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Abstract

The purpose of the presented garbage collector interface is to provide a
universal interface for many different implementations of garbage collect-
ors. This is to simplify integration and exchange of garbage collectors,
but also to support incremental, non—conservative, and thread safe imple-
mentations. Due to the complexity of the interface, it is aimed at code
generators and preprocessors. Experiences from ongoing implementations
indicate that the garbage collector interface successfully provides the ne-
cessary functionality in an efficient way.

1 Introduction

The use of automatic memory management, usually referred to as garbage collec-
tion carried out by a garbage collector, GC, has proven to improve productivity
and quality in software development. Productivity increases up to 200% have
been reported, and the quality improvement (without additional extensive test-
ing) is significant when programming is performed using a safe language. By a
safe language we mean that all possible executions are expressed by the program
itself, which in turn requires automatic management of memory (that is, a GC).
When it comes to real-time systems, there is a widely spread misconception
that the presence of a GC results in unpredictable timing and too large memory
footprint. In our earlier work we have shown that efficient real-time GC, RTGC,
is possible, with some assumptions on compilers and run—time system properties
[Hen98]. However, for the more general case with a fully preemptive natively
multithreaded run—time system, and considering a desire to interface code writ-
ten in a safe language (like Java) with external code written (or created via code
generation tools) in a standard language such as C, there are (to our knowledge)
no published results or available products that provides RTGC. To make a mod-
ern language like Java useful in the embedded world it is important to enable
clear and complete access to the workings of the real-time garbage collector.
The garbage collector interface, GCI, enables many different garbage col-
lector algorithms to be interchanged in an application, e.g. thread safe, incre-
mental, and non—conservative implementations. Currently, many systems with
support for automatic memory management suffer from the penalties of old



and conservative implementations. For example, the popular GNU C—compiler,
gee, supports an old and conservative “stop—the—world” garbage collector (see
[gcc00]) invented by Boehm and Weiser, [BW88]. Benefits from other garbage
collectors may not directly easily be supported. However, some applications do
not need the advantages of modern garbage collectors. The garbage collector
interface covers these algorithms as well.

The interface will support common garbage collecting algorithms in existence
today, and hopefully be extensive enough to cover future garbage collector im-
plementations. The GCI supports multithreaded systems. Future work will be
aimed to cover multiprocessor systems, networks, arrays, matrices and garbage
collector configuration. Our implementation of GCI is written in C.

Currently, the GCI is complex and mainly targeted towards code generators
and preprocessors. To enable garbage collection to the programmer in a simple
way, the compiler has to be modified.

1.1 Garbage Collection

As soon as manual memory management is introduced to an application, a GC
is often desirable to avoid nasty bugs such as dangling pointers or pessimistic
memory deallocation that result in low utilisation of the memory. Many applica-
tions allocate more memory than is deallocated. They may run out of memory if
deallocation is not performed correctly. Inevitable crashes and low performance
are imminent if those problems are not solved.

Automatic memory management relieves the programmer from the error
prone deallocation of memory. Optimally, memory should be deallocated when
it will never be utilised again. However, contemporary garbage collector al-
gorithms assume that allocated memory areas, objects, may be deallocated when
it is impossible to access the objects. That condition is true when there are no
references' to the object. The garbage collector must analyse every live ref-
erence to draw the conclusion that there are no references to an object. The
complete memory area where every object resides is called the heap.

The locations of the references in an object have to be described. The
description is often stored in the layout of the object, together with information
that is common to all the objects, instances, created from the layout, e.g. the
object size. One alternative is to store the location of the references and the
object size inside the instance itself at the expense of larger instances. However,
the performance may increase as the access to elements inside objects can be
made faster.

The following sections describe how the requirements of GC algorithms, and
multithreaded systems are reflected in the GCI. Table 1 shows the different
layers of the GCI. Code examples show how the GCI will influence memory
management, first from the simpler view of the garbage collector, and then
from the more complex multithreaded perspective (which is also the utilised
interface). The specification of the GCI is described in Section 4. Results from
utilisation of the GCI are covered in Section 5 followed by conclusions that
summarises the article.

IThe difference between a pointer and a reference is that the reference may only refer to
objects while pointers may point to anything, e.g. an integer value or even outside the scope
of the memory.



The utilisation view of the interface
User layer
Thread layer
Debug layer
Implementation layer
The view of the garbage collector algorithm

Figure 1: The garbage collector interface is structured as layers even though it
is only accessible from the user layer.

2 Interface to the Garbage Collector

The lowest layer of the GCI handles references. It is through the references
that objects can be utilised. It is crucial for a GC to maintain the references
correctly. This section describes the situations where reference handling occurs
in an application.

