
value f,= ? Hz, which must verify the equality of reliability
indices: g, = f,(see Figures 9 and 10). The dimensions
Al, Bl, CI and D] are regrouped in a random vector y*
corresponding to the first frequency value of the given
interval £,. The dimensions A2, B2, C2 and D2 are regrouped
in a random vector y° corresponding to the last frequency
value of the given interval f;. The mean values m; of the
random variables are regrouped in a deterministic vector x
and the standard deviations are considered as proportional
of the mean values: 6;=0.1m;, i = 1,...,4.

: E=18.000 psi

: E =38.000 psi

6.2.2 Optimization procedures

Here, we can deal with two reliability-based design
optimization methods: hybrid and safest point methods.
The hybrid method (HM) simultaneously optimizes the
three structures but the safest point method consists in
optimizing three simple problems. So we distinguish
two cases: u; # —u; and u;= —u? : as follows:

Case 1: v # —u’ or || = |’
1- RBDO by HM: We minimize the composite form
of the objective function subject to the different frequencies

constraint and the reliability one as follows:




12 International Journal of CAD/CAM Vol. 9, No. 1, pp. 1~16

Fig. 15. Aircraft wing section and materials.

i\ Failure Domain

AT

Fig. 16. Aircraft wing optimization models for both cases.

min: Vol (m,...,mp). dp (Aas--sDastM gs--.,Mp).-
dﬂb(Ab,...,Db,mA,...,mD)

Sl.lb_]eCt to: dﬂa(Aa,...,Da,mA,...,mD) —dﬂb(Ab,...,Db,mA,...,mD) =0

:ﬁeqa(Aa,---,Da) _ﬁl <0

: freq" (Apy...Dp) = £, <0

2- RBDO by SP: We have three simple optimization
problems:

- The first is to minimize the objective function of the
first model subject to the frequency f, constraint as
follows:

(Pb12)

min : Vol (Agy-..,Dy)

subjec to : freq(Agy-..,Da) —f2 <0 (Pbl3a)

- The second is to minimize the objective function of
the second model subject to the frequency f, constraint
as follows:

min : Vol (Agy-..,.Dy)

subjec to : freq(Agy-...Da) —f2 <0 (Pb13b)

- The third is to minimize the objective function of the

third model subject to the equality reliability constraints and
the boundary frequency interval as follows:

min : Vol (my,...,mp)

Sllb_]ec to :ﬂz(Aa,---yDa, mA,...,mD) - ﬂb (Ab,...,Db, mA,...,mD) =0

and [ <freq"(m,...,mp) <f, (Pb13c)

Case2: u'=—u or|uf|=|u’
1- RBDO by HM: We minimize the composite form

of the objective function subject to the different frequencies

constraint and the reliability one as follows:

min: Vol,,(mA,...,mD). d/;a(Aa,...,Da,mA,...,mD).
dﬂb(Ab,...,Db,mA,...,mD)

subject to: dﬁa(Aa,...,Da,mA,...,mD) —dﬂb(Ab,...,Db,mA,...,mD) =0
: ufi (AaamA) + uZ(AbamA) =0
: u% (BaamB) + u%(Bb,mB) =0
:u(Come) + u{ Cpimc) = 0
: uaD(Da,mD) + ug(Db,mD) =0
freq®(AgsesDy) — 2 <0
: freq®(Ap,....Dy) — £, < 0

2- RBDO by SP: We have two simple optimization problems

(Pb14)
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and a model evaluation:

- The first is to minimize the objective function of the
first model subject to the frequency f, constraint as
follows:

min : Vol (Agy-..,Dy)

subjec to :freq“(Agy....Ds) — f2 <0 (Pbl5a)
- The second is to minimize the objective function of

the second model subject to the frequency f, constraint

as follows:

min . VOlb(Ab,...,Db)
subjec to :fieq’(Ap,...,.Dp) — f, <0 (Pb15b)
- The model leads to analytically compute the mean
values corresponding to the frequency f,.
For normal distribution, we get:

m At m _B.*B, m _CtGy and m _DatDy
A ) 5 B 1 5 C P D 2
(Pb15¢)

