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
Abstract: In this article an analytical and empirical model for describing tool life and 
tool wear in metal cutting is presented. The model is based on combining the 
Colding tool life equation and an extended version of the Archard wear function. It is 
shown that through the combining of these two models a substantial saving of 
resources can be achieved in terms of the workpiece material required, as well as the 
manpower and machine time needed for determining the model constants and the 
optimum cutting data to be employed. 
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1. INTRODUCTION 
 

This publication complements and is partly based on the published study of Johansson et al. (2014). In industrial 
production it is highly important to be able to predict and describe the selected tool lifetime and the optimal 
cutting data in regard to production costs. Being able to determine optimal cutting data requires use of analytical 
models describing the relationship between cutting data and the lifetime of the cutting tool. Cutting data refers 
here primarily to the cutting speed vc, the feed rate f and the cutting depth ap. The product of these 3 parameters 
gives the material removal rate, in cm3/min for example, referred to here as MRR (Metal Removal Rate). The 
product of the tool engagement time ti and MRR is proportional to the direct processing costs. The tool lifetime 
T is the length of time the tool can be in operation before it is adjudged, with a given level of probability, to no 
longer function properly. The lifetime of a tool is generally determined by defining a wear criterion which, when 
reached, means the tool is considered to no longer be sensible to continue using. Various direct or indirect wear 
criteria can be employed, which of these applies depending upon the area of application of the tool. A direct 
criterion may, for example, be a certain maximal degree of wear of the cutting edge or of damage to it that the 
avoidance of tool failure permits. A maximum degree of wear seen as tolerable for a tool’s being able to 
continue to meet some criterion regarding the dimensional, surface or performance characteristics achieved may 
also be set. An indirect criterion, in turn, may concern the maximum engagement time seen as permissible for 
achieving a particular level of quality regarding the surface, the dimensions, or the material characteristics 
(surface integrity) of the workpiece, without direct account being taken of the level of wear on the tool. 
 

A wear model describes the relationship between time t and the level of wear, such as flank wear VB for 
example, that has taken place, as assessed in terms of the cutting data or cutting conditions involved. Examples 
of such models are those of Archard (1953) and of Usui and Shirakashi (1984). A tool lifetime model, in 
contrast, is concerned with the time it takes for some predetermined wear criterion, such as VB = VBT = 0.3 mm, 
to be reached. Such models can be exemplified by those of Taylor (1906) and of Colding (1959). The wear 
models of Archard (1953) and Usui and Shirakashi (1984) contain various constants, the values of which can be 
difficult to determine. The models describe courses of events that are often highly complex and can involve 
loads of a mechanical, thermal, tribological or chemical character, or some combination of these. Although such 
models tend to function well under controlled and well-defined conditions, there are considerable difficulties in 
adapting them to industrial conditions, and definite limitations to their applicability there. The models of Taylor 
(1906) and of Colding (1959), describing the tool lifetime as a function of the cutting data, require that 



experiments pertaining to the model of concern be continued up to the point at which the wear criterion involved 
is reached. In addition, in order for statistically significant results to be obtained, it is often necessary for 
experiments to be repeated or for further cases to be considered. The minimum number of cases that need to be 
investigated in any given experiment is partly a function of the number of constants the model in question 
contains. The amount of work material needed for determining with sufficient accuracy the values of the 
constants that the model contains can be considerable. Accordingly, conducting an investigation here can be 
quite time-consuming. Hägglund (2013), summarizing work making use of Colding’s equation, found the 
equation to show a high degree of validity in a wide variety of applications. In work of his own he reported on, 
he found that under favourable conditions the cutting speed vc associated with a given tool lifetime can be 
determined with an error of less than 1 %. 
 
 

2. GOALS AND LIMITATIONS 
 

As indicated, there are certain problems associated with each of the two basic types of models referred to above, 
there being clear limitations to the validity of wear models, and tool lifetime models often requiring that rather 
extensive investigations be carried out in order to determine the values for the constants that are needed. The 
present study concerns the possibility of combining Archard’s wear function with Colding’s equation in such a 
way that major weaknesses of both models can be overcome, without loss of the major positive characteristics 
that each of them possesses. A goal closely associated with this is to create a tool life model for cutting tools 
such that the constants the model contains can be determined on the basis of measurement series concerned with 
successive degrees of wear, without its being required that the final degree of wear in a given case reach the tool 
life criterion level. 
 