2.1 References

It is essential that the garbage collector keeps track on all references in an
application at all time. Otherwise, the GC cannot guarantee that the memory
management is performed correctly.

To keep track of all references, their declaration, utilisation, and termin-
ation must be informed to the garbage collector. The implementation layer
of the GCI mainly targets the supervision of references in an algorithm inde-
pendent way. All statements that handle references are covered by C-macros.
Figure 2, Figure 3, and Figure 4 shows a small C—program that utilises manual
memory management and the equivalent program written with consideration to
the implementation layer of the GCI.

The example presumes that preemption does not occur arbitrarily within
the code. Still, preemption could be supported at specific and safe preemption
points that are manually inserted. During preemption, the GC has to have
complete control over the locations of all the references in the application, i.e.
the reference graph has to be consistent.

The reference graph spans all the reachable references, and objects, in the
application. The entry references of the graph are called roots, and they are
stored in a root set. All the objects that can be reached from the roots directly
or indirectly via references inside objects, are alive since they may be utilised
by the application. The other non-reachable objects cannot be utilised from
the application. They are reclaimed.

It is important to keep the reference graph consistent where it may be ac-
cessed from the code, to circumvent unpredictable and erroneous program beha-
viour. The modifications of the reference graph must be performed undisturbed.
The program that utilises objects, i.e. the mutator, and the GC mustn’t modify
the graph at the same time to avoid inconsistencies of the live references. The
write barrier prevents the mutator to mutate the reference graph so it interferes
with the workings of the GC. The read barrier hinders the mutator to access
references that are not up—to—date. Preemption is treated in Section 3, where
the thread layer of the GCI is described.



There exist conservative garbage collectors that loosen the requirement of
control over references. In conservative GC, every number that resembles a ref-
erence is treated as such; an explicit reference graph is omitted. The unpredict-
able and unreliable behaviour of conservative garbage collectors renders them
unsuitable for real-time applications. Conservative GC are not considered fur-
ther in this paper since the usage of them may result in, for example, memory
leaks. However, even the conservative GC can be completely covered by the
GCI. In fact, only a subset of the GCI is required to fully cover the conservative
approach.

typedef struct { typedef GC_STRUCT_BEGIN(Object)
struct Object* ol; GC_STRUCT_REF (Object ol);
int i1, i2; GC_STRUCT_VAR(int, il);
struct Object* o02; GC_STRUCT_VAR(int, 1i2);
struct Object* 03; GC_STRUCT_REF (Object 02);
int i3; GC_STRUCT_REF(Object 03);

} Object; GC_STRUCT_VAR(int, i3);

GC_STRUCT_END (Object) Object;

Figure 2: A C-structure is converted to an object description in the garbage
collector interface.

2.2 Implementation Layer Utilisation

The implementation layer of the garbage collector interface focuses on super-
vising the references in a program. All garbage collectors require support for
reference handling. Our approach with the GCI is to describe C—macros that
hide the reference utilisation. The following subsections describe the types of
reference handling in GC. The macros that are described in the subsections are
utilised in the code examples in Figure 2 (object declaration), Figure 3 (global
reference), and in Figure 4 (main program).

This section handles single threaded applications. Consideration about pree-
mption in multithreaded systems is studied in detail in Section 3.

The macros of the GCI can be divided into different categories due to the
functionality. The categories and the macros of the GCI is shown in Table 1.
The categories Read barrier and Write barrier are related to common GC char-
acteristics (copying and incremental). A detailed description of various garbage
collector algorithms is covered in the “Garbage Collection” book by Richard
Jones and Rafael Lins, [JL96]. The following subsections describe the various
categories:

struct Object* saved; GC_STATIC_REF(Object, saved);

Figure 3: The global variable saved is declared as a reference to an object of
type Object.



int main() { int main() {

Object* ri; // Initialisation
Object* r2; GC_INIT(10000); // Initialise GC and heap
Object* r3; GC_STATIC_BEGIN(saved); // Register global reference as root
// Allocate objects // Register the local references as roots
r2 = (Object*) malloc(sizeof (Object)); GC_ROOT_BEGIN(Object, ri1);
r3 = (Object*) malloc(sizeof (Object)); GC_ROOT_BEGIN(Object, r2);
GC_ROOT_BEGIN(Object, r3);
// Access objects GC_ROOT_BEGIN(Layout, layout); // Layout is an internal
Tl =125 // structure describing layouts

r3->refl = 12;
// Create layout for Object

// Deallocate objects GC_NEW_LAYOUT (layout, Object, 3
free(r2); GC_LAYOUT_FIELD(Object, o1),
free(rd); GC_LAYOUT_FIELD(Object, 02),
GC_LAYOUT_FIELD (Object, 03));
return 0;
} // Instantiate new object from the ’layout’