That leads to Vol (my,...mp) and f, <freq"(mg,...,mp).
Table 3 shows the results of the hybrid and SP methods
when considering a given interval [16,18]Hz. The value
of f, presents the equality of reliability indices. The SP
method reduces the computing time relative to the hybrid
method by 85% for the non symmetric case and by 91%
for the symmetric one. The advantage of the SP method
is simple to be implemented on the machine and to define
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the eigen-frequency of a given interval and provides the
designer with reliability-based optimum solution with a
small tolerance relative to the hybrid method. So this
method can be also a conjoint of the OSF method. In
the hybrid problem (14), we need a high computing
time (1920 seconds) because of the big number of
optimization variables (deterministic and random vectors)
while the SP method needs a small computing time
(280 seconds). Furthermore, the increase of constraints
number relative to hybrid problem (15) led to more
computing time consumption (2700 seconds) than the
required computing time when using the SP method
(230 seconds). Thus, there is a strong need to use the
SP method that has good following advantages: it is
simple to be implemented on the machine, can define
the eigen-frequency of a given interval and provides the
designer with reliability-based optimum solution with a
small tolerance relative to the hybrid method. So, this
method can be also a conjoint of the OSF method.

6.3 Harmonic analysis: Optimization of a beam
under fluid-structure interaction

In the third application, we show that the RBDO
procedures can satisfy a required reliability level relative to
the DDO procedure.

6.3.1 Problem description

Fluid—structure interaction phenomena are often roughly
approximated when the stochastic nature of a system is
considered in the design optimization process, leading
to potentially significant epistemic uncertainty. In this
application, we use the OSF and hybrid methods to

Table 3. RBDO results of the aircraft wing for symmetric and non symmetric cases

» . Safest Point Method Hybrid Method
Parameters Initial design - - - -
Non symmetric Symmetric Non symmetric Symmetric
A 0.04 0.03948 0.04028 0.03960 0.04204
B 0.05 0.04138 0.04046 0.04758 0.04664
C 1.00 0.98826 0.95020 0.98815 0.9979
D 0.425 0.47733 0.46234 0.41764 0.42683
Al 0.02 0.02730 0.02730 0.02944 0.02639
Bl 0.02 0.02004 0.02004 0.02531 0.02615
Cl 0.9 0.90021 0.90021 0.91867 0.90971
D1 0.5 0.49983 0.49983 0.48806 0.49124
A2 0.06 0.05346 0.05346 0.05688 0.05739
B2 0.08 0.06088 0.06088 0.06386 0.06669
C2 1.1 1.0002 1.0002 1.0581 1.0921
D2 0.35 0.42485 0.42485 0.37862 0.36206
FA 15.60 16.001 16.001 16.100 16.100
FB 18.55 17.999 17.999 17.903 17.908
FN 16.91 16.814 16.920 16.796 16.874
volume 0.334 0.280 0.279 0.310 0.320
Time(S) e 280 230 1920 2700
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|
Fig. 17. Studied plate layers.

Structure
Interface
Fluid

I

Fig. 18. Meshing model of fluid-structure interaction.

Table 4 Plate dimensions.
Variables T1 T2 T3 a b
Dimension 25 50 25 2000 1000

integrate this phenomenon into reliability-based design
optimization. The studied tri-material plate structure is
excited by a harmonic force (0-500HZ) considering the
fluid-structure interaction phenomenon. The simplified
model is presented in Figure 17. A rectangular plate
consists of three layers fixed on the four corners. Each
layer has a thickness as: 7;, i = I, 2, 3 (see table 4).
The material properties: £; (Young’s modulus), p; (volume
mass), v; (Poisson’s ratio) and G;; (shear modulus) are
presented in Table 5. This rectangular plate is obscure
in the fluid (air) being perfect, compressible, non
rotational and initially in rest. Its volume mass and
celerity of sonorous waves are respectively: or = 1.2
Kg/m® and ¢ = 340 m/s.