The study is limited in scope to investigation of the longitudinal turning of alloyed carbon steel, the 
characteristics and behaviour of which correspond to those of AISI 4340 (SS 2541). Flank wear plays a 
dominant role in the processing of material of this type, the applicability of the model there depending upon this 
being the case. The model developed here can be used in many different ways. The present investigation is 
concerned in particular with illustrating in connection with the model how measurement series in which different 
levels of wear have been reached can serve as a basis for determining the values of the constants the model 
employs. The results of the study are compared with results reported by Johansson et al. (2014) in which 
Colding’s equation alone and different final levels of wear were involved in determining the constants to be 
employed. The present model can be used primarily within 4 different areas of application where the present 
study is located within area IV: 
 

I. Determining and comparing the tool lifetimes of different workpiece materials. 
II. Determining and comparing the lifetimes and degrees of wear of tools differing in the material(s) of which 

they are composed when in the workpiece material involved is the same throughout. 
III. Determining tool lifetimes in relation both to variations in the cutting resistance of the workpiece material 

and to variations in the geometric form of the cutting tool as regards the edge radius rβ and the clearance 
angle α. 

IV. Enabling the constants in Colding’s equation to be determined without its being necessary that all the 
measurement series involved lead to the tool lifetime criterion being reached. 

 
 

3. ARCHARD AND COLDING MODELS 
 

Archard’s wear function was developed primarily for describing the wear on a body of lesser hardness that 
occurs when it glides across a smooth surface which is of greater hardness, as is shown in Fig. 1. In order for the 
model to be valid, it is necessary that the wear be of abrasive character and be temperature-independent. 
Colding’s equation (Colding, 1959) is based to a considerable degree on a curve adjustment being made in 
studying the relationship between the lifetime of the tool in question and the cutting data obtained. The resulting 
equation can also be considered as an extension of Taylor’s well-known equation (Taylor, 1906), a matter that 
can be clearly seen in two studies of Lindström’s reformulation of Colding’s equation (Hägglund, 2013; 
Lindström, 1989). 
 
 

2.1 Archard’s wear function 
 

The present author Ståhl (Ståhl and Andersson, 2008; Ståhl, 2012) has developed a version of Archard’s wear 
function that also takes account of the cutting geometry of the tool and of changes in the cutting forces present in 
the course of wear, as shown in Fig. 2. Archard’s (Archard, 1953) modified wear equation can be written as it is 
in Eq. 1, the geometric interpretations of it being shown are in Fig. 2. 
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Fig. 1. A schematic presentation of the wear caused by 
the sliding of one body over another, as viewed in 
terms of Archard’s model, where K is the wear 
constant, H is the hardness of the material exposed to 
wear, and V is the wear volume, according to 
Jacobson and Vedmar (2003). 

Fig. 2. An idealized view of the cutting geometry for a 
cutting process, the directions of the coordinates of 
which are shown, the components of the cutting force 
VB producing flank wear being indicated. 
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In Eq. 1 k0 is the wear function (constant), D2 is the force component in the growth-of-wear direction, and e is 
the tool engagement distance, the latter being the product of the cutting speed v and the tool engagement time t. 
The force component D2 can be expressed as the mean normal pressure acting on the contact surface Ac. In the 
2-dimensional case, the contact surface Ac is obtained as the product of the flank wear VB and the theoretical 
chip width b. The force component D2, as shown in Fig. 2, acts perpendicular to the contact surface. It can be 
expressed as a function of VB, in accordance with Eq. 2. The constants D22 and D21 are determined on the basis 
of laboratory tests. The value of the constant D22 is given primarily by the micro-geometrical design of the 
cutting edge (rβ), in combination with the work material selected. The force D2 can be normalized by dividing it 
by the current active cutting length b. It can be described with use of small letters then in accordance with Eq. 3. 
The wear volume V is defined geometrically then in Fig. 2 as Eq. 4 where y/x, dy/dx and y are defined according 
to Eq. 5 and 6. 
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Aw is the wear surface, the variable x describes how the flank wear progresses, and the angle α is the tool relief 
angle. The wear progresses in the direction y. The rate of wear is obtained as Eq. 7. Deriving Archard’s modified 
wear equation enables the following equation to be obtained, Eq. 8. 
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Combining Eq. 2, 4, 6 and 7 gives Eq. 9. Separation of the variables x and t yields Eq. 10. 
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The separation of variables provided in Eq. 10 is only permissible generally if the wear function k0 is 
independent both of the level of flank wear VB and of the variable x, although regardless of whether or not this 
is the case, it can still be accepted nevertheless in cases in which either the values for the wear criterion VBT are 
rather low or VB has only a limited effect on k0. If the relationship between k0 and VB is known, there is the 
possibility of shifting that relationship over to the other side of the equation and then integrating in the usual 
way. Studies have indicated, however, that doing so introduces considerable complexity, in particular since 
selection of the constants to be employed can be difficult. Integration of Eq. 10 yields Eq. 11. After insertion of 
the integration limits, the time t can be obtained as Eq. 12. 
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Use of Eq. 12 enables the tool lifetime t = T corresponding to a given wear constant VB = VBT to be determined. 
For a given engagement time t, when the resulting flank wear VB has been determined, the wear constant and its 
progress can be calculated as follows, Eq. 13. The wear function k0 is highly dependent upon the process 
temperature in the cutting zone. 
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3.2 Colding equation 
 