GC_NEW (ref, layout);

// Allocate objects

GC_NEW(r2, layout);

GC_NEW(r3, layout);

// Access objects

GC_ASSIGN(ri, r2); // vt = r2
GC_SET_REF (r3, refl, r2); // ri->reft = r2
// Deallocate objects

// Wo emplicit deallocation is necessary

// It is performed by the garbage collector
// Remove roots from the root set
GC_ROOT_BEGIN(layout) ;

GC_ROOT_END (r3) ;

GC_ROOT_END (r2) ;

GC_ROOT_END(r1) ;

// Termination of garbage collector and global variables
GC_STATIC_END (layout) ;

GC_EXIT;

return 0;

Figure 4: The C-program example, to the left, utilises manual memory man-
agement. The other equivalent program is converted to the lowest layer of the
garbage collector interface, i.e. without preemption. The focus in this layer is
to handle all the references in a program.

Allocation

The primary and desired functionality of memory management is to allocate
memory areas. Automatic memory management avoids burdening the program-
mer with the problems of deallocation. All the other macros, besides the alloc-
ation macro, are actually undesired, but necessary for the GC to handle the
heap. Allocatable memory areas, objects, are described by their layouts. One
of the primary functions of the layout is to locate the references in objects. All
objects that are created from the same layout contain references at the locations
that are described in the layout. In GCI, objects are allocated by GC_NEW and
layouts are created by GC_NEW_LAYOUT.

The objects described by the GCI are as C—structures. However, the contents
of the structure must be modified in a way that the garbage collector recognises.
An object head is added in the structure that often contains information about
the layout of the object, and other garbage collector specific information.

The layout is itself an object, with a reference to a meta layout. The apparent
infinite number of layout referencing is actually terminated in a meta meta layout
that describes not only its children but also itself (see Figure 5).



Garbage Collection Control

These macros handle the initialisation and destruction of the heap and the
garbage collector. They have to be utilised only once during the lifetime of an
application. The size of the heap is given as an argument to GC_INIT.

Reference Handling

The locations of the references are essential for the GC. Macros that are mainly
related to the design of an object also contain information about the location
of the references inside objects.

The macros in this category are divided into two parts: the declaration of
objects and the creation of layouts. Ideally, there should only be the declaration
of objects since the declaration contains all the locations of the references inside
the object. The layout creation should be hidden from the programmer inside
the object declaration. However, the macro—language is limited and forces ex-
plicit code for the layout creation. The example in Figure 2, the conversion of
an ordinary C—structure to the GCI can be seen. The locations of the refer-
ences inside the object are described during the creation of the layout (see the
example in Figure 4).

Reference Declaration

The declaration of references must be covered by GCI because a reference has
different outlooks in different GC algorithms. An important step in the declar-
ation is to clear the location of the reference from old remnants. Before the
reference is added to the reference graph, it must contain a valid reference. Old
data could violate that criterion.

If the application is non—preemption, then references that are not registered
may be utilised as long as the heap is kept intact, i.e. as long as the garbage col-
lector does not perform any work. In systems with a single thread, the garbage
collector performs work only during memory allocations. An unregistered ref-
erence is valid until a new object is allocated, in a non—preemptive application.
Afterwards, it may be erroneous.

Reference Graph Modification

All the situations where references are added, removed, or changed, must be
under the supervision of the GC. The reference graph is modified as roots are
added or removed. Reference assignments also change the graph. References in
the graph are also set when a new layout is created. Since these modifications
of the reference graph may be implemented in various ways, it is covered by the
GCL

The Reference Graph Modifications are covered by the write barrier as pree-
mption is added to the GCI. Hence the name Write Barrier in the Table 1.

Reference Graph Access

When values are accessed inside objects, the reference graph is also accessed.
Since the implementation of objects may vary due to the GC algorithm, the
implementation of the object access should also be hidden within the GCI.



The reference graph is accessed when references are compared, and when
references are utilised in assignments. Access of values inside objects is the read
barrier in the multithreaded applications. Table 1 utilises the word read barrier
to be consistent with the preemptive layer.

3 Interface to the Code Generator

The utilisation of the complete layer of the garbage collector interface is intended
for code generators (due to the high complexity). Only small programs like
device drivers, or test applications should expose the GCI to the programmer.
This layer covers preemption, i.e. mutual exclusion, and debugging. The thread
and/or the debug layer may be switched off to suit the requirements of the
application.

