
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Cognitive Load Drivers in Large Scale Software Development

Helgesson, Daniel; Engström, Emelie; Runeson, Per; Bjarnason, Elizabeth

Published in:
2019 IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE)

DOI:
10.1109/CHASE.2019.00030

2019

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Helgesson, D., Engström, E., Runeson, P., & Bjarnason, E. (2019). Cognitive Load Drivers in Large Scale
Software Development. In 2019 IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE) IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/CHASE.2019.00030

Total number of authors:
4

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/CHASE.2019.00030
https://portal.research.lu.se/en/publications/b05508e2-632f-4d0a-b2d5-7d48c9c1ac20
https://doi.org/10.1109/CHASE.2019.00030

Cognitive Load Drivers in Large Scale Software
Development - Preprint

Daniel Helgesson
Dept. of Computer Science

Lund University
Lund, Sweden

daniel.helgesson@cs.lth.se

Emelie Engström
Dept. of Computer Science

Lund University
Lund, Sweden

emelie.engstrom@cs.lth.se

Per Runeson
Dept. of Computer Science

Lund University
Lund, Sweden

per.runeson@cs.lth.se

Elizabeth Bjarnason
Dept. of Computer Science

Lund University
Lund, Sweden

elizabeth.bjarnason@cs.lth.se

Abstract—Software engineers handle a lot of information in
their daily work. We explore how software engineers interact with
information management systems/tools, and to what extent these
systems expose users to increased cognitive load. We reviewed the
literature of cognitive aspects, relevant for software engineering,
and performed an exploratory case study on how software engi-
neers perceive information systems. Data was collected through
five semistructured interviews. We present empirical evidence of
the presence of cognitive load drivers, as a consequence of tool
use in large scale software engineering.

Index Terms—Cognition, Cognitive Load, Software Develop-
ment, Software Engineering, Software Development Tools, Soft-
ware Engineering Tools, Industrial Case Study

I. INTRODUCTION

Software engineering is a socio-technical endeavour where
the technical side of the phenomena seems to be more studied
than the social side [1], and as a consequence knowledge of
a cognitive/ergonomic perspective of software development,
and the tools associated with these activities, appears rather
small. Further, we see no clear indications of a significant
impression on the software engineering community in terms
of understanding the cognitive work environment of software
engineers [2] [3].

In a 2002 dissertation, Walenstein observed that there is
a need for cognitive reasoning in the design process of
software development tools, and further that there has been
little research done in the area [2], a claim largely substantiated
by Lenberg et al. [1].

More recently, in a 2015 report ’Digital Work Environ-
ment’, Gulliksen et al. made an effort to analyse the societal
consequences of large-scale digitalisation of human labour,
in general [4]. In the report the authors present a literature
survey, providing updated insight into the research area. The
survey found only 36 relevant articles. In addition, the authors
also present a taxonomy of ’Cognitive work environment
problems’.

In this study we aim to explore, and establish, a broader
understanding of the cognitive work environment of software
engineers and the cognitive dimensions of the tools used.
Specifically, we aim to explore cognitive load, induced on
users by information systems or tools. We present results from
an exploratory industrial case study based on thematic analysis
of interviews, as well as a literature overview. Our contribution

lies in presenting in vivo observation of cognitive problems
associated with tool use in large-scale software engineering.

II. RESEARCH QUESTIONS

The purpose of this study is to gain insight into the
problem domain of cognitive load, primarily as a consequence
of tool use, in large scale software development. Hence it
is exploratory in nature, and focuses on two tools central
for communication and knowledge management at the case
company.

The overall exploratory purpose is refined into two research
questions:
RQ1 Which types of cognitive load drivers can be observed

in large-scale software engineering, primarily as a con-
sequence of tool use?

RQ2 How do software engineers perceive the identified cog-
nitive load drivers in their digital work environment?

The research questions are anchored in software engineering
and cognitive science literature, and addressed by interviewing
practitioners. The first question uses the cognitive literature as
a lens, while presenting empirical observations from the inter-
view material. The second question reports the interviewees’
perception of problems found in RQ1.

