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ABSTRACT 
This article deals with an essential problem in the metal cutting industry, the problem of 
predicting tool wear and tool life. This is also a problem that has been studied by 
academia for the last century, often with very little added knowledge. The possibility to 
replace a large number of systematic wear tests with only a few specially designed tests 
provides new potentials for rapid information collection and technology shifts. In the article 
a physically based model describing the tool flank wear during metal cutting is presented. 
The basis of the model work is a modified version of Archard’s wear equation. The results 
from the wear model are compared to Taylor’s well known tool wear diagrams. The two 
models are well correlated within the essential parameter range. The developed model 
requires a minimum of wear tests to provide the necessary basis for calculations. Only two 
experiments constitute the fixed point in the model. Other process conditions, that the 
actually tested, with other mechanical and thermal load, are interpolated or extrapolated 
around the experimentally fixed points. The mechanical and thermal loads are calculated 
and are a vital part of the model. The model generates tool wear diagrams and tool life 
predictions as function of cutting speed vc and theoretical chip thickness h1. A major part 
of this work has been performed in the SSF project Shortcut. 
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1. INTRODUCTION 
Wear characteristics at metal cutting is a determining 
factor for the process outcome and robustness. The 
level of wear influences the product quality, process 
stability, downtime and the productivity of the process. 
The understanding and control of the tool wear 
progress and the tool life is therefore of vital importance 
to the total machining economy. 
 
Taylor’s wear equation [1] is the most used equation to 
determine the tool life of a cutting tool, based on the 
flank wear VB. Taylor’s equation demands extensive 
cutting experiments and a huge amount of collected 
data in order to determine the necessary process 
constants. This in many cases is regarded as a major 
problem, especially in situations were new work 
materials, expensive work materials or new tools are 
being analyzed. Taylor’s equation has no direct link to 
the physical properties of the work material and the 
cutting tool, and no link at all to the process conditions. 

2. METHODS AND OBJECTIVES 
This work is limited to comprise modeling of tool flank 
wear according to the figure. The presented modeling is 
2-dimensional and the physical properties are linked 
together through the introduction of Archard’s [2] wear 
equation in a modified form. The models are based 

upon the composite temperature θC of the cutting 
process, described by the authors [3, 4]. 
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Fig. 1: An orthogonal, or 2-dimensional view of the 

cutting process. 

 



Proceedings of the Swedish Production Symposium, Stockholm, Sweden, 2008 

3. FLANK WEAR 
The flank wear appears on the flank face of the cutting 
tool, according to the figure. The magnitude of the flank 
wear VB, has a direct effect on the process 
temperature. For most machining operations, the 
process temperature increases with increased flank 
wear. Under certain conditions, a cooling effect through 
the contact surface on the flank face can occur, for 
example at low cutting speeds and with high values of 
the thermal conductivity of the workpiece [4]. 
 
An increased process temperature leads to an 
increased tool wear rate. Increased tool wear leads to 
higher cutting forces acting on the wear land, which 
increases the total energy losses due to tool wear. The 
level of flank wear is therefore directly influencing the 
change in tool wear rate, through the process geometry, 
the cutting forces, the wear energy losses, and the 
process temperature. This situation, where a direct 
regenerative relation between a functional value and it’s 
derivate exists, usually results in functions partly or 
altogether based on the natural logarithm. 

 

4. LIST OF SYMBOLS 
V Wear volume mm3 
k0 Archard’s wear constant  mm2N-1 
D2 Normal force component on the tool 

flank face 
N 

D22 Normal force component N 
D21 Additional force due to growth of VB Nmm-1 
rβ Edge radius, mean value μm 
e Tool engagement distance m 
p Normal pressure between cutting 

tool and work material 
Nmm-2 

Ac Contact area between cutting tool 
and work material 

mm2 

VB Flank wear mm 
b Theoretical chip width mm 
h1 Theoretical chip thickness mm 
vc Cutting speed ms-1 
t Tool engagement time s (min) 

Aw Wear land  mm2 
α Relief angle º 

x, y Coordinates - 
k01 Wear constant mm2N-1 
k02 Wear constant K-1 
θC Composite temperature ºC 
T Tool life min 

VBT Tool life criterion mm 
αT Taylor exponent - 
CT Taylor constant m 
TT Taylor tool life min 

 

5. WEAR MODEL 
Archard’s [2] modified wear equation can be written 
according to equation 1. The geometrical interpretations 
are illustrated in figure 2.  
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Where k0 is the wear function (constant), D2 is the force 
component in the wear growth direction, and e is the 
tool engagement distance, which is the product of the 
cutting speed v and the tool engagement time t. The 
force component D2 can be expressed as the mean 
normal pressure acting on the contact surface Ac.  In 
the 2-dimensional case, the contact surface Ac is 
obtained as the product of the flank wear VB and the 
theoretical chip width b.  
 

y
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Fig. 2: Geometry with coordinates and cutting 
forces related to the flank wear in a cutting process.  
 