3.1 Mutual Exclusion

In preemptive multithreaded applications, the garbage collector can be inter-
rupted anywhere during its execution. Two types of problematic interruptions
may occur. First, the garbage collector algorithm may be interrupted during
critical regions, e.g. memory copy. Second, interruption may occur while unre-
gistered references are temporarily stored in processor registers, i.e. outside the
reference graph.

The first type is handled by prohibition of rescheduling during critical re-
gions. The garbage collector has to be supported by the surrounding system
with procedures to enable and disable rescheduling. We will not discuss ex-
actly where those critical regions are located in the GC code since they are
algorithm specific. However, it is important to notice the necessary support of
the surrounding system.

The second interruption is handled by the GCI and its overhead is hidden
from the programmer. Several critical regions (all that we could think of) are
covered by the interface. For example, the GC could be locked while processor
register references are outside the reference graph. The garbage collector could
be forced to write through the references to their memory locations, i.e. to the
reference graph, before it is allowed to perform other duties. No other garbage
collector work should be permitted (the GC is disabled) while references reside
only in registers. Nevertheless, rescheduling is still allowed.

Another solution is to keep track of the reference registers, so that the
garbage collector is able to identify all the references in an application at all
times. Register references can be maintained by a register map, e.g. a specific
register may be sacrificed to support the map. The compiler may be modified
to produce the map code. More information about how a compiler may support
garbage collection can be found in a paper written by [JR98]. The reference
register map alternative has not been implemented yet for the GCI.

An example of a C—program that is adapted to the complete GCI is shown
in Figure 2 (object declaration), Figure 6 (global reference), Figure 7 (function
implementation), and Figure 8 (main program). The macros maintain disabling
and enabling of the garbage collector due to preemption.

Critical regions where references reside in registers, occurs when roots are
registered, new objects are created, and when a value inside an object is set



or fetched. Another situation where there may exist live references outside
the reference graph is during procedure calls with reference parameters. The
parameter references must be registered before the garbage collector is enabled.
The garbage collector is disabled prior to procedure or function call. An example
of the GCI function call macro is shown in Figure 8, where the function saveref
is called with a reference parameter.

Nested expressions are not supported by the GCI macro to avoid compiler
generated unregistered temporary reference variables. Both the destination and
source references are arguments to the macros. Therefore, they cannot be nes-
ted. For example, the destination reference in an assignment is given as an
argument to the GC_ASSIGN—macro together with the source reference. Tem-
porary unregistered references shouldn’t be generated by the compiler since the
programmer is forced to declare all the temporary variables, and register them
as roots.

Thread Control

The GC must be informed of the roots that every thread has. Ordinarily, the
roots reside on the stack of the thread, and every thread has been allocated
a stack. However, the implementation of how the roots of the threads are
supervised, is hidden in the GCI.

Function Calls and Preemption

During an ordinary procedure or function call, the reference parameters are
copied into locations determined by the compiler. The reference parameters
must be registered as roots before the reference graph is up—to—date. Between
the function call and the registration of the reference parameter, the GC must be
disabled. The same situation arises if a function returns a reference. The GCI
handles the return of a reference by explicitly emphasising the assignment of
the return reference to a registered reference location. In Figure 7, the function
saveref takes a reference argument and returns a reference to an object of
the type Object. The complete procedure and function declaration is covered
by the GCI, and extended with macros for parameter registration, function
entrance, and function return. The macro that handles function return performs
deregistration of the reference parameters.

Calls to functions that either return reference parameters or values have to
be rewritten with the GCI macros: GC_REF_FUNC_CALL, or GC_VAR_FUNC_CALL,
respectively. The macros also assigns the return value to the specified destina-
tion. If a procedure is called, GC_PROC_CALL is utilised.

The GC is disabled by the call macros and enabled, after the registration of
reference parameters, with GC_FUNC_ENTER. As function returns a reference, the
GC is disabled by the GC_RETURN—macro. The execution continues at the macro
GC_FUNC_LEAVE, where the parameters are unregistered. Afterwards, the actual
reference is returned and the GC is enabled by the function calling macro. A
complete example of the GCI calling procedure is shown in Figure 7 and in
Figure 8.



Write Barrier

The main purpose of the write barrier is to prevent mutations of the reference
graph while the GC is working with it. Mutations happen when roots are added
or removed, and during allocations. Another situation where the write barrier
is necessary is during reference assignment. For instance, a reference that has
been traversed by the GC, mustn’t refer to an untraversed object. It should be
noted that the write barrier is only relevant in copying and incremental garbage
collectors.