III. METHOD

We conducted a four stage case study, using a flexible
design [5]; consisting of literature review, interview study,
extended interview study, and knowledge synthesis. To mature
the knowledge, we iterated reviewing literature, conducting
interviews, transcribing and analysing data. Figure 1 describes
the study.

The case company is an international corporation, the
studied division develops consumer products in the Android
ecosystem. The software is embedded in handheld devices.
The studied development site of the company has 1000 em-
ployees and developers work in cross-functional teams using
an agile development process. The development environment
is primarily based on the toolchain associated with the Android
ecosystem.

The case study is informed by five interviews. We started
with three interviews of people from a test team – a test
manager (i1), and two testers (i2, i3). After an initial analysis

Objectives/
Research Questions

Knowledge/Theory

Methodology

- unit of analysis

- data collection

- data analysis

Validation

Cognitive dimensions

Review literature

Cognitive load drivers

SW Testers

Interview 1-3

Transcribing data

Initial codes

Literature review Exploratory interview study Extended interview study Knowledge synthesis

Tool architect

Interview 4

Analysing data

Review literature TheoryThemes

Interview 5

Transcribing data Analysing data

Triangulation

Refined themes

SW developer

Cognitive dimensions in SE

Fig. 1. A description of how the case study evolved in terms of objectives, knowledge and research activities

of the of interviews, one additional interview (a tool architect,
i4) was conducted to to provide background. A final interview
(a software developer, i5) was added to validate the findings.
All interviews were recorded, transcribed by the first author,
then iteratively coded and analysed by the authors collectively.

The first three interviews were semistructured, following an
interview guide1. These three interviews were conducted by
the first and fourth authors collectively. The fourth interview
was specifically centered around the two most discussed tools
of interviews 1-3. The main architect of these tools was
selected for this interview, due to being able to provide
background on the development history, as well as rationales
on certain design decisions. This interview was conducted
by the first author. The fifth person interviewed was selected
as he had worked with the defect management system since
its introduction ten years ago. This interview followed the
protocol of the first three. The interview was conducted by
the first author.

The data was analysed as outlined in Figure 1, using
thematic analysis. A set of initial codes were identified during
the transcription of the first three interviews by the first author.
These codes were then used to create a set of themes in two
iterations. The fourth and fifth interviews were used to validate
and extend the initial set of interviews. The themes were then
refined, and reapplied to all five interviews to extract infor-
mation on cognitive load drivers. The main iterations of the
thematic analysis were executed by three authors collectively.

The classification of cognitive load drivers was then vali-
dated against the classification presented by Gulliksen et al.

IV. LITERATURE OVERVIEW AND ANALYSIS

A. Purpose and strategy
The purpose of our literature overview is twofold as we

aim to: i) provide an overview of cognitive research, relevant
and related to software engineering; and ii) present qualitative
observations from relevant cognitive literature, not specifically
targeting software engineering, that can serve as a step stone
for further research. It should be noted that we, by no means,
claim that this is a formal, nor systematic, literature study [6].
What we present are, essentially, qualitative findings from
an exploratory literature study, executed as a part of an
exploratory case study.

1see appendix for details

B. Exploratory survey of cognitive research related to Soft-
ware Engineering

In her keynote at ASE 2018 [7], Murphy presented an
updated example of cross industrial/academic software engi-
neering research bordering on cognition, which emphasizes
the relevance of context in software engineering. Arguably,
the most researched cognitive aspect of software engineering,
historically, is program comprehension – a comprehensive
overview of past, current and future research directions of
program comprehension is presented by Siegmund [3], while
Sharafi et al. systematically reviewed software engineering
research, that use eye-tracking [8]. Human aspects of software
engineering was studied by Lenberg et al. [1], claiming that
less than 5% of the articles studied ”a ’soft’ or human-related
topic”.

While there is a lot of research on Human Computer
Interaction in general, very little is specifically looking at
software development and tools. However, there are examples
of articles on usability of software tools, e.g., Myers et al. [9],
Dillon and Thomas [10]; as well as on design of software
tools, e.g., Holzinger [11].