Colding formulated the relationship presented in Eq. 14 which, for a given combination of a cutting tool and a 
workpiece, describes the relationship between the tool life T of the cutting tool, the cutting speed vc and the 
equivalent chip thickness he. 
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The equation is based, according to Colding (2006), solely on the curve adjustment of the measurement points 
involved, without it’s having any clear relationship to deterioration of the tool. Studies by the present authors are 
underway that appears to indicate, however, that values obtained for the Colding constants can be linked to 
mechanisms and loads that contribute to destructive processes that affect the functioning of the tool, primarily in 
the form of wear. Woxén (1932) introduced an equivalent chip thickness he in 1932 with the aim of using it as a 
characteristic parameter for describing the mean theoretical chip thickness along the tool nose with respect to the 
length of the active edge line lc, Eq. 16. Additional relationships for calculating the Woxéns equivalent chip 
thickness he have also been reported by among others Bus et al. (1971), Hodgson and Trendler (1981), and 
Carlsson and Stjernstoft (2001). The equivalent chip thickness as computed in line with Woxén is an 
approximation that results in a computational error when low values, numerically similar, for the feeding rate f 
and the cutting depth ap are involved. Ståhl and Schultheiss (2012) have published the results of exact 
computations that also apply to cases of finishing in which the feeding rate f and the cutting depth ap can assume 
values of similar size. 
 

The Colding equation involved needs to be used with considerable caution outside the cutting-data interval in 
which the measurement points are located. Sizeable errors can be made in estimates of tool lifetime based on 
extrapolations from the cutting data that are available. Difficulties can come about there in the form of numerical 
problems in the computation of certain values to be used in the Colding equation when the numerator in Eq 15 is 
very low in value. A singularity related to this is obtained then in regard to the value for the chip thickness he = 
hes computed using Eq. 17. 
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Since Colding’s equation contains 5 constants, where Ci = (K, H, M, N0, L), at least 5 separate investigations are 
needed to determine the values that should be assigned to them. Experience according to (Colding, 2006) shows 
that each investigation should involve measurements being made on at least 2 cutting tools that yield the same 
equivalent chip thickness he and for which the same set of cutting speeds are employed. It can be sensible to 
select the measurement points in such a way that they are representative of the cutting data in question. 
Colding’s constants are best measured with the help of curve adjustment and use of methods aimed at keeping 
measurement errors at a minimum. The uses of Colding equation and its adaptation to different machining 
applications have been further investigated by Hägglund (2013). 
 



 

4. COMBINING OF THE ARCHARD AND COLDING MODELS 
 

Setting the tool engagement time t in Eq. 12 equal to the tool lifetime T in Eq. 15 allows Archard’s wear 
function k0 to be expressed as a function both of Colding’s constants Ci and of the remaining parameters pi = 
(d21, d22, VB, rβ, α), variables vc and he being defined as in Eq. 18, so that k0 = k0(Ci,pi,vc,he). In Eq. 18 the 
normalized cutting force components d22 and d21 have been inserted into Eq. 3 presented earlier. 
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Reinserting k0 obtained using Eq. 18 into Eq. 12 allows the tool lifetime TAC to be based on Colding’s constants 
(Ci), in line with Eq. 19. The parameters included in Eq. 17, together with pi0 = (d210,d220,VB0,rβ0,α0), thus 
become the reference parameters, their yielding the index 0. Eq. 19 provides the possibility of adjusting the 
lifetime of the tool TAC for those parameters the values of which deviate from the corresponding reference 
values. 
 

