
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive Resource Management Made Real

Årzén, Karl-Erik; Romero Segovia, Vanessa; Schorr, Stefan; Fohler, Gerhard

2011

Link to publication

Citation for published version (APA):
Årzén, K.-E., Romero Segovia, V., Schorr, S., & Fohler, G. (2011). Adaptive Resource Management Made Real.
Paper presented at 3rd Workshop on Adaptive and Reconfigurable Embedded Systems.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3605c94f-6307-4c91-87d6-fcc980d5a46b


Adaptive Resource Management Made Real

Karl-Erik Årzén, Vanessa Romero Segovia
Lund University,Lund, Sweden

Stefan Schorr, Gerhard Fohler
Technische Universität Kaiserslautern,Germany

Abstract

The adaptive resource management framework im-
plemented in the European ACTORS project is pre-
sented. A resource manager has been developed that
collaborates with a new Linux scheduler providing
support for hard constant bandwidth server reserva-
tions, in order to adapt applications to changes in
resource availability and to adapt the resource allo-
cation to changes in application requirements. The
focus of this paper is the three demonstrators devel-
oped based on the framework. The demonstrators
presented are an adaptive video quality demonstra-
tor, a feedback control demonstrator, and a video
decoding demonstrator. All of these execute under
the control of the resource manager.

1 Introduction

Multimedia is an increasingly important application
area for many soft real-time systems in, e.g., mobile
communication. Dataflow modeling and program-
ming [13] for these types of applications is also receiv-
ing renewed interest, to a large extent depending on
its explicit support for parallelism, something which
is urgently needed today with the current trend to-
wards multi-core and many-core platforms.

Resource management is another increasingly im-
portant area especially for battery-driven devices. As
the system complexity increases the use of threads
and priorities as the sole abstraction mechanism for
ensuring real-time properties easily becomes unman-
ageable. A more promising alternative is to use band-

width server or reservation techniques, e.g., constant-
bandwidth servers (CBS) [1], that enforce the ab-
straction of virtual processors (VP) in which an appli-
cation is guaranteed a certain execution budget every
server period that can or cannot be exceeded (soft/
hard CBS). In order to cater for dynamic changes in
resource requirements and in the available resource
amount it is furthermore necessary to have adaptive
resource reservations and to adapt the applications
to changing amounts of resources. A mechanism for
achieving this type of adaptivity is to use feedback.

In the European FP7 project ACTORS (Adap-
tivity and Control of Resources for Embedded Sys-
tems), [17], an adaptive resource management frame-
work for Linux-based multi-core platforms has been
developed. The framework is primarily intended
for soft real-time applications implemented in the
CAL dataflow language, [8], which recently has been
adopted as a part of the MPEG-4 RVC standard for
specifying media codecs. However, the framework
also supports legacy applications through the use of
application wrappers. An early version of the frame-
work was presented in [22]. The contribution of the
current papers is to provide more details on the im-
plementation and to present the demonstrators that
are based on the framework: an adaptive video qual-
ity demonstrator, a feedback control demonstrator,
and a video decoding demonstrator.

The only resource considered in the current ver-
sion is CPU time. The framework is based on CPU
reservations [16] implemented through hard Constant
Bandwidth Servers (CBS), which in turn is based on
Earliest Deadline First (EDF) scheduling. By exe-

1



cuting one or several threads within the control of a
bandwidth server it is guaranteed that the threads
may not execute longer than what is given by the
budget of the server, each server period. The sup-
port for hard CBS is provided by the new Linux
scheduler SCHED EDF developed within ACTORS.
SCHED EDF is a partitioned hierarchical scheduler,
where threads are grouped into VPs characterized by
budgets and periods. The partitioned nature of the
scheduler implies that each VP may only span one
physical processor.

1.1 Resource Manager Objectives

The resource manager (RM) has two main objectives.
The first objective is to be able to adapt the appli-
cations to changes in resource availability. A reason
for such a change could be that other more impor-
tant and more resource demanding applications need
to execute on the same platform. Application adap-
tation is achieved by requiring that applications can
execute at different discrete service levels. In the dif-
ferent levels the required amount of resources and the
obtained quality-of-service (QoS) are different. At
the highest service level, service level 0, the applica-
tion is assumed to obtain its maximum QoS and con-
sume the largest amount of resources. As the service
level decreases the QoS and the resource consumption
are reduced.

The second objective is to be able to adapt how
the resources are distributed when the application
requirements change. This is achieved by measuring
how many resources each application really consumes
and dynamically adjusting the resource allocation ac-
cordingly. The latter typically involves changing the
VP parameters, e.g., the server budget, based on how
much budget that is currently required.