In conclusion, the problem with cognitive research in Soft-
ware Engineering appear as being twofold i) not very much
research has been done beyond code comprehension, and ii)
the research has rarely been executed in the real world, ’in
vivo’, context.

C. Practical implications of human cognitive limitations

It has, since Miller’s ’The Magical Number Seven, Plus or
Minus Two’ [12] from the 1950’s, been generally accepted
that the human working memory is finite. Accepting that
’the capacity of the human working memory’ and cognitive
bandwidth (i.e. the amount of cognitive load a human mind can
process) are closely related, it can be deduced that unnecessary
cognitive, or mental, load is likely to decrease the cognitive
bandwidth, which over time translates into ’throughput’ or
’work’. Miller’s findings are generally accepted, although later
research shows the actual bandwidth being lower than Miller
proposed [13]. Herein lies the main rationale for studying
cognitive load drivers - if all tools (or tasks) induce cognitive
load on the subject, keeping the undesired cognitive load to
a minimum will allow for more of the cognitive bandwidth
being used for relevant chores and not practical waste.

V. RESULTS

We analysed the interview data, partially in the light of the
general cognition literature summarised above, and identified
different types of load drivers (RQ1), and perceived problems
in the digital work environment (RQ2).

A. Identified cognitive load drivers (RQ1)

During the analysis of the interview material, we identified
factors mentioned by interviewees, which were interpreted as
having an impact on the cognitive load of the developers, i.e.
being cognitive load drivers. Then, in the coding, these factors
were grouped into items, which characterise the cognitive load,
e.g. lack of adaptation of a tool to the work task. The items
were then grouped into themes and finally clustered into the
object of the cognitive load drivers2.

The two main clusters of load drivers in the thematic
analysis are: Tool – cognitive load directly associated to use
of tools; and Information – cognitive load associated to infor-
mation management, information flow and information load
respectively. In addition we found a third cluster: Work process
– cognitive load derived from processes and organisational
aspects of the workplace.

1) Tool: The aspects of cognitive load associated to tools,
are of three kinds, namely intrinsic, delay related, and inter-
action.

Intrinsic aspects include lack of functionality, manifesting
itself as use of tools with poor adaptability/suitability to
the purpose for which they were intended, including lack of
functionality. For example, the search functionality is not up
to date, which makes it hard to find old defect reports. Further,
lack of stability or reliability prevent users from trusting the
tools. ’...if it crashes all data is lost’ (i2). Overlap and lack
of integration prevent users from working efficiently, as it
causes redundant work (e.g. copying information from one
tool/system to another). Finally, comprehension, i.e. under-
standing what is going on when using the tool, is a cognitive
load factor – ’It is not obvious how it should be used.’ (i3).

Delay is an absence of response in a tool or system. It can be
observed in our interviews as a state of forced concentration
when the user is forcing information to remain in working
memory while waiting for the tool to respond; and it can be
observed in terms of system downtime. We observed cognitive
load from response delays at the micro level, as noted by
interviewee i3: ’But when it is non responsive you loose focus.
You can’t just stay focused.’ Further, downtime on the macro
level scale beyond a few seconds effectively prevents all work
with the system. ’It has happened that [the tool] has been down
for longer periods, especially after upgrades’ (i2).

Three different aspects of cognitive loads were identified
which considered consequences of interaction issues with
tools. Unintuitive implies that the users find the tools hard
to use, causing frustration and unnecessary cognitive load to
the user as he/she must repeatedly find out how to complete
a task. ’I felt that I had to transform my [mental] model to

2see appendix for a tabular representation of the result

some kind of database model, in order to understand how the
tool worked’ (i5). Inconsistent systems or different parts of a
system work rather differently in terms of interaction, causing
frustration to the user as he/she repeatedly must determine
how to solve a task, in the current context, specifically.
Cumbersome interaction is when functionality is missing or
implemented in such a way that the user is forced to waste
energy doing what is considered unnecessary work.