Read Barrier

When values are accessed inside objects, the reference graph is accessed. Since
the implementation of objects may vary due to the GC algorithm, the im-
plementation of the object access should also be hidden within the GCI. The
reference graph is also accessed when references are compared, and when refer-
ences are utilised in assignments. Assignments have arguments that cover both
the right value (access) and the left value (mutation). The reason for that is to
prevent nested macro utilisation. The programmer is explicitly forced to add
temporary references to hold intermediate results. This intentional overhead is
implemented in the GCI to avoid unregistered temporary variables. Another
reason is to limit the periods where the GC is disabled. Nested utilisation of
macros that disable the GC could become very deep in automatically generated
code, thus locking the GC for a long time. This contradicts the requirement
of predictability in real-time programming. Nested locking also generates an
overhead to determine when unlocking should occur. The number of unlocks
must correspond to the number of locks before the GC can be enabled.

3.2 Debug Layer

The intricate and complex nature of garbage collection requires support for code
analysis in the garbage collection interface, independent of the GC algorithm.
This is implemented in the debug layer of the GCI. The debug checks may
be switched off to remove the debug code overhead in, for example, a release
version. The checks include, for instance, correct deallocation of roots, correct
state of the garbage collector, and assertions that the references and values
are well formed. The debug layer can easily be extended with more advanced
analysis and assertions. If an error occurs, the type of error, the state of the
garbage collector, as well as its location, are reported. The checks and debug
reports effectively support implementation of new GC algorithms.

The state of the garbage collector is supervised by code in the debug layer
of the GCI. They are utilised to determine if the GCI is utilised in the right
context, and in the right order. For instance, the garbage collector cannot be
utilised before it has been initialised. There are checks that ensure that the
deregistration of roots are performed in the reverse order of their registration.
Another complex situation where the order is significant is during procedure
or function calls. The state of the garbage collector is utilised to determine if
procedure or function calls are performed correctly.

In order to supervise the references, a separate debug graph of references
is maintained by the debug layer. All reference declarations are extended with
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Figure 5: The layout structure shows how the objects and layouts in a program
are connected. Layouts are also treated as objects.

extra references to support the debug graph. The extra references enable checks
to ensure that references are live, and well formed. A well-formed reference
refers to something that resembles an object.

If more memory is allocated than the size of the heap, it is important to
inform the program user. However, that check is omitted from the debug layer
because it is related to the garbage collector algorithm and not to the GCI.

3.3 Generation of Reference Locations

The locations of references in objects are important to describe. The descrip-
tion is stored in the layout of the object. The new layouts are connected to
an internal meta layout structure that describes the reference locations inside
layout objects. Figure 5 shows a more detailed description of the meta lay-
out structure. An interesting detail is the description of the meta meta layout
that describes its children as well as itself. More details about the meta layout
description can be found in [Ive02].

The description of the location of references in an object must be independent
of alignment? to ensure that it is possible to utilise the garbage collector on
different platforms.

Figure 5 contains four objects. Three of the objects are instances of the
layout named layout and the fourth object is an instance of layout3. All the
layouts created in the program are described by their meta layout, which is in
its turn described by the meta meta layout. The meta meta layout describes

2The internal organisation of C-structures does not have an unambiguously defined location
of the structure entries. Furthermore, the size of pointers may vary on different platforms.
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struct Object* saved; GC_GLOBALS;
GC_STATIC_REF (Object, saved);

Figure 6: The global variable saved is declared as a reference to an object of
type Object. Debugging is supported by the GC_GLOBALS—macro.

Object* saveref(int i, Object* 1) { // Declare a function named ’saveref’ that returns a reference
if ( !saved ) { // The function has two parameters: an integer and a reference
r->o01 = saved; GC_REF_FUNC_BEGIN(Object, saveref, int i, GC_PARAM(Object, 1))
r->03 = saved; // Declare and register the parameter
} GC_PARAM_BEGIN (Object, r);
saved = 1; // Hark that the function’s code follow
{ GC_FUNC_ENTER;
Object* tmp;
tmp = saved; if ( !GC_IS_NULL(saved) ) { // Check if ’saved’ is not set
while ( !tmp ) { GC_SET_REF(r, ot, saved); // Set entry ol in r to saved
int val; GC_SET_REF (r, o3, saved); // Set entry 03 in r to saved
}
val = tmp->il; {
tmp = tmp->ol; GC_BEGIN_ROOT (Object, tmp);
GC_ASSIGN(tmp, saved); // Set tmp to saved
} while ( !GC_IS_NULL(tmp) ) { // Check if tmp is not set
return r; int val;

}
GC_GET(val, tmp, i1);
GC_GET_REF (tmp, tmp, o1);
}
GC_END_ROOT (tmp) ;
GC_RETURN_REF (r) ;
// Code here is never accessed
GC_FUNC_LEAVE;
GC_PARAM_END(r) 3
GC_REF_FUNC_END (Object, saveref);

Figure 7: A function implementation with the GCI.

itself and its children. The meta array layout is intended to describe arrays,
however that is still ongoing work.