Through use of Eq. 18 or Eq. 19, Colding’s constants Ci can be determined for specific levels of wear VB = VBT 
in relation to a reference value VBT0, such as VB = 0.30 mm. 
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Those constants that have been determined Ci0 can be used for computing the tool lifetimes associated with use 
of other wear criteria than the reference criterion. 
 

How the tool lifetime is affected by variations in machinability can be determined on the basis of the parameters 
d22 and d21. Similarly, one can note how the tool lifetime is affected by geometric variations in the edge radii rβ 
and in the clearance angle α, i.e. the tolerances and the attachments of the cutting tool. In this respect, the edge 
radii rβ and the indirect parameters d22 have a double effect on the tool lifetime, both a geometric one in altering 
the integration boundaries in accordance with Eq. 10, and a force-related one through the normal forces directed 
at the tool flank, as described in Eq. 3, being dependent upon the initial level of flank wear VB = rβ for t = 0.   
Since the values for these parameters are identical with the reference values involved, Eq. 19 gradually becomes 
identical with Colding’s equation, i.e. with Eq. 15. Under these conditions, the procedure employed becomes, in 
mathematical terms, a kind of circular proof, since the reintroduction of k0 in Eq. 12, in line with Eq. 18, results 
in what amounts to Colding’s equation. 
 
 

5. EXPERIMENTS AND CALCULATION OF CONSTANTS 
 

The experiments carried out, each in the form of a measurement series concerned with successive degrees of 
wear of a cutting tool, involved use of longitudinal turning. There were 8 experiments of this sort that were 
complete in the sense of the wear criterion being reached. Five of these formed the basis for the modelling 
reported on, the 3 remaining experiments that were complete being excluded from further consideration, either 
because of plastic deformation (PD) having taken place or because of the combination of cutting data there 
creating numerical problems connected with Colding´s singularity, as it is called; see Fig. 11 and Fig. 12. In the 
course of the experiments, more than 50000 cm3 of chips were produced, based on use of about 400 kg of work 
material. The total tool engagement time involved amounted to 8 hours and 50 minutes, the total engagement 
distance being 83.5 km in length. The cutting data for each of the completed experiments is shown in Table 1. 
Further conditions that applied during the experiments are reported in Table 2. The values for the constants other 
than Colding’s constants Ci are reported in Table 3. 
 



Table 1. Presentation of the cutting data for each of the experiments, the approach angle involved being κ = 93o 
and the nose radius r = 0.8 mm. 

 

No.
Cutting speed 

vc [m/min] 
Feed rate 
f [mm/rev]

DoC ap 
[mm] 

ECT he 
[mm] Com. 

1 220 0.20 2.5 0.164 Excluded 
2 150 0.45 2.5 0.354  
3 100 0.45 2.5 0.354 Excluded 
4 150 0.20 2.5 0.164 Excluded 
5 200 0.30 2.5 0.241  
6 300 0.25 2.5 0.203  
7 250 0.30 2.5 0.241  
8 300 0.20 2.5 0.164  

 

Table 2. Further conditions that applied during the experiments. 
 

Workpiece material: SS 2541, AISI 4340  
Workpiece geometry: Length 900 mm, Diameter Ø200  Φ80 mm  
Tool, insert: CNMG120408-M6 TP 1500, rβ = 40 - 45 µm SECO TOOLS 
Machine, lathe: SMT 500 SMT 
Condition: Dry machining  

 

During the experiments that were carried out, the degree of wear VB that took place was registered at regular 
intervals as a function of the tool engagement time, whenever this took place the cutting tool being photographed 
in 3D to ensure that no plastic deformation had occurred. The measurements were carried out with use of a 
white-light microscope of the brand Alicona InfiniteFocus (2013). During the experiments, the 3 cutting-force 
components were registered continuously, this making it possible to assess what tool engagement intervals 
between the successive geometric measurements that were carried out were most appropriate. The wear 
development that occurred in the course of each of the 5 measurement series that were involved – 2, 5, 6, 7 and 8 
– is reported in Fig. 3. The wear data was interpolated ahead to create equal distances between the separate 
stages of wear considered (ΔVB). Details of this procedure are reported by Johansson et al. (2014). 
 