2) Information: The quality of the information in itself
is the second cluster of cognitive load drivers. The different
aspects of cognitive load associated to the integrity of infor-
mation are related to incompleteness of information, which
causes the user to spend effort in asserting that information
is complete. The lack of reliability of the information is
causing the user to spend effort in asserting that information
is correct and up-to-date (e.g. caused by lack of version
control). Interviewee i2 stated: ’The main issue is that there
is no revision handling/version control’. Finally, the temporal
traceability of information over time is needed to help a user to
bridge a temporal gap in order to assess the current situation,
e.g. see if an issue has been reported before, or if an error has
been fixed in an earlier release.

The different aspects of cognitive load associated with the
organisation of information is related to location, i.e. having a
hard time finding information, retrieval, i.e. having a hard time
retrieving information, distribution, i.e. not knowing where to
store information or whom to distribute it to, overview/zoom,
i.e. absence of overview or zoom views cause cognitive load
when browsing information. ’There is no overview’ (i2).
Finally, structure is when the information is structured or
organised in a cumbersome fashion, e.g. as mentioned by i3,
when test results are not saved per test run, something that
later cause problems with information accessibility and affects
the users’ ability to find correct information. The same was
indicated by i1, who stated that: ’If I rerun this test project
I only see the last result’, indicating that the visualisation
delta between the current run and the previous run would be
beneficial.

3) Work process: The aspects of cognitive load associated
to work process mainly gravitate around lack of support,
manifesting itself in wasted effort; either by doing unnecessary
work, or by having to spend effort in finding out how to solve
a task in a specific tool or in a certain team. Cognitive load
drivers in this cluster are related to lack of automation, wasted
effort (be it unnecessary or redundant), illustrated by one inter-
viewee (i2), stating on mandatory information fields to be filled
out even when not needed. Further, ad hoc implementation of
tools or processes, lead to wasted or inconsistent work process,
since they are implemented differently in different parts of the
organisation. Finally, lack of understanding of the intrinsics of
a large organisation can be a load driver itself.

4) Validation of empirical findings: We validated our col-
lection of cognitive load drivers against the set of ’Cogni-
tive work environment problems’3, identified by Gulliksen et

3see appendix for a tabular representation of the validation

al. [4]. In light of that they studied digitalization of work in
general, it is quite natural that the cognitive issues identified
differ somewhat compared to our findings. That being said,
there does not appear to be any contradictions between the
two sets, and while not identical, they are largely similar.

B. Perceived problems (RQ2)

The main issue with the test management tool, was missing
revision control and absence of revision history. Furthermore,
all interviewees had noted that there was no strict ownership,
meaning that any user could change test cases and test scripts
as they saw fit. The main issue with the defect management
tool, apart from cumbersome interaction, was that omission
of search functionality - which makes it very hard to find
error reports (e.g. duplicated, closed or obsolete error re-
ports). To exemplify, one user used the notification e-mails
supplied by the defect management tool to create his own
temporal model/history of the error reports handled by his
team (i5). Furthermore, as a consequence of the interaction
issues with the tool, the quality of the data extracted from
the system was perceived to be quite unreliable (i4). The
same interview revealed an interesting observation regarding
the selection/acquisition of systems. Despite the discontent
among the users, and the apparent flaws of the tool, these
aspects were not considered part of the business case when
the defect management system was replaced. Instead, the sole
rationale for the change was, according to the interviewee,
that the licensing cost of the new tool/system was significantly
lower than that of the old tool.

C. Summary

We conclude that cognitive load drivers are indeed present
and have considerable impact in large-scale software engineer-
ing, in this specific case, and that the load drivers identified
gravitate around three clusters; ’Tools’, ’Information’ and
’Work process’.

VI. LIMITATIONS

The literature review is not complete, in terms of cov-
ering all cognitive science literature relevant for software
engineering, nor all software engineering literature related to
cognition. The goal of the literature review and analysis is
to create a foundation for the exploratory case study. Thus
it is sufficient to have relevant cognitive science literature
as a basis, which we ensure by having some core scholars
represented, such as Miller, [12] and Siegmund [3]. In regards
of software engineering literature, we observe that there are
some aspects of cognition studied, which confirms it being a
relevant perspective.