1.2 Related Work

The basic reasoning for the resource management in
ACTORS is inspired by the MATRIX project [21, 20].
A number of architectures for end-to-end QoS for
multimedia applications have been presented, e.g.,
[6, 11, 25, 23, 9], or see [3] for an overview. While ar-
chitectures like [11] give an overall management sys-

tem for end-to-end QoS, covering all aspects from
user QoS policies to network handovers, in our work
we focus on QoS management and resource adapta-
tion in the application domain.

Comprehensive work on application-aware QoS
adaptation has been reported in [11, 14]. Both sepa-
rate between the adaptations on the system and ap-
plication levels. While in [11] the application adjust-
ment is actively controlled by a middle-ware control
framework, in [14] this process is left to the applica-
tion itself, based on requests from the underlying sys-
tem. Classical control theory has been examined for
QoS adaptation. [15] shows how an application can
be controlled by a task control model. The method
presented in [24] uses control theory to continuously
adapt system behavior to varying resources. How-
ever, a continuous adaptation maximizes the global
quality of the system but it also causes large complex-
ity of the optimization problem. Instead, we propose
adaptive QoS provision based on a finite number of
quality levels.

The approach in this project has been to layer the
adaptation on top of a bandwidth reservation system.
Another approach is to integrate the adaptation with
the bandwidth servers. One example of this is the
variable-bandwidth servers proposed in [7]. A work
that strongly relates to our work is the bandwidth
adaptation performed within the Aquosa scheduler
used in the European FRESCOR project, [2]. Also,
here adaptation is layered on top of a CBS server.
The main differences are that in FRESCOR the CBS
servers used are of a soft nature and that only single
core platforms are considered.

Resource reservations can be provided also using
other techniques than bandwidth servers. One pos-
sibility is to use hypervisors, see e.g. [10] for an
overview aimed at embedded applications, or to use
resource management middleware or resource kernels,
e.g., [18]. Resource reservations are also partly sup-
ported by the mainline Linux completely fair sched-
uler (CFS).

Adaptivity with respect to changes in requirements
can also be provided using other techniques. One ex-
ample is elastic task scheduling, e.g., [5], where tasks
are treated as springs that can be compressed in or-
der to maintain schedulability in spite of changes in

2



task rate. Another possibility is to support mode
changes through different types of mode change pro-
tocols, e.g., [19]. A problem with this is that the task
set parameters must be known both before and after
the change, which is typically not the case for the
types of applications considered in this paper.

This paper aims mainly at soft real-time appli-
cation for which best-effort scheduling is sufficient.
However, in [4] schedulability analysis for hard real-
time applications modeled as DAGs and mapped to
multiprocessor reservations of the type used in this
paper is presented. Support for these types of hard
real-time applications could quite easily be added to
the current resource management framework.

2 Inputs and Outputs

The input to the RM can be split into static infor-
mation made available either when a new application
registers or at system start time, and dynamic infor-
mation provided on-line to the RM. The static infor-
mation from each application consists of the service
level table and information about the threads of the
application. An example of a service level table is
shown in Table 1.

Table 1: Service level table for application A1

Application SL QoS BW TG BWD
name [%] [ms] [%]

A1 0 100 240 100 [60, 60, 60, 60]
1 75 180 200 [45, 45, 45, 45]
2 40 120 500 [30, 30, 30, 30]

In the table, SL denotes the service level index, BW
the total amount of CPU required for a certain ser-
vice level, i.e., on a quad-core platform the maximum
value would be 400, TG the timing granularity, which
indicates the time horizon over which the resources
are needed and is currently used as the period of the
VPs at the respective service level, and BWD informs
the RM of how many VPs the application consists of
and how the total bandwidth should be distributed
among these. In addition to the service level table the
application also informs the resource manager about

the threads (thread IDs) that it consists of and how
these threads should be grouped into VPs. In the ta-
ble application A1 consists of four VPs. Each of the
VPs contains at least one thread and execute within
one physical core. The timing granularity, TG, is the
same for all the VPs of an application, but may vary
between the service levels, e.g., 100 ms at service level
0, 200 ms at service level 1, etc. The timing granu-
larity is used as the period in the corresponding VPs.
The budget of the VPs is given by the bandwidth
multiplied by the period. For example, at service
level 0 the budget of all the VPs of A1 will be 60 ms.

The static system-wide information consists of an
importance value for each application or application
class. The importance is used to determine the rel-
ative importance among the applications in the case
of overload. A default value is given to applications
that do not have any pre-defined value.

The dynamic information comes from the applica-
tions and from the SCHED EDF scheduler. The ap-
plications provide a boolean measure, the happiness
value, of whether the achieved quality corresponds
to the expected quality for the current service level.
The default value of the happiness is that the appli-
cation is happy, i.e., an application that is not able
to measure or calculate its obtained quality is con-
sidered to content with the resources it has received.
SCHED EDF measures the accumulated consumed
budget for each VP and the accumulated number of
server periods that the budget has been completely
exhausted. The latter is used to indicate to what ex-
tent the bandwidth server “throttles” the execution
of the application.