The values for the model constants d22 and d21 were determined by linear regression of the cutting forces 
measured in the respective measurement series, as reported by Ståhl and Andersson (2008). The successive mean 
values obtained served as the basis for the model reported on. 
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Fig. 3. Development of flank wear (VB) shown as a function of time t in minutes for each of the 5 cases 
considered. 

 

The assessed values employed in the model are the average linear error discrepancies εerr in %, determined by 
use of Eq. 21, between the actual cutting speed vc,exp and the modelled cutting speed vc,mod for the respective 
measurement series. 
 

Table 3. Additional model constants. 
 

Edge radius rβ = 0.45 µm rβ0 = 0.45 µm 
Clearance angle α = 6o α0 = 6o 
Force component d22 = 550 N d22,0 = 550 N 
Force component d21 = 1750 N/mm d21,0 = 1750 N/mm
Reference wear VB0= 0.30 mm  - 
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Determination of the Colding constants was carried out by use of the least squares method, which is a built-in 
function in the Mathcad 15 computer program. It is based on an algorithm developed by Levenberg-Marquardt 
(Levenberg, 1944; Marquat, 1963). The tool lifetime, computed by use of Colding’s equation (Eq. 15), is based 
on the corresponding tool lifetime criterion VBT = 0.10  0.60 [mm], together with Colding’s constants as given 
in Table 4. Computation of the tool lifetime with use of the combined model presented in Eq. 18 takes as its 
point of departure an average level of wear of VBTm = 0.10  0.60 [mm] as obtained for the 5 measurement 
series taken account of here. 
 

The values for Colding’s constants computed for use in Archard’s wear function k0AC are reported in Table 5. 
The set of indata of the sort needed for determining the constants to be used in Colding’s equation and in the 
combined Archard-Coldings equation is exemplified in Fig. 4 and Fig. 5. 
 

 
 

 
 

Fig. 4. Example of a set of indata based on 5 
measurement series for determination of Colding’s 
constants, where T20 (column c) is the time needed to 
reach the wear criterion VB = 0.20 mm (shown in 
column d) in each of the measurement series. 

Fig. 5. Example of a set of indata based on 5 
measurement series for determination of the Archard-
Colding constants, where T20m (column c) is the time 
needed to reach the wear criterion VB according to 
column d, where VBTm = 0.21 mm. 

 

Table 4. Values obtained for the constants in Colding’s equation through use of Eq. 13, shown for different wear 
criteria for flank wear VB = 0.10  0.60 mm, Johansson et al. (2014). 

 
  Colding constants  
 VBT K H M N0 L εerr

 0.10 5.542 -3.3664 1.5466 0.6055 -0.2013 5.0
 0.15 5.298 -3.0083 2.7518 0.5059 -0.0383 3.5
 0.20 5.417 -1.806 1.5517 1.2741 -0.2139 2.9
 0.25 5.810 -1.6983 0.2404 0.5242 -0.2296 0.4
Ref. 0.30 5.815 -1.6918 0.4568 0.4704 -0.2164 1.0
 0.35 5.841 -1.5145 0.9089 0.5020 -0.2364 0.9
 0.40 5.851 -1.3151 1.9241 0.4919 -0.2348 0.9
 0.45 5.888 -0.9259 4.4606 0.4981 -0.2363 0.8
 0.50 5.911 -0.8677 3.1123 0.5043 -02381 0.6
 0.55 5.922 -0.9616 2.5709 0.5016 -0.2340 0.6
 0.60 5.941 -0.8291 2.8579 0.5069 -0.2366 0.6

 

Table 5. Values obtained for the constants in the Archard-Coldings equation through use of Eq. 19, shown for 
different wear criteria for flank wear VB = 0.10  0.60 mm. 

