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Optimal Control of Hybrid Systems
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Abstract

This paper presents a method for optimal control of
hybrid systems. An inequality of Bellman type is con-
sidered and every solution to this inequality gives a
lower bound on the optimal value function. A dis-
cretization of this “hybrid Bellman inequality” leads
to a convex optimization problem in terms of finite-
dimensional linear programming. From the solution
of the discretized problem, a value function that pre-
serves the lower bound property can be constructed.
An approximation of the optimal feedback control law
is given and tried on some examples.

Keywords: hybrid systems, optimal control, linear
programming, dynamic programming.

1. Introduction

Hybrid systems are systems that involve interaction
between discrete and continuous dynamics. Such
systems have been studied with growing interest
and activity in recent years. One reason for the
interest is that modeling and simulation of a complex
system often require a combination of mathematical
models from a variety of engineering disciplines. The
structure of such submodels can be very different,
some can be discrete and some continuous.

Very often, the same phenomenon can be described
either by a discrete model or a continuous one, de-
pending on the context and purpose of the model [1].
Consider for example an asynchronous discrete-event
driven thermostat, which discretizes temperature in-
formation as {too hot, too cold, normal}.
Practical control systems typically involve switching
between several different modes, depending on the
range of operation. Even if the dynamics in each
mode is simple and well understood, it is well known
that automatic mode switching can give rise to
unexpected phenomena.

Basic aspects of hybrid systems were treated in [6],
[7], and [11]. For stability analysis, see [3, 8] and
references therein. The reformulation of an optimal

control problem in terms of linear programming has
previously been used for continuous time systems in
[9] and [10] and is closely connected to ideas of [12].
Related methods were discussed for discrete systems
in [2] and on an abstract level for hybrid systems
in [4].
This paper presents a novel computational approach
to optimal control of hybrid systems, based on ideas
from dynamic programming and convex optimiza-
tion. Discretization of Bellman’s inequality gives a
lower bound on the optimal cost in terms of linear
programming. A control law which is used for simula-
tion is constructed from the lower bound. The results
are demonstrated in some examples.

2. Problem Formulation

Define a hybrid system as{
ẋ(t) � fq(t)(x(t), u(t))
q(t) � ν(x(t), q(t−), µ(t))

(1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈
Ωu ⊂ Rm is a continuous input signal of the system.
There is also a discrete input, µ(t) ∈ Ωµ , which
allows for the selection between N different system
modes, q(t) ∈ Q � {1, 2, . . . , N}. The notation q(t−)
is used for the left-hand limit of q at t. Sq,r is a set
(parameterized by q and r) such that switching from
mode q to r is possible when x ∈ Sq,r ⊆ X . The time
argument, t, will often be omitted in the sequel for
readability.

The optimal control problem is to minimize the cost
function

J(x0, q0) �
∫ t f

t0

lq(x, u)dt+
M∑

k�1

s(x(tk), q(t−k ), q(t+k ))

(2)

subject to (1) while bringing the system from an
initial state (x0, q0) at time t0, to a final state (xf , qf )
at time t f , where the end time, t f , is free. Here, M is



an arbitrary finite number of switches occurring at
times t0 < t1 < t2 < . . . < tM < t f and s(x, q, r) > 0 is
an associated cost for switching from discrete state
q to r, the continuous part being x just before the
switch. Note that s(⋅) > 0 removes the problem of
infinitely many jumps in a finite interval.

The framework developed in this paper would also al-
low the number of continuous states to vary with the
discrete mode according to ẋq(t) � fq(t)(xq(t), uq(t)),
where xq(t) ∈ Xq ⊂ Rn(q), uq(t) ∈ Ωuq ⊂ Rm(q). The
usage of the system description (1), however, will
hopefully prevent the reader from getting stuck on
details.