The case study is conducted at one company, with a
limited sample size of interviews, limiting its external validity.
However, the aim of the study is to explore the field. We have,
in all likelihood, missed some cognitive load drivers, that are
not present in the case study context. Our validation against
Gulliksen et al’s taxonomy [4] shows a sound mapping of
the cognitive load drivers in a general working context to

those found in this study. The authors have long working
and collaboration history with the case company, which helps
improving the construct validity although it may introduce
bias. However, as we only provide evidence of the presence
of cognitive load drivers, that does not limit the validity of the
findings.

VII. CONCLUSION

We conclude, that with the exception of research on program
comprehension, little is published on cognitive aspects of tool
use in software engineering. We also observe that there is
indeed work in the cognitive science area relevant for software
engineering, which could be used to lay out the theoretical
basis for studying and improving software engineering from a
cognition point of view. Grounded in the literature in the field,
we conclude that we in this exploratory study have found, and
presented, empirical evidence of the presence of cognitive load
can be observed in large-scale software engineering, RQ1. We
further conclude that it is indeed is a problem for practitioners,
RQ2. Our classification of the load drivers found gravitates,
or clusters, around ’Information’, ’Tools’ and ’Work/Process’.
This research was financed by projects EASE and ELLIT
respectively.

REFERENCES

[1] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineer-
ing: A definition and systematic literature review,” Journal of Systems
and Software, vol. 107, pp. 15–37, Sep. 2015.

[2] A. Walenstein, Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework, 2002.

[3] J. Siegmund, “Program Comprehension: Past, Present, and Future,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 5, Mar. 2016, pp. 13–20.

[4] J. Gulliksen, A. Lantz, Å. Walldius, B. Sandblad, and C. Åborg, “Digital
arbetsmiljö, en kartläggning (RAP 2015:17),” Tech. Rep., 2015.

[5] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case study research
in software engineering: guidelines and examples. Wiley, 2012.

[6] Y. Levy and T. J. Ellis, “A Systems Approach to Conduct an Effective
Literature Review in Support of Information Systems Research,” Inform-
ing Science: The International Journal of an Emerging Transdiscipline,
vol. 9, pp. 181–212, 2006.

[7] G. C. Murphy, “The Need for Context in Software Engineering
(IEEE CS Harlan Mills Award Keynote),” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: ACM, 2018, pp. 5–5.

[8] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review
on the usage of eye-tracking in software engineering,” Information and
Software Technology, vol. 67, pp. 79–107, Nov. 2015.

[9] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers
Are Users Too: Human-Centered Methods for Improving Programming
Tools,” Computer, vol. 49, no. 7, pp. 44–52, Jul. 2016.

[10] B. Dillon and R. Thompson, “Software development and tool usability,”
in 2016 IEEE 24th International Conference on Program Comprehen-
sion (ICPC), May 2016, pp. 1–4.

[11] A. Holzinger, “Usability Engineering Methods for Software Developers,”
Commun. ACM, vol. 48, no. 1, pp. 71–74, Jan. 2005.

[12] G. A. Miller, “The magical number seven, plus or minus two: some lim-
its on our capacity for processing information.” Psychological Review,
vol. 63, no. 2, pp. 81–97, 1956.

[13] N. Cowan, “The Magical Mystery Four: How Is Working Memory
Capacity Limited, and Why?” Current Directions in Psychological
Science, vol. 19, no. 1, pp. 51–57, Feb. 2010.

TABLE I
COGNITIVE LOAD DRIVERS IN SOFTWARE ENGINEERING, STRUCTURED ACCORDING TO THE THEMATIC ANALYSIS.

Main Clusters Themes Items Description
Work process — Lack of automation Absence of automated tool support (e.g. automated testing) forcing the user to do

work manually.
Wasted effort Unnecessary or redundant work mandated by absence of tool support or by process.
Ad hoc Tool support (or processes) implemented differently in different parts of the

organisation.
Lack of understanding Missing information or support on account of the shifting nature of a large

organization.
Tool Intrinsic Adaptation/Suitability Use of tools that are not really suited for the purpose.