 
  Archard-Colding constants  
 VBTm K H M N0 L εerr

 0.10 5.6875 -1.1228 1.0004 0.5461 -0.0134 3.8
 0.16 5.8772 -2.5298 1.2858 0.6435 -0.2185 6.7
 0.21 5.7294 -1.6178 0.2172 0.7739 -0.4417 2.0
 0.25 5.7445 -1.5946 0.1892 0.7799 -0.4535 1.1
Ref. 0.30 5.8290 -1.5184 0.2367 0.8291 0.4389 0.9
 0.35 5.7817 -1.5198 0.5683 0.6318 -0.3325 0.5
 0.40 5.7736 -1.5830 1.6703 0.5331 -0.2576 1.4
 0.46 5.9561 -2.2802 1.1335 0.3133 -0.0813 1.6
 0.48 5.8452 -1.2465 1.3685 0.5899 -0.2699 0.4
 0.57 5.9098 -2.0899 1.0446 0.3574 -0.1419 0.4
 0.60 5.8083 -2.0872 1.1217 0.3869 -0.1555 0.3

 



Table 6. Values for the Archard-Colding constants obtained for different average wear levels VBTm = 0.10  
0.35 mm used for computing the cutting speed for the constant wear criterion VBRef = 0.30 mm and a lifetime T 
= 12 min, where εerr,0.3 is the model error in %. 

 
  Archard-Coldings constants  
 VBTm K H M N0 L εerr,0.3

 0.10 5.6875 -1.1228 1.0004 0.5461 -0.0134 199 
 0.16 5.8772 -2.5298 1.2858 0.6435 -0.2185 53 
 0.21 5.7294 -1.6178 0.2172 0.7739 -0.4417 11.5 
 0.25 5.7445 -1.5946 0.1892 0.7799 -0.4535 8.1 
Ref. 0.30 5.8290 -1.5184 0.2367 0.8291 0.4389 6.5 
 0.35 5.7817 -1.5198 0.5683 0.6318 -0.3325 3.3 

 
 

6. RESULTS AND DISCUSSION 
 

There are difficulties in the modelling of cutting-tool wear when use is made of the wear criterion VBT as a 
parameter. The difficulties are caused by the fact that the cutting tool coating varies in the degree to which it 
affects cutting-tool wear, depending upon the value that the wear criterion is assigned. When some particular 
level of flank wear has been reached, the wear that has occurred will have penetrated the cutting tool coating at 
some point, whereupon wear of the substrate begins to occur. This results in an interaction between the coating 
and the substrate, leading to an increase in the effects on the ongoing process that the characteristics of the 
substrate have as the amount of the coating that covers the substrate declines, as shown in Fig. 6. The 
relationship between the degree to which the substrate is covered by the coating and the values Colding’s 
constant assumes has been discussed earlier by Johansson et al. (2014). 
 

Test 7: ti = 4.25 [min],  VBmax = 0.31 [mm]

Test 7: ti = 9.13 [min], VBmax = 0.60 [mm]

Coating

WC/Co‐substrate

WC/Co‐substrate

VBmax

VBmax

 
 

Fig. 6. Cutting tool wear in the form of flank wear for VB = 0.31 mm and VB = 0.60 mm, respectively. 
 

Since one and the same model is used to describe the wear both of the coating and of the substrate (the cutting 
tool material itself), the modelling error increases if the constants that the model contains are described on the 
basis of results of studies that differ in terms of the level of wear involved, as can be seen in Fig. 7 and Fig. 8. In 
the cases in question, the modelling error increases as the value of the wear criterion decreases. In the studies 
carried out, the coating was found to show a higher degree of variation in its characteristics than the substrate 
did, this meaning that the modelling error was greater when the wear criterion selected was lower. The 
difference between the coating and the substrate in the degree of variation in the respective characteristics can be 
thought to have had three major causes: 
 

1. That the coating is more brittle and less tough than the substrate, this leading to some extent to a non-wear-
related breakdown of the tool.  

2. That the coating is more susceptible to flaking in the vicinity of the cutting edge than elsewhere; see the 
arrows in Fig. 6.  

3. In combination with this (2 above), the wear volume is least (see Fig. 2) and the local pressure directed at 
the cutting tool greatest, in the vicinity of the cutting edge close to the stagnation point. 

 

For the case at hand, one can note in Fig. 7 that the effect the coating has on the modelling error tends to be 
marginal for values of VBT greater than 0.25 mm in size. As long as levels of wear lower than the wear criterion, 
such as a value of VBT = 0.3 mm, are used as a basis for determining the constants to be employed in the 
Archard-Colding equation, the modelling error increases as the average level of wear VBTm decreases. Use of a 
rather low value for VBTm in determining the constants to be employed in the model can result a considerable 
saving in terms both of material and of time, in testing the cutting tool as well as in getting production underway. 