3. Lower Bounds on Optimal Cost

PROPOSITION 1
Let Vq : X @→ R, q � 1, 2, . . . , N be a set of
continuous, piecewise C 1 functions that satisfy

0 ≤ �Vq(x)
�x

fq(x, u) + lq(x, u)
∀x ∈ X , u ∈ Ωu, q ∈ Q (3)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)
∀x ∈ Sq,r q, r ∈ Q : q 6� r (4)

0 � Vqf (xf ) (5)

where fq(x, u) gives the dynamics of a hybrid system
according to (1), lq(x, u) and s(x, q, r) define a cost
function for the system according to (2). Then, for
every (x0, q0), Vq0(x0) gives a lower bound on the
cost for optimally bringing the system from (x0, q0)
to (xf , qf ), x(t) ∈ X ∀t ∈ [t0, t f ].

Remark 1. Rather than having one single value
function, V(x), as would be the case for a purely
continuous system, the proposition gives a set of
value functions, Vq(x), where q is the initial value
of the discrete mode. Note that these functions give
the cost for optimal trajectories that are allowed
to switch modes — the index q only implies that
trajectories starting in mode q are considered.

It is of course possible to think of Vq(x) as one single
function, parameterized by x and q. For consistent
notation, however, Vq(x) has been chosen instead of
V(x, q).

Proof. Let û(⋅) and µ̂(⋅) be control signals that drive
the system from (x0, q0) at time t0 to (xf , qf ) at
time t f � tM+1. Let q̂(t) denote the mode trajectory
resulting from µ̂(t) and define xk � x(tk), x−k � x(t−k ),

and q̂k � q̂(t), tk ≤ t < tk+1. Then

J(x0, q̂0) �
M∑

k�0

∫ tk+1

tk

lq̂k(x, û)dt+
M∑

k�1

s(x−k , q̂k−1, q̂k) ≥

M∑
k�0

∫ tk+1

tk

−�Vq̂k(x)
�x

fq̂k(x, û)dt+

+
M∑

k�1

{
Vq̂k−1(x−k ) − Vq̂k(x−k )

} �
M∑

k�0

{
Vq̂k(xk) − Vq̂k(xk+1)

}+
+

M∑
k�1

{
Vq̂k−1(xk) − Vq̂k(xk)

} �
Vq̂0(x0) − Vq̂M (xM+1) � Vq̂0(x0)

Also the optimal value function, VP
q (x) will meet the

the constraints (3)-(5), under appropriate interpre-
tation of �Vq(x)/�x. Hence the inequalities do not
introduce any conservatism in the lower bound.

4. Discretization

Utilizing a computer to solve (3)-(5) for a specific
control problem, a straight forward approach is to
grid the state space to require the inequalities to
be met at a set of evenly distributed points in X .
This approximation will, however, not guarantee a
lower bound on the optimal cost, unless the nature
of fq and Vq between the grid points is taken into
consideration.

In the case of a two-dimensional continuous state
space, introduce the notation

xjk � xf + jhe1 + khe2

X jk � {xjk + θ 1he1 + θ 2he2 : 0 ≤ θ i ≤ 1}
X̂ jk � {xjk + θ 1he1 + θ 2he2 : −1 ≤ θ i ≤ 1}

( f jk
q
)i � min

x∈X̂ jk ,u∈Ωu

( fq(x, u))i

( f jk
q )i � max

x∈X̂ jk ,u∈Ωu

( fq(x, u))i
(l jk

q )i � min
x∈X̂ jk ,u∈Ωu

(lq(x, u))i

V jk
q � Vq(xjk)

∆iV jk
q � (Vq(xjk + hei) − Vq(xjk))/h

∆−iV jk
q � (Vq(xjk) − Vq(xjk − hei))/h

where e1 and e2 are unit vectors along the coordinate
axes, and h is the grid size.
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Figure 1: Illustration of X jk and X̂ jk.