Lack of functionality Use of tools missing functionality needed to solve a task efficiently.
Stability/Reliability Use of tools that suffer from stability or reliability issues.
Overlap Use of several tools that can do the same thing, or almost the same thing, in parallel.
Lack of Integration Use of several tools, in parallel, that are not (or poorly) integrated, forcing the user

to do redundant and/or manual work.
Comprehension Actually understanding what needs to be done in the tool in order to complete a

task.
Delay Response (micro) Delays in response forcing the user to stay overly focused, putting a strain on short

term memory.
Downtime (macro) Tools or systems that are completely unresponsive for a longer period than a few

seconds/minutes.
Interaction Unintuitive Functionality (or interaction) is implemented in an unintuitive way.

Inconsistent Functionality (or interaction) is inconsistently implemented in two different tools
or in two different views of the same tool.

Cumbersome Functionality (or interaction) is implemented in a way that users find clumsy.
Information Integrity Incompleteness Lack of complete information is causing the user to spend effort in asserting that

information is complete.
Reliability Lack of reliable information is causing the user to spend effort in asserting that

information is correct and up-to-date.
Temporal traceability The user needs to bridge a temporal gap in order to assess the current situation.

Organisation Location Where to find the information.
Distribution Where to store and whom to distribute the information to.
Retrieval How to access the information and retrieve it.
Overview/zoom How to navigate the information.
Structure How the information is organised.

TABLE II
MAPPING OF OUR MAIN CLUSTERS FROM TABLE I AND GULLIKSEN ET

AL’S COGNITIVE WORK ENVIRONMENT PROBLEMS [4]

Cognitive work environment problems

W
or

k
pr

oc
es

s

To
ol

s

In
fo

rm
at

io
n

Unneccessary cognitive load and interruption of
thought process

– x –

Unneccessary strain on working memory – x –
Problems orientatiing and lack of overview – x x
Identifying and interpreting information – x x
Decision making/support – x x
Difficulties with time coordination of data – x x
Work processes determined by tools – x –
Many unintegrated information systems x x x
Poor support for learning x – –
Lack of understanding automation x – –
Difficulties with different system modes N.A. N.A. N.A.

Interview Guide: Overview of the Cognitive Support for Testing
1. Introduction: Research topic, Study context, Confidentiality, Audio recording

2. Your background: current role, experience & education (years), past work places

The artefact-related information testers use

 Info characteristics: type, format

 Activities & CRUD of info – who, when, why?

3. Describe your main work tasks. What information/sources do you use for these?

Tools and cognitive bottle necks

 Aggregated data views, e.g. in metrics/KPIs, visualisations

 Duplicated info

 Lack of tool integration (memorising)

 Manual analysis required

4. Which tools & systems do you use for your daily work? For which tasks?

• Who creates / uses the information in the tools that you use?

• How do the tools affect your daily work; positive and negative (duplication,

memorising, manual analysis)?

• Do you use any aggregated data views, e.g. visualisation, KPIs? Describe.

• How can you affect the tools and systems used for your work?

5. Are there systems that you don’t work with directly but that you know affect your day-to-

day work (e.g. for organising or monitoring your work)? In what way?

• Who uses these systems? For what?

• Can you affect them?

6. Over time, what tools & systems have been introduced, replaced or removed?

• What drives these changes, and how do you feel about them?

Work Environment

7. How do the tools affect your relationship to your colleagues, in the team, in the wider

organisation? For example, regarding communication, work load.

8. How do you handle work – life balance (now and in the past)? Is it affected by the tools &

systems available?

1. At work, how do you relate to social media, private e-mails, phone calls etc?

2. Are you expected to be available outside of work hours? How do you feel

about this?

3. Are there any policies? Monitoring?

Improvements

9. If it was up to you, what kind of feature/tool support would you introduce to better support

you in your work?

Fig. 2. A description of how the case study evolved in terms of objectives, knowledge and research activities

	Introduction
	Research questions
	Method
	Literature overview and analysis
	Purpose and strategy
	Exploratory survey of cognitive research related to Software Engineering
	Practical implications of human cognitive limitations

	Results
	 Identified cognitive load drivers (RQ1)
	Tool
	Information
	Work process
	Validation of empirical findings

	 Perceived problems (RQ2)
	Summary

	Limitations
	Conclusion
	References