The force component D2 acting perpendicular to the 
contact surface can be expressed as a function of VB 
according to equation 2 [4]. 
 

       VBDDD  21222                                  (2) 
 
The constants D22 and D21 are determined through 
laboratory tests. The value of the constant D22 is 
primarily given by the micro geometrical design of the 
cutting edge, in combination with the chosen work 
material.   
 
The wear volume V is geometrically defined in figure 2 
as: 
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Where: 
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Here, Aw is the wear surface, the variable x describes 
the flank wear progress, and the angle α is the tool 
relief angle. The wear progresses in the direction y. The 
wear rate is obtained as: 
 

      
dt

dV

Adt

dy

c
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2                                                           (6) 

 
By deriving Archard’s modified wear equation the 
following equation is obtained: 
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Combining equations 2, 4, 6 and 7 gives:  
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Separation of the variables x and t gives:  
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Integration gives: 
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The time t can be calculated by inserting the limits of 
integration: 
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For a given engagement time t and a determined flank 
wear VB, the wear constant and its progress can be 
calculated as: 
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The wear function k0 is strongly dependent on the 
process temperature in the cutting zone. Several 
different attempts to model the temperature 
dependence have been tried by the authors. We have 
found that an exponential relation according to equation 
13 can be applied to wear situations with limited plastic 
deformation and no notch wear.  
 

                        Ckekk  02
010                                (13) 

 
Here k01 and k02 are constants determined by cutting 
tests. The composite temperature θC is a composite 
temperature which is acquired as a weighted mean 
value of the temperatures in the cutting process 
deformation zones. The composite temperature is 
calculated by thermodynamic equilibrium equations, 
based on cutting tests and physical data, Ståhl [4].  
 
In the following figures 3, 4, and 5, examples of 
calculated composite temperatures θC as a function of 

the cutting speed v, theoretical chip thickness h1 and 
flank wear VB are presented.  
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Fig. 3: The composite temperature θC as a function 
of cutting speed vc. Theoretical chip thickness h1 = 
0.2, 0.3 and 0.4 mm with flank wear VB = 0.4 mm. 
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Fig. 4: The composite temperature θC as a function 
of theoretical chip thickness h1. Cutting speed vc = 
2, 3 and 4 m/s with flank wear VB = 0.4 mm.  
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Fig. 5: The composite temperature θC as a function 
of flank wear. Cutting speed vc= 2.5, 3 and 3.5 m/s 
with theoretical chip thickness h1 = 0.3 mm.  
 
For a known composite temperature θC, two cutting 
tests, I and II, are required to calculate the constants k01 
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and k02 in the equation system 14. The wear constant k0 
is calculated using equation 12, with the conditions and 
parameters valid for test I and II.  
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In tables 1 and 2, examples of test data and calculated 
constants k01 and k02 are presented. The tests were 
performed in a carbon steel, SS1672, using a coated 
carbide insert.  

Table 1: Test data I 

D21 = 4300 N h1 = 0.4 mm 
D22 = 120 N VB = 0.4 mm 
b = 3 mm vc = 3.5 m/s 
α = 6 º t = 8.5 min 
rβ = 40 μm k0 = 1.5·10-8 mm2N-1 
    θC = 685 ºC 

 

Table 2: Test data II 

D21 = 4300 N h1 = 0.3 mm 
D22 = 120 N VB = 0.8 mm 
b = 3 mm vc = 3 m/s 
α = 6 º t = 19 min 
rβ = 40 μm k0 = 2.8·10-8 mm2N-1 
    θC = 810 ºC 

 
By calculating the composite temperature and solving 
the equation system 14, the constants k01 and k02 are 
obtained, given the conditions in tables 1 and 2.  
 