Introduce new vector variables, λ jk
q ∈ Rn for (j, k, q)

such that xjk ∈ X , q ∈ Q. The inequalities (3)-(5)
can then be replaced by

0 ≤(λ jk
q )1 + (λ jk

q )2 + l jk
q (6)

(λ jk
q )tit ≤ ( f jk

q
)tit∆iV jk

q i � −2,−1, 1, 2 (7)
(λ jk

q )tit ≤ ( f
jk
q )tit∆iV jk

q i � −2,−1, 1, 2 (8)
0 ≤ V jk

r − V jk
q + s(xjk, q, r) ∀xjk ∈ Sq,r (9)

0 � V00
qf

(10)
where (6)-(8) form a combination of backward and
forward difference approximations of (3).
For x � xjk + θ 1he1 + θ 2he2 ∈ X jk, define the
interpolating function

Vq(x) � (1−θ 1)(1−θ 2)V jk
q + θ 1(1−θ 2)V (j+1)k

q

+ (1−θ 1)θ 2V j(k+1)
q + θ 1θ 2V (j+1)(k+1)

q (11)

The following result applies.

THEOREM 1—DISCRETIZATION IN R2

If V jk
q satisfy (6)-(10) for all q ∈ Q and for all grid

points xjk ∈ X ⊂ R2 such that X jk intersects X ,
then the interpolating function Vq defined by (11)
satisfies (3)-(5) and, for every (x0, q0), Vq0(x0) is a
lower bound of J(x0, q0).
Remark 1. Any function that meet the constraints,
even the trivial choice Vq(x) � 0, is a lower bound
on the true cost. Thus, to yield useful bounds, Vq(x)
need to be maximized subject to (6)-(10). The max-
imization could be carried out in either one point,
(x0, q0), or several points, (x, q) ∈ X � Q, simultane-
ously.

For the original, non-discretized problem, the result
of a maximization of Vq(x) is always identical to the
optimal cost, regardless if the maximization is done
at a particular initial state, or by summing the values
at several initial states.

However, for the discretized problem, different
choices of maximization criteria may lead to differ-
ent results. Fortunately, experience from examples

shows that the difference between the results of a
single-point and a multi-point maximization is of-
ten small, making it possible to compute the value
function in a large subset of X � Q solving one LP.

Remark 2. The restriction x(t) ∈ X in the optimal
control problem is essential. It may happen that
for some initial states x0 there exist no admissible
solutions inside X . Then the maximization of Vq0(x0)
can lead to arbitrarily large values.

Remark 3. The theorem is easily extended to Rn.
Define j � (j1, j2 , . . . , jn) and exchange jk for the new
multi-index j in the above inequalities. The limits
of all summations and enumerations should also be
adjusted.

Proof. Assume that x ∈ X jk. Noting that ∆1V jk
q �

∆−1V (j+1)k
q , ∆2V jk

q � ∆−2V j(k+1)
q , the inequalities (6)-

(8) taken at grid points jk, j(k + 1), (j + 1)k, and
(j + 1)(k+ 1) give

0 ≤ fq1(x, u)∆1V jk
q + fq2(x, u)∆2V jk

q + lq(x, u) (12)
0 ≤ fq1(x, u)∆1V j(k+1)

q + fq2(x, u)∆2V jk
q + lq(x, u)

(13)
0 ≤ fq1(x, u)∆1V jk

q + fq2(x, u)∆2V (j+1)k
q + lq(x, u)

(14)
0 ≤ fq1(x, u)∆1V j(k+1)

q + fq2(x, u)∆2V (j+1)k
q +

+ lq(x, u) (15)

The gradient of Vq is given by

�Vq

�x
�
[
(1−θ 2)∆1V jk

q + θ 2∆1V j(k+1)
q

(1−θ 1)∆2V jk
q + θ 1∆2V (j+1)k

q

]T

and thus, adding (12)-(15)weighted with (1−θ 1)(1−
θ 2), (1−θ 1)θ 2, θ 1(1−θ 2), and θ 1θ 2 respectively proves
that (3) is met for x. The inequality (4) is met since
Vq is a convex combination of grid points that all
meet (9), and (5) is the same condition as (10).
Note a special case in which the computational load
of the local optimizations in Theorem 1 is lightened:
if fq(x, u) � hq(x) + gq(x)u and lq(x, u) � oq(x) +
mq(x)u while Ωu � [−1, 1], then u can be entirely

eliminated from (6)-(8) by replacing f jk
q

, f
jk
q , and l jk

q

with hjk
q ± gjk

q
, h

jk
q ± g jk

q , and ojk
q ±mjk

q respectively.
This will double the set of equations (6)-(8), but the
functions hq, gq, oq, and mq are optimized over X̂ jk

solely.