The meshing model presented in Figure 18 is carried
out for both structure and fluid: 200 Shell81 elements
(bi-dimensional linear shell element) and 1600 Fluid30

The three shape modes of the plate and of the acoustic
cavity are respectively presented in Figures 20 and 21.
To optimize this structure, we consider the stress von
Mises and the interior noise level inside the acoustic
cavity as constraints. The target (or allowable) constraint
of acoustic comfort inside of the cavity is: P,=90 db
an]\(}z the yield stressl\%s for each layer are: G;W ' =48 MPq,
o, = 18 MPa, o, = 42 MPa. Table 6 presents the
probabilistic model parameters. Two optimization procedures

AMPL ITUDE

50 140 b1 0 410 500
s 1ss s I65 455

Fig. 19 Response of the acoustic pressure inside the cavity.

3D

Fig. 20. Three first shape modes of the plate.

Fig. 21. Three first shape modes of the acoustic cavity.

Table 6. Probabilistic model parameters

Parameter Initial value Mean values Standard-deviation

. g . . . . T1 (mm 0.025 mm o
elements (tri-dimensional linear acoustic fluid element). () rry () a
Figure 19 presents the acoustic pressure inside the 72 (mm) 0.050 mz2 (mm) on
cavity in relation with the frequency interval [0-S00]HZ. 73 (mm) 0.025 my; (Mm) or
Table 5 Material proprieties
Parameter En=Es Exn Gi,=Gyy Gi3 Vi2= V13 P 0
Layer 1 200 1.0 40 2.0 0.3 2000 0/90
Layer 2 100 1.0 15 2.5 0.1 50 -
Layer 3 150 1.0 15 2.5 0.2 1400 90/0
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can be carried out: DDO and RBDO.). The dimensions
T1, T2 and T3 are regrouped in a random vector y. The
mean values m; of the random variables y; are regrouped
in a deterministic vector x and the standard deviations are
considered as proportional of the mean values: ;=0.1 m,
i=1..,3

6.3.2 Optimization procedures

1-DDQ procedure

In the DDO procedure, it is the objective to minimize
the volume subject to the maximum stress constraint as

min : Volume(myp,mp,mzs)
subjecto : orr (myympmp) < o
and :P(myy,mp,myps) < P, (Pbl6a)

The associated reliability evaluation without consideration
of the safety factor can be written in the form
mm d(un,un,un)

subjec to O'yM omaX(Tl,D,TB,un,un,uB) <0
In (20a), we take the value of the global safety factor

Table 7. DDO and RBDO results

) DDO RBDO Procedures
Variables -
Procedure  Hybrid Method ~ OSF Method
71 (mm) 51.42 5245 5142
12 (mm) 22.57 22.69 22.57
73 (mm) 74.49 74.73 74.49
o) (MPa)  47.966 47.009 47.966
o) (MPa)  27.998 27.999 27.998
o) (MPa) 41275 41.075 41275
iz, (mm) 52.59 62.29 62.73
mr, (mm) 28.69 29.97 29.45
s (mm) 70.82 89.02 88.52
O'maX(MPa) 40.001 34.585 33315
G2 (MPa) 23286 23.095 21.869
o MPa) 34261 33.663 26.637
B 2.76 335 335
P (db) 76 88,3 89,5
P, 0.3% 0.04% 0.04%
Volume (mni’) 3042127 3625621 3616843
Time () 9332 28670 9236

Table 8. Sensitivities of limit state functions and optimum safety
factors

Parameters dG/dT1

dG\/dT2  dGys/dT3 Sy

TI —-0.4159 -0.0273 -0.0895 0.8198
12 -0.3104 —-0.2100 —0.3765 0.7662
T3 —-0.0370 —0.0403 —0.3348 0.8415
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applied to the yield stresses to be Sf 1 .25. This way the
allowable stresses will be: UM = 0' "/ Sy After having
optimized the structure accordmg to (20a), the resulting
volume was found to be V,po= 3042127 mm’. The reliability
index was found to be:fppo = 2.76 that correspond to a
probability of failure: P,=0.3% (see table 7).