k01 = 2.8 · 10-9 mm2/N 
k02 = 2.5 · 10-3 K-1 

  
Consequently, the wear function k0 can be expressed 
using the composite temperature and variables 
controlling the composite temperature. In figures 6, 7, 8 
and 9 the wear function k0 is presented as a function of 
cutting speed vc, theoretical chip thickness h1, flank 
wear VB and finally the composite temperature θC.   
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Fig. 6: The wear function k0 as a function of cutting 
speed vc, with h1 = 0.2, 0.3 and 0.4 with VB =0.4 mm 
and α = 6º. 
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Fig. 7: The wear function k0 as a function of 
theoretical chip thickness h1 with VB = 0.4 mm for 
vc = 2, 3, 4 m/s and α = 6º. 
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Fig. 8 The wear function k0 as a function of flank 
wear VB with h1 = 0.4 mm for vc = 2, 3, 4 m/s and α = 
6º. 
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Fig. 9: The wear function k0 as a function of the 
composite temperature θC for all cutting data.  
 
The temperature dependent wear function k0(θC) 
inserted into equation 11, will describe all combinations 
engagement time t and flank wear VB, for the whole 
range of variables and constants included in equation 
11. Additionally, the wear progress is indirectly 
influenced by some other variables and constants, 
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having an effect on the composite temperature θC. This 
can be exemplified by the influence of h1 on the flank 
wear rate. The theoretical chip thickness is not included 
in equation 11, but has a significant and established 
influence on the wear rate via the process temperature, 
represented the composite temperature θC. In figure 10 
and 11, the flank wear rate is illustrated, for different 
cutting speeds vc and different theoretical chip 
thicknesses h1. 
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Fig. 10: Flank wear as a function of tool 
engagement time for 3 different cutting speeds, vc = 
3, 3.5 and 4 m/s, with h1 = 0.3 mm and α = 6º. 
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Fig. 11: Flank wear as a function of tool 
engagement time for 3 different theoretical chip 
thicknesses, h1 = 0.6, 0.4 och 0.3 mm with vc = 3 and 
α = 6º. 
 
Choosing a wear criterion, for example VBT = 0.8 mm, 
inserting in equation 14, makes it possible to calculate 
the tool life as a function of cutting speed vc and 
theoretical chip thickness h1. 
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Where:  
             ),,( 1 cCC vVBh   
 
according to [3, 4], and as exemplified in figures 10 and 
11. The tool life T = t(VBT) calculated using equation 14 
is presented in figures 12 and 13. 

1 10 100
0.1

1

10

100

T
 [min]

h1 =

0.2
0.4
0.6

vc [m/s]

 
Fig. 12: Tool life T [min] as a function of cutting 
speed vc, for different theoretical chip thicknesses 
h1 = 0.2, 0.4, 0.6, and 0.8, setting VBT = 0.8 mm and 
α = 6º. 
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Fig. 13: Tool life T as a function of theoretical chip 
thickness h1 for different cutting speed vc = 3, 4 and 
5 m/s, setting VBT = 0.8 and α = 6º. 
 
The tool life sensitivity and dependence of a given 
variable z, can for small variation ∆z, ranges be 
calculated as: 
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The effects of process cooling can be calculated by 
studying the change of tool life with respect to θC 
according to equation 16. 
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When a variable, for example the cutting speed vc, is 
directly dependent both on the tool life T and the 
composite temperature θC, ∆T can be calculated 
according to equation 17.  
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Figure 14 illustrates the effects of equation 16. The 
diagram shows the change in tool life when the 
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composite temperature is decreased by one degree, i.e. 
∆θC = -1°. It can be established from this example that 
a temperature decrease by one degree results in a 
increase in tool life in the interval of 3-7 seconds, 
depending of the initial value of θC. 
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Fig. 14: The effect of one degree cooling of the 
cutting process, on the tool life.  
 
Figure 15 illustrates, according to equation 17, how the 
tool life is affected by an increase of cutting speed vc by 
1 m/min. At a cutting of 180 m/min (3 m/s) a decrease 
of tool life by 10% per m/min is obtained. In this 
example, it can be noted that the largest tool life 
changes are obtained at the lower cutting speeds. This 
can be explained by the increased cooling effect 
through the contact area Ac, which is more influential at 
lower cutting speeds. 
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Fig. 15: The effect on tool life when the cutting 
speed vc is increased by 1 m/min, for h1 = 0.2, 0.4 
and 0.6 mm.  
 
Furthermore, at high cutting speeds, when the 
composite temperature approaches the adiabatic 
temperature of the cutting process, a change in cutting 
speed affects the tool life to a lesser extent, an 
expected effect due to the relatively small change in 
composite temperature.  
 