The outputs of the RM consists of the actual ser-
vice level that the applications should execute at, and
the VP parameters. These parameters consists of the
server period, the server budget and the affinity of the
VP. The period and budget are applied to the corre-
sponding CBS server as well as to all the threads
executing under the control of this server.

The overall structure of the RM is shown in Fig. 1.

3



Figure 1: Overall structure of the ACTORS architec-
ture.

3 Implementation

The RM is implemented in C++. It consists of two
threads that execute within the same fixed-size reser-
vation in one of the cores. The RM communicates
with the applications through a DBus interface and
with the underlying SCHED EDF scheduler using the
control groups API of Linux. The first thread handles
incoming DBus messages containing, e.g., the service
level table information which is sent when an appli-
cation registers; happiness values for executing ap-
plications, and notifications that an application has
terminated. The second thread periodically samples
the VPs, measures the resource consumption, and in-
vokes the bandwidth controllers.

The decision control logic is implemented as ex-
changeable classes. This makes it easy to experiment
with alternative resource management policies. Cur-
rently the RM contains five different realizations of
the logic. The control logic is invoked in the following
four cases:

• When a new application registers.

• When an application terminates.

• When it is time to sample the VPs of an ap-
plication. The sampling interval is 10 times the
period of the VP.

• When the available amount of resources changes.

4 Control Logic

The five alternative realizations of the decision and
control logic have several common features. Only one
of them uses a heuristic for the service level assign-
ment, all others formulate the problem as an ILP
problem where the goal is to maximize the sum of the
QoS weighted with the application importance, sub-
ject to the constraint that the sum of the total BW
requirements must be smaller than total bandwidth
available. The allocation of the VPs is a bin-packing
problem solved with a first-fit heuristics with the ob-
jective to balance the load among the cores. In some
of the realizations compression of the VP bandwidth
is done in order to provide feasible solutions.

The bandwidth provided to each VP from the ser-
vice level can be seen as a reserved amount of band-
width, that the VP is guaranteed to obtain. How-
ever, as long as the VP is still happy the bandwidth
controller may reduce the bandwidth of the VP. The
aim of the controller is to keep the bandwidth as-
signed to the VP sufficiently close to the actual used
bandwidth. How close it can be is decided by the
Exhaustion Percentage (EP), which is defined as the
percentage of the periods that the server budget is
completely exhausted. If the EP is small the assigned
bandwidth can be very close to the used bandwidth,
whereas if the exhaustion percentage is large a larger
distance must be kept in order to avoid unnecessary
throttling.

The difference between the reserved and the al-
located bandwidth can in most of the logic realiza-
tions only be reused by ordinary non SCHED EDF,
tasks. However, one of the logics allows a VP to use
more bandwidth than what has been reserved for it
as long as either there is bandwidth that is not cur-
rently used by any SCHED EDF tasks or there are
other SCHED EDF tasks of less importance than the
current one which are executing above their reserved
bandwidth amount. In the latter case the VPs of the
less important tasks are compressed. However, a VP
may only be compressed as long as it is executing
above its reserved bandwidth.

4



5 Tools

In ACTORS a number of tools have been developed.
These includes a GUI that shows the internal work-
ings of the RM, an application wrapper for legacy ap-
plications and an external load generator that mim-
ics a CPU-intensive multi-core application. The GUI
window is shown in Fig. 2. The top left corner con-

Figure 2: The GUI of the resource manager.

tains pie diagrams that show the allocations in each
core, in this case the platform is a dual-core laptop.
The plots show the used budget or bandwidth, the as-
signed budget or bandwidth, and the exhaustion per-
centage for the selected application. Below the plots
the information in the service level table is shown as
well as an event log.

6 Examples

In ACTORS three demonstrators were developed in-
volving the RM: a feedback control demonstrator, a
video quality adaptation demonstrator, and a video
decoder demonstrator.

The feedback control demonstrator includes two
feedback control applications implemented in CAL:
one inverted pendulum controller and one ball and
beam controller. The inverted pendulum controller
consists of a pendulum held by an ABB IRB 2400
industrial robot. The objective of the controller is to
automatically swing-up the pendulum and then bal-
ance the pendulum in its upward position. The aim

of the ball and beam controller is to control the posi-
tion of a ball rolling on a tilting beam. The inverted
pendulum process is shown in Fig. 3 and the ball and
beam process is shown in Fig. 4. Both applications

Figure 3: An inverted pendulum actuated by an in