5. Computing the Control Law

Provided that the lower bound, Vq, is a good enough
approximation of the optimal cost, the optimal feed-



back control law can be calculated as
û(x, q) � argmin

u∈Ωu

{
�Vq

�x
fq(x, u) + lq(x, u)

}
µ̂(x, q) � argmin

µ∈Ωµ tx∈Sq,ν

{Vν (x) + s(x, q,ν)}
(16)

where ν � ν(x, q, µ). Thus, the continuous input, û,
is computed in a standard way. The discrete input, µ̂ ,
is chosen such that switching occur whenever there
exist a discrete mode for which the value function has
a lower value than the cost of the value function for
the current mode minus the cost for switching there.

Consider the true optimal value function, V P
q . For

those (x, q, r) where the optimal trajectory requires
mode switching, the inequality (3) will turn to equal-
ity i.e. V P

q � V P
r + s(x, q, r) (this will be shown in

Ex. 1). A consequence of this is that for (16) to de-
scribe correct switching between the modes, s(x, q, q)
has to be defined as s(x, q, q) � ε > 0 (rather than
the real cost s(x, q, q) � 0). For V P

q , the proper control
law is achieved as ε approaches 0+. A small value of
ε suffices, however, for numerical computations.

Integration of (2) along a simulated trajectory based
on (16) will provide an upper bound on the optimal
cost. The better the control law, the better the
estimate.

6. Examples

EXAMPLE 1—A CAR WITH TWO GEARS

Consider the system{
ẋ1 � x2

ẋ2 � gq(x2)u, q � 1, 2 tut ≤ 1
(17)

where gq(x) is plotted in Fig. 2. This could be seen
as a crude model of a car, u being the throttle, gq(x)
the efficiency for gear number q.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2
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g1(x) g2(x)

x

Figure 2: Gear efficiency at various speeds.

The problem is to bring (17) from xi � (−5, 0), qi � 1
to xf � (0, 0), qf � 1 in minimum time. Torque
losses when using the clutch calls for an additional

penalty for gear changes. Thus, the components of
(2) have been chosen as l1(x, u) � l2(x, u) � 1,
s(x, 1, 2) � s(x, 2, 1) � 0.5.

The problem is plugged into the machinery of Sec-
tion 4 and Vq(x) is maximized over a region −5.5 ≤
x1 ≤ 1.0, −0.5 ≤ x2 ≤ 3.0.

The result is shown in Figure 3 and 4 where xi and
xf also have been marked. The functions look rather
similar, since the cost for changing gears is only 0.5.
One can see that V1 has a threshold along the line
x2 � 1. Figure 2 reveals that the first gear is almost
useless for high speeds, leading to V1 � V2 + 0.5 for
x2 > 1. This is the cost for using the second gear
optimally after a gear switch.
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Figure 3: Plot of V1. The initial point, xi, is marked with
a vertical dashed line, the final point, xf , with
a solid line.
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Figure 4: Plot of V2.

Studying Fig. 5, where V1−V2 is plotted, the strategy
for changing gears is even more obvious: there is
only one discrete mode allowed under optimal control
when the difference hits its maximum distance. In
conformity with previous reasoning, V1 − V2 � 0.5
for x2 > 1, indicating the need for a change of gears
when using the first gear at high speed. Analogously,
the second gear should be avoided, starting with zero
speed.

A simulation of the controlled system is shown in
Fig. 6, where the initial point is marked with a
square. The state trajectory coincides with the one
of a professional rally-driver with lousy brakes. In
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Figure 5: The difference between V1 and V2.

the beginning, maximum throttle is used on the first
gear (solid line). When the speed roughly reaches
the point of equal efficiency between the gears (x2 �
0.5), they are switched in favor of the second gear
(dashed line). At half the distance, the gas pedal is
lightened to use the braking force of the engine. In
the end, the first gear is used again before the origin
is hit. As seen in the figure, the granularity of the
discretization grid (h � 0.18) prevents the solution
from hitting the exact origin.
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Figure 6: Phase portrait of a simulation. The solid line
shows where gear number one has been used,
the dashed line shows the second gear. The
initial point is marked with a square.