4 Garbage Collector Interface Specification

The Garbage Collector Interface, GCI, enables a common interface to garbage
collector algorithms for multithreaded applications on single processor systems.
The purpose is to support code generation with a unified way to express auto-
matic memory management, and to incorporate garbage collection without deep
knowledge of garbage collector and their algorithms. GC implementations can
easily be linked together with software adapted to the GCI. The list below de-
scribes the utilisation of all the details of the GCI. The interface consists of
C—macros.

Object Allocation

The allocation of an object is performed by the following macro.

GC_NEW(var, layout) Create an object from the description named layout
and set the reference variable var to refer it.

Object Layout Declaration

The following macros are utilised to describe the structure of an object; a new
object type is declared.

11



int main() { GC_INIT(10000); // Initialise GC and heap

Object* refi; GC_THREAD_INIT; // Initialise this thread
Object* ref2; GC_STATIC_BEGIN(saved); // Register the global ref as root
refi = (Object*) malloc(sizeof(Object)); // Declare and register references
GC_ROOT_BEGIN(Object, refi);
int i GC_ROOT_BEGIN(Object, ref2);

GC_ROOT_BEGIN(Layout, layout);
for (i=0; i<1000000; i++) {

Object* r = (Object*) malloc(sizeof (Object)); // Create the description (layout) of Object

r->i1 = i GC_NEW_LAYOUT (layout, Object, 3

ref->o1 = rj GC_LAYOUT_FIELD(Object, o1),

if ( i%100000 == 0 ) { GC_LAYOUT_FIELD(Object, 02),

ref2 = saveref(i, ref1); GC_LAYOUT_FIELD(Object, 03));
}
3 GC_NEW(ref, layout);  // Create new ’layout’-object
}
return 0; {
int i;

for (i=0; i<1000000; i++) {
GC_ROOT_BEGIN(Object, r);
GC_NEW(r, layout); // Allocate new ’layout’-object
GC_SET(r, it, i);
GC_SET_REF (ref, o1, 1);
if ( i%100000 == 0 ) {
GC_REF_FUNC_CALL(ref2, saveref, i, GC_PASS(ref1));

}
GC_ROOT_END(r) ; // Deregister ’r’ as root
}
}
GC_ROOT_END (1ayout) ; // Deregister references as roots

GC_ROOT_END (ref2) ;
GC_ROOT_END (refi) ;

GC_STATIC_END(saved); // Deregister static reference
GC_EXIT(); // Deallocate heap and disengage
// the garbage collector

return 0;

int main() {

Figure 8: A complete program before and after the adaptation to the garbage
collector interface
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Table 1: The table shows the contents of the lowest layer of the GCI in connec-
tion to the functionality categories.
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Table 2: The table shows the contents of the GCI added due to the thread and
debug layer of the GCI. The contents of the GCI is shown in connection to the
functionality categories.

GC_STRUCT_BEGIN(name) Mark the beginning of an object declaration. The
name of the object type is name.

GC_STRUCT_END (name) Mark the end of an object declaration. The described
object is named name.

GC_STRUCT_REF (type, name) Declare a reference entry in the object. The type
of the reference is type. The name of the reference is name.

GC_STRUCT_VAR(type, name) Declare a non—reference entry in the object. The
type of the reference is type. The name of the reference is name.

The layout describes objects. It contains information common to all objects
that are created from the layout. The information may be the object size and
where the references are located inside the object.

GC_NEW_LAYOUT (1ayout, object, #desc, descl, ...) Create alayout named
layout for the reference type object. The number of references inside the
object is equal to #desc. The locations of the references inside the object
are described by the descriptors, i.e. descl, .... There are two types of
descriptors:

GC_LAYQUT_FIELD(object, field) The reference named field is in the
type object. Note: object is the same type as stated in the enclos-
ing GC_NEW_LAYQUT-block.