 

An important factor is that of how large a model error occurs and can be accepted with use of a given model. It is 
usually required of a model to be employed industrially that it has a model error of less than 10 %. In practice 
this means that the cutting speed computed for a given tool lifetime, or for the manufacture of some given 
number of parts or components, needs to be predicted with an error of no greater than 10 %. Use of a cutting 
speed some 10 % lower than the model prescribes can be expected to provide for the robust manufacture of the 
parts or components in question, in terms of the tool lifetime it provides or the tool wear it results in. 
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Fig. 7. Average modelling error εrr,c for Colding’s 
equation with use of different wear criteria VBT = 0.1 
→ 0.4 [mm] (□), and an average modelling error of 
εrr,m for the Archard. Colding equation at different 
levels of average wear VBTm = 0.1 → 0.4 [mm] (○). 

Fig. 8. Average modelling error εrr,0.3m obtained with 
use of the Archard-Colding equation for different 
levels of average wear VBTm = 0.1  0.35 [mm] (○) 
for modelling cutting data while employing a wear 
criterion of VBT = 0.30 mm, a comparison also being 
provided with the model error εrr,0.3c connected with 
use of the wear criterion VBT = 0.3 [mm] obtained 
with use of Colding’s equation. 

 

In Fig. 9 an example is provided of the modelled lifetime of a particular cutting tool, shown as a function of the 
cutting speed, for various average levels of wear VBTm. This can be used in determining the constants to be 
employed in the Archard-Colding equation. Note that the average levels of wear VBTm 0.10 mm and 0.15 mm 
provide no adequate basis for extrapolation of a wear criterion of VBT = 0.30 mm, a fact which is consistent with 
the model error computed for Fig. 8. Two measurements points that were employed here are shown as squares in 
the diagram (□). 
 

An example of a presentation of the Archard-Colding equation at what is termed the Colding plane for a tool 
lifetime of T = 12 minutes and a tool wear criterion VBT = 0.30 mm is shown in Fig. 10. The model constructs 
employed were determined on the basis of average wear levels of VBTm = 0.20, 0.25 and 0.30 mm, as well as the 
case of the final result in each of the 5 measurement series reaching the level of the wear criterion (red curve). 
Under the ideal conditions of use of a perfect model and of a completely homogeneous tool material, i.e. a tool 
material without a coating or any gradients in its composition, all of the curves in Fig. 10 would coincide 
completely. 
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Fig. 9. The Archard-Colding equation, described at the Taylor plane, used for obtaining an equivalent chip 
thickness of he = 0.241 mm for VBT = 0.30 mm, the respective curves being based on results for measurement 
series differing in the average level of wear VBTm involved. 
 

Whereas at the Colding plane the tool lifetime parameter T displays a mathematical singularity l, the singularity 
becomes extended to form a singularity line when the values for the wear criterion VBT vary at the same time as 
the tool lifetime level T remains constant. This is exemplified most clearly in Fig. 11, and is shown in Fig. 12 



and in Fig. 13 as a vertical iso-cutting-speed line there. According to Eq. 17, the value that Colding’s similarity 
hes has is dependent upon the wear criterion VBT (VBTm) selected, as can be seen in Fig. 11, this being an effect 
of the values of the Colding constants being a function of VBT, as Johansson et al. (2014) have shown. In 
Colding’s equation in the form in which Johansson et al. (2014) and Hägglund (2013) present it, the original 
singularity point is replaced by a similarity line when the tool lifetime criterion VBT varies. In the Archard-
Colding equation, a singularity point is obtained for the set of model constants involved, as shown in Fig. 11. 
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Fig. 10. The Archard-Colding equation described at 
the Colding plane for a constant tool lifetime T = 12 
min, the model constants being determined at different 
average wear levels VBTm, for computing the 
combination of vc and he for VBT = 0.30 mm. 

Fig. 11. The Archard-Colding equation described at 
the Colding plane for a tool lifetime of T = 12 min for 
different wear criteria VBT for which the second 
singularity is identified. 

 

When the model constants are determined on the basis varying wear levels, and wear-level values of less than 
0.20 mm are involved, the coatings that are employed can affect the results appreciably, as can be seen in Fig. 9. 
When higher wear-value levels, in excess of 0.20 mm, are involved, the effects of the tool coating decline, as can 
be noted in comparing Fig. 12 with Fig. 13 and illustrated in Fig. 16. Use of the Archard-Colding equation as 
presented in Eq. 18, and of the Colding equation as presented in Eq. 14, in connection with different tool lifetime 
criteria VBT, provides the possibility of recreating the wear curves applying to different measurement series in 
the manner exemplified in Fig. 15. 
 