The diagrams in figure 12 and 13 are easily 
recognizable as Taylor curves, and expressed 
according to equation 18. 
 

                 TTc CTv T                                      (18) 

 
From the diagram, or alternatively from the equation, 
the Taylor constants αT and CT can be determined. The 
exponent αT as a function of theoretical chip thickness 
h1 can be decided using equation 19. This relation is 
illustrated in figure 16. 
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Fig. 16: The Taylor exponent αT as a function of 
theoretical chip thickness h1.   
 
The Taylor constant CT is determined by linear 
extrapolation of the curves in figure 13, originating from 
a chosen cutting speed in the interval vcI< vc< vcII to the 
tool life time T = 1.0.  The cutting speed that results in a 
tool life T = 1.0 is also the numerical value of CT. The 
calculated values of CT as a function of h1 are illustrated 
in figure 17.  
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Fig. 17: The Taylor constant CT modelled as a 
function of the theoretical chip thickness h1.    
 
Taylor’s tool life equation can be written as: 
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In figures 18 and 19, equations 14 and 20 are illustrated 
in the same diagram, using both logarithmic and linear 
scales. As can be seen in the figures, the correlation is 
good in the essential areas.  
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Fig. 17: A comparison between modelled tool life T 
(dashed lines) and calculated Taylor (solid lines). 
Theoretical chip thickness h1 = 0.2, 0.4 and 0.6 mm, 
VBT = 0.8 mm and α = 6º. 
 

2 4 6 8 10

10

20

30

40

50

T 
[min]

h1 =

0.2
0.4
0.6

vc [m/s]  
Fig. 18: Same diagram as in figure 17, but with 
linear scales.  
 
 

6. DISCUSSION AND CONCLUSIONS 
A modified wear equation according to Archard can be 
used to generically model the flank wear of a cutting 
tool. The wear model is based on physical material 
data, cutting forces and geometrical parameters, 
determined by experimental studies. The tool life 
prediction based on modelled analysis of flank wear is 
well correlated to Taylor diagrams based on 
experimental data. By introducing the modified Archard 
model, the Taylor constants are given a direct physical 
significance and a direct connection to cutting process. 
 

If basic material data are known for a given work 
material or group of work materials, and for the used 
cutting tool, only a few, in this example 2, separate 
wear tests are required in order to establish the basis 
for the wear model. The model can describe the tool 
wear behaviour and tool life, for all combinations of 
cutting data and other parameters influencing the 
process temperature θC. Parameters influencing the 
composite temperature are by that also indirectly 
influencing the tool wear behaviour via the wear 
function, see equation 14. 
 
The thermal influence on the tool wear is determined 
via the wear constant k0, the added mechanical work 
due to increased, wear induced cutting forces is 
described by the product D21·VB, the geometrical 
change is described via the relief angle α as 1/tanα, and 
the linear wear load is described via the tool 
engagement distance, i.e.  vc·t. 
 
The corner stones of the presented model are the 2 
cutting tests, the interpretation of these, and further on 
the determination of the composite temperature θC and 
implementation in the wear function k0 = k0(θC). The 
wear function k0(θC) can be seen as a temperature 
dependent Archard constant k0.  
 
The 2 cutting tests represent 2 different wear 
conditions, with 2 different mechanical and thermal tool 
loads. The model allows for interpolation or 
extrapolation of process parameters influence on the 
mechanical and thermal load, where the 2 cuttings tests 
provide for the experimental fix points or reference 
points. Therefore, the model accuracy in these 2 fix 
points is 100 %. If the models describing the 
mechanical and thermal load lack some precision is 
therefore less important, for cases between and near 
the experimental fix points.  
 
Thus, a consistent use of the models can be more 
important than the underlying models being 100 % 
accurate. The fix points calibrate the model and 
therefore minimize the model error. The data from the 
reference points must be calculated and analyzed in the 
same way as for the rest of the process parameter 
combinations. Enhanced process models will lead to an 
increased validity further away from the fix points, 
regarding mechanical and thermal load. 
 
The accuracy of the model can be controlled in different 
manners. One of the 2 experimental fix points can 
gradually be substituted by new fix points. 
Consequently, new wear patterns can be analyzed and 
mapped. A variation in tool life can be determined by a 
comparison between model outputs based on different 
experimental fix points, measured under similar 
conditions. 
 
The developed wear model is well suited to estimate 
different variables influence on tool life. However, 
substantial research work still remains in this area.  
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