GC_LAYOUT_ARRAY(field) The elements after the field named field are
located in an array. The array may be of different sizes and the
number of entries in the array is stored in the object and not inside
the layout.
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Initialisation and Termination

These macros concern the initialisation and destruction of the garbage collector,
and the threads that are under the supervision of the GC. They are utilised once
for each application, or thread.

GC_GLOBALS Declaration of internal garbage collection global variables is handled
by this macro. It must always be declared once in a program adapted to
GCI, whether or not global references are utilised or not.

GC_INIT (heapsize) Initialise the garbage collector (the internal meta structure
is created) and set the size of the heap to heapsize. This macro is utilised
once and before the first utilisation of the heap.

GC_EXIT Remove the heap and shut down the garbage collector.

GC_THREAD_INIT Inform the garbage collector of this thread. The roots inside
the thread are made known to the garbage collector.

GC_THREAD_EXIT Inform the garbage collector that the thread no longer has to
be under the supervision of the garbage collector.

Reference Declaration

Declaration of static (global) and local reference variables are covered with these
macros. Registration and deregistration is also handled.

GC_STATIC_REF (type, name) Declare a static reference variable named name
with the type type.

GC_STATIC_BEGIN(var) Make the static reference variable named var known
to the garbage collector. The reference will be registered as a root.

GC_STATIC_END(var) Remove the registered static reference variable named
var from the supervision of the garbage collector. The variables must be
removed in the reverse order of registration.

GC_ROOT_BEGIN(type, var) Declare a reference variable named var with the
type type and make the reference variable known to the garbage collector.
The reference will be registered as a root.

GC_ROOT_END(var) Remove the registered reference variable named var from
the supervision of the garbage collector. The variables are removed by the
GCI in the reverse order of registration.

Function Utilisation

These macros concern procedure and function declaration and the registration
that concern references. The garbage collector must be disabled during a proced-
ure or function call that contains reference parameters, and while the function
returns a reference. Reference parameters must be registered as roots before
the function is entered.

GC_PROC_CALL (proc_name, ...) Call a procedure named proc_name. Argu-
ments are stated after the proc_name (at the ellipsis).
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GC_REF_FUNC_CALL(result, func_name, ...) Call afunction named func_name
that returns a reference. The reference is stored in the reference variable
result. Arguments are stated after the func_name (at the ellipsis).

GC_VAR_FUNC_CALL(result, func_name, ...) Callafunction named func_name
that returns a non-reference value. The value is stored in the variable
result. Arguments are stated after the func_name (at the ellipsis).

GC_PASS(name) Inform the GC that the argument named name in the procedure
or function call, is a reference.

GC_PROC_BEGIN(proc, ...) Declare a procedure named proc. Parameter de-
clarations are written after the name of the procedure (ellipsis).

GC_REF_FUNC_BEGIN(type, func, ...) Declare a function named func and
that returns a reference of type type. Parameter declarations are written
after the name of the function (at the ellipsis).

GC_VAR_FUNC_BEGIN(type, func, ...) Declare a function named func and
that returns a non-reference value of type type. Parameter declarations
are written after the name of the function (at the ellipsis).

GC_PARAM(type, name) Declare a parameter named name that is a reference to
an object of type type.

GC_PARAM_BEGIN(param) Inform the garbage collector of the reference para-
meter param.

GC_FUNC_ENTER Inform the garbage collector of the start of the procedure or
function code. All the reference parameters must be registered before this
point. Note: The garbage collector is enabled here in a multithreaded
application.

GC_RETURN Return from the procedure. Execution will continue at GC_FUNC_LEAVE.

GC_RETURN_REF (result) Return the reference result from the function. Ex-
ecution will continue at GC_FUNC_LEAVE.

GC_RETURN_VAR(result) Return the non-reference value result from the func-
tion. Execution will continue at GC_FUNC_LEAVE.

GC_FUNC_LEAVE Mark the end of the function code. Reference parameters
should be deregistered after this mark.

GC_PARAM_END (param) Deregister the reference parameter param. They must
be deregistered in the reverse order of registration.

GC_PROC_END (proc) Mark the end of a procedure declaration named proc.

GC_REF_FUNC_END(type, func) Mark the end of a function declaration named
func that returns a reference of the type type.

GC_VAR_FUNC_END(type, func) Mark the end of a function declaration named
func that returns a non-reference value of the type type.
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Reference Access
The utilisation of references, or reference access, is covered by these macros.

GC_ASSIGN(destination, source) Make the reference named destination
refer to the same object that the reference named source refers to.

GC_ASSIGN_NULL(ref) Set the reference named ref to nothing.