In Fig. 15, the modelled wear-process curve pertaining to measurement series 8 is compared with the 
corresponding curve based on the experimental data obtained for that series. For the data in the study as a whole 
that was considered, there was found to be a modelling error of about 1 % based on averaging the εrr values 
presented in Table 4 and Table 5. Through use of Colding’s equation, the recreated tool wear curve, based on the 
modelling of each of the wear criteria considered, could be obtained. Use of the combined model based on the 
Archard-Colding equation made it possible to recreate graphically the combined wear curve involved through 
successively following the different VBTm curves, VB then being set equal to VBTm (●). The dark green point (●) 
represents the case in which Colding’s constants are determined on the basis of measurement series in which the 
wear criterion VBT = 0.30 mm is reached in each of them. There, the Archard-Colding equation and Colding’s 
equation for VBRef become equivalent to one another in the result they provide. 
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Fig. 12. The Archard-Colding equation described at 
the VBT-he plane, the cutting speed serving as a 
parameter for the tool lifetime T = 12 min, based on 
VBT = 0.20 mm. 

Fig. 13. The Archard-Colding equation described at 
the VBT-he plane, the cutting speed vc serving as a 
parameter for the tool lifetime T = 12 min, based on 
VBT = 0.30 mm. 
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Fig. 14. Colding’s singularity shown as a function of 
the wear criterion VBT that is selected and of the 
average wear level VBTm. 

Fig. 15 The recreated wear curve VB shown as a 
function of the tool engagement time t as based on 
Colding’s equation (○), the Archard-Colding equation 
(the unbroken lines, ● and ●) and experimental data 
(□). 
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Fig. 16 The Archard-Colding equation for a tool lifetime of T = 12 min and the effects of the tool coating for low 
values of the wear criterion VBT. 

 
 

7. CONCLUSIONS AND FURTHER WORK 
 

Colding’s equation functions well in most respects in its use for determining the lifetime of a cutting tool. At the 
same time, it has the clear disadvantage of at least 5 complete measurement series in which the exact point at 
which the wear criterion is located being reached in order for the constants that are involved to be determined in 
a completely adequate way. In cases in which one fails to reach the wear criterion or passes it, an extrapolation 
or interpolation of the engagement times obtained is needed in order for these to be of use, a procedure that can 
produce a certain degree of error. Employing the approach instead of combining Archard’s equation with 
Colding’s equation makes it possible for different wear criteria to serve as a basis for determining the model 
constants. The combined model thus produced enables one to take account of variations in the cutting resistance 
of the work material (the material’s characteristics) and variations in the tool geometry in terms of the cutting-
edge radius rβ and the clearance angle α. This new model can also be employed in connection with different 
flank wear criteria, although the model’s very considerable flexibility in comparison to Colding’s model has the 
disadvantage of providing less precision for low values of the wear criteria, the characteristics of the coating of 
the tool having a much stronger effect there. 
 

A number of results obtained in addition to those just summarized are the following: 
 

 It is fully possible to combine Archard’s equation with Colding’s equation (to form the, Archard-Colding 
Eq., A-C.) so as to take advantage of what both have to offer in modelling tool lifetimes on the basis of 
different sets of cutting data. 

 Use of this A-C Eq. also makes it possible to recreate, as a function of the tool engagement time, the wear 
development that occurs. 

 A model based on the A-C Eq. can be used in studying the effect the coating of the tool has, the functions it 
fulfils and the wear development process it is subjected to. 

 Having introduced the wear criterion VBT into the A-C Eq. as an additional variable is a decided gain 
through its providing the model a further singularity (a singularity line), increasing its usefulness. 

 

A variety of directions that additional development of the Archard-Colding equation could take can be seen. In 
particular the following: 
 



 Studies of variations in the workpiece material and of the effects on tool lifetime these can have. 
 Studies contributing to an understanding of the singularity inherent in the Colding and the Archard-Colding 

equation and its significance in connection with both equations in metal-cutting terms. 
 Application of the Archard-Colding equation to workpiece materials of other types and within many other 

areas of application. 
 Carrying out studies similar to the present one concerning cutting media of other type´s. 
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