EXAMPLE 2—ALTERNATE HEATING OF TWO FURNACES

Since the industrial power fee is determined by the
highest peak of the season [5], it is desirable to
spread the power consumption evenly over time. This
is handled by load control, which means that the
available electrical power is altered between different
loads of the mill.

In this example, the temperature of two furnaces
should be controlled by alternate heating. The system
has two continuous states that correspond to the

temperature of the furnaces and is given by ẋ �
fq(x), where

f1(x) �
[
−x1 + u0

−2x2

]
f2(x) �

[
−x1

−2x2 + u0

]

f3(x) �
[
−x1

−2x2

]
Thus, there are three discrete modes: q � 1 means
that the first furnace is heated, q � 2 means that
the second furnace is heated, q � 3 corresponds to
no heating. The cost function to be minimized is

J(x0, q0) �
∫ ∞

t0

2∑
i�1

(xi − ci)2e−tdt+
M∑

k�1

be−tk

where the desired stationary temperature values are
c1 � 1/4, c2 � 1/8 and the cost for switching the
power is b � 1/1000. Since the furnaces can only be
fed by a fixed amount of energy, u0, it is impossible
to keep them stationary at the desired temperature.
Hence, the time weighting, e−t, is necessary to get a
bounded cost function.

If Vq(x, t) is defined as the cost for starting in (x, q) at
time t, then the continuous part of the general time
dependent Bellman inequality can be written

�Vq(x, t)
�t

+ �Vq(x, t)
�x

fq(x, u, t) + lq(x, u, t) ≥ 0 (18)

Rewriting the functions like Vq(x, t) � e−tṼq(x) and
lq(x, u, t) � e−tl̃q(x, u) for the furnace example,
(18) becomes

−Ṽq(x) + �Ṽq(x)
�x

fq(x, u) + l̃q(x, u) ≥ 0 (19)

Thus, the time dependence introduced in Bellman’s
inequality cancels and techniques similar to those
presented above apply.

The optimal control results in a limit cycle as seen in
Figure 7. The figure, that contains the phase portrait
of the continuous states, shows how the temperature
of one furnace always decreases as the other one is
heated. By alternate heating, the temperatures first
climb up to, and above the set-point and then both
furnaces are turned off and the state drifts towards
the origin. This procedure is then repeated over and
over again, making the trajectory enclose the desired
steady state (marked with a circle in the figure). The
trajectory has been dashed for t ∈ [0, 2.8] to make the
limit cycle clear.

Figure 8 shows what happens when the power supply
is insufficient for driving both furnaces. Mode 3 is not
entered since the temperature set-points are never
reached.
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Figure 7: Phase portrait of the continuous states under
optimal control when u0 � 0.8. The mode
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Figure 8: Phase portrait of the continuous states under
optimal control when u0 � 0.4.

7. Summary

An extended version of Bellman’s inequality was
discretized in this paper to compute a lower bound on
the optimal cost function, using linear programming.
Based on these computations, an approximation of
the optimal control feedback law was derived.

Hybrid systems combine discrete and continuous
dynamics. The analysis should therefore contain
techniques that are well suited for computer science
as well as control theory. The emphasis in this paper
is on the continuous part, the discrete part consisting
of a few system modes. At the other end of the hybrid
spectrum, where purely discrete systems are found,
X will reduce to a single point. The first inequality
of proposition 1 will then be superfluous. The set of
inequalities given by (4), possibly large depending on
Q, should be met for Sq,r � {xf }. The resulting LP
formulation solves the shortest-paths problem on a
non-negatively weighted, directed graph — a problem
that is usually attacked using Dijkstra’s algorithm.

A set of MATLAB commands has been compiled by the
authors to make it easy to test the above methods
and implement the examples. The LP solver that
is used is “PCx”, developed by the Optimization
Technology Center, Illinois. The MATLAB commands
and a manual of usage are available free of charge

upon request from the authors.
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