GC_IS_NULL(ref) Check if the reference named ref is referring to nothing.
Return zero if the reference named ref is referring to an object, otherwise
return a non—zero value.

GC_EQUAL(res, refl, ref2) Check if the references named refl and refi
refer to the same object. Store the result in the variable res. If the
equivalence is not valid, the resulting variable is set to zero. Otherwise, a
non-zero value is stored.

Field Access

These macros cover the access to fields inside objects. The macros are divided
into value macros and reference macros, because they are treated differently.

GC_GET (var, object, field) Set the variable var to the value of the field
named field inside the object named object. Note: This is similar to
the C—code, var = object->field.

GC_SET(object, field, value) Set the field named field inside the object
named object to the value named value. Note: This is similar to the
C—code, object->field = var.

GC_GET_REF (var, object, field) Make the reference variable named var refer
to the same object as the reference named field that is inside the object
named object. Note: This is similar to the C—code, var = object->field.

GC_SET_REF (object, field, ref) Make the reference named field inside
the object named object refer to the same object as the reference named
ref is referring to. Note: This is similar to the C—code, object->field
= ref

GC_SET_NULL(object, field) Set the reference named field inside the object
named object to nothing.

5 Results

The GCI stems from many earlier GC implementations and different require-
ments, e.g. to verify real-time GC implementations. For the GCI specifically,
almost the complete interface has been implemented as an incremental mark—
compact GC, in a C—code generator for the Caltrop system (model based in-
tegration of embedded software), [CEJWO02]|, [Wer02]. Some macros are not
completely implemented in the code generator, but the essential sections have
successfully been implemented, i.e. the generated C—code is solely utilising the
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GCI. Preemption may be executed anywhere outside the critical regions of the
GC.

The GCI serves as an important role in the generation of code in the Java—
to—C code converter written by Anders Nilsson, [Nil]. The Java—to—C converter
is aimed towards generation of C—code for various tiny embedded systems from
portable Java source code. We are in the process of utilising the GCI to ac-
complish the necessary portability in the Java—to—C converter. The ability to
change, modify, or implement GC algorithms for tiny embedded systems is cru-
cial because of the restricted environment.

The lower layer of the GCI is implemented as the essential memory manager
in a Java Virtual Machine research project called Infinitesimal Virtual Machine,
IVM, [Ive02]. Java programs constitute of Java bytecodes that are interpreted
by the IVM. In the current IVM implementation preemption points are inserted
after the execution of every (or a number) of bytecodes. Currently, preemption
cannot occur inside native C—code inside the IVM. Ongoing work will implement
the preemption layer of the GCI in the IVM.

Three different GCI adapted (lower layer) garbage collector implementations
may be interchanged within the IVM. A command to the installation program
of the IVM selects the desired garbage collector. The implemented garbage
collectors are an incremental mark—compact, an incremental batch—copy mark—
sweep, and a combination of the two previously mentioned garbage collectors.

A simple malloc—free implementation has also been implemented in the GCI.

6 Conclusions

There is a common misconception, both in academia and in the software in-
dustry, that the presence of GC hinders software to exhibit real-time properties.
From earlier work we knew that that is not true, which is fortunate since the
use of GC is necessary for the use of safe languages. In particular, it is highly
desirable to enable the use of a safe language, such as Java, in the embedded
world where many systems are called critical.

However, opposed to desktop or server computers, embedded computers
show a great variation in type of CPU, amount of memory, timing require-
ment, IO interfaces, and the like. Therefore, despite the fact that most CPUs
are embedded, we cannot expect standard Java (or RT-Java) platforms to be
available. Instead, we have to find techniques to provide Java on top of other
languages. Instead of Java, one could of course do the same thing for C#, but
Java is the natural platform independent safe programming language. As the
low-level language, C is the only reasonable choice since it is the only language
available for all (7) types of hardware, and its properties turned out to suit our
purposes well. Thus, for the success of proper object orientation in the embed-
ded world, it is crucial to find a generic and efficient GCI for different types of
execution scheduling.

To our knowledge, there has not existed such a GCI until now. Clearly, the
GCI is not intended for manual programming in the target C-language, even if
that can be done when writing small device drivers. Instead, the GCI should
primarily be used together with generated code (from Java or from modelling
tools), and in same cases by implementers of virtual machines and/or debugging
tools.
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After extensive investigations and prototyping, we claim that the proposed
GCI provides the needed functionality and without harming run—time efficiency
of timing properties significantly. In other words, we found it possible to define
a generic GC interface encapsulating the technical details of different GC al-
gorithms and run—time properties.
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