2-RBDO procedures

RBDO by HM

The classical method implies very high computational
cost and exhibits weak convergence stability. So we use
the hybrid method to satisfy the required reliability level
(within admissible tolerances of 1%). In the hybrid
procedure, we minimize the product of the volume and
the reliability index subject to the limit state functions
and the required reliability level. The hybrid RBDO
problem is written as

min Volume(mn,mn,myg) dﬁ(ﬂ’ln,mn,mB,Tl 2 73)
max(memTZ’mTBaTl 2 B) = 6

: P(mpy,mpy,mp3) < P,
and sddmp,mp,mps,T1L,T2,T3) >

subjecto:

(Pb17)

RBDO by OSF
The RBDO by OSF includes three main steps:

1- The first step is to obtain the design point (the
Most Probable Point). Here, we minimize the volume
subject to the design constraints without consideration
of the safety factors. This way the optimization problem
is simply written as:

min Volume(Tl 2 73)
subjecto : max(Tl 12,73) < 0'

and  :P(T1,I2,T3)<P, (Pb18a)

The design point is found to correspond to the maximum
von Mises stresses Uﬁﬁx =47.966, (ngx =27.998, oﬁx
41.275 MPa that is almost equivalent to the given yield
stresses.

2- The second step is to compute the optimum safety
factors using (6). In this example, the number of the
deterministic variables is equal to that of the random
ones. During the optimization process, we obtain the
sensitivity values of the limit state with respect to all
variables. So there is no need for additional computational
cost. Table 8 shows the results leading to the values of
the safety factors, namely the sensitivity results for the
different limit state functions.

3- The third step is to calculate the optimum solution.
This encompasses inclusion of the values of the safety
factors in the values of the design variables in order
evaluate the optimum solution.

In the DDO problem (20), we cannot control the
required reliability levels but when using the RBDO
procedures (HM and OSF), the target reliability index is
satisfied. For the computational time, the solution of the
hybrid problem (21) needs a high computing time
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(28670 seconds) because of the big number of optimization
variables (deterministic and random vectors). However,
using OSF, we need only a small computing time (9236
seconds). The reduction of the computing time is
almost 68%. Furthermore, the RBDO using OSF does
not need additional cost computing time relative to
DDO (9332 seconds).

7. Conclusion

For the static analysis, it has been demonstrated the
advantages of the RBDO procedure relative to the DDO
one. The first advantage is to improve the optimum
value of the objective function and the second advantage is
that the RBDO using OSF contains only one single
optimization process to define the design point but the
DDO procedure needs two optimization processes: the
first to compute the optimal solution using the global
safety factor and the second is to compute the
corresponding reliability index. This way the RBDO
using OSF allows reducing the computing time.

For modal analysis, the hybrid method has been
applied for symmetric and non-symmetric cases of a
structure performing free vibrations, where the reliability-
based optimum solution was determined subject to a
prescribed eigen-frequency f,. But if the failure interval
[f..fs] is given, we cannot determine the reliability-
based optimum solution using optimum safety factor
method and the hybrid necessitates a complex procedure
to optimize three structures simultaneously to get the
equality between reliability indices. The semi-numerical
method called Safest Point (SP) method is very suitable
for the modal cases because of its simple implementation
and small computing time (Kharmanda et al. 2006).

For harmonic analysis, we first demonstrate that the
DDO procedure may lead to low or high reliability
levels because it necessitates a proposition of a global
safety factor depending on the engineering experience
(cannot control the reliability levels). However, all
methods of RBDO respect the required reliability level.
Comparing the RBDO methods, it has been demonstrated
that the classical approach needs a high computing time
relative to the hybrid method and has weak convergence
stability (see Kharmanda et al. 2001, 2002). When saving
the computational time or/and needing simple implementation,
the OSF method is the best approach to be used.

As a general conclusion, the DDO is simple to
implement but it has two kinds of optimization variables
x and u and also needs two optimization procedures:
the first determines the optimal solution using safety

factor, and the second yields the value of the reliability
index. Note that DDO cannot perform design subject to
a required reliability level. RBDO methods satisfy the
required reliability level but they are different at computing
time, convergence stability, simplicity implementation,
improvement of objective function value, kind of variables,
suitable uses. The developed semi-numerical RBDO
methods can be considered as practical tools for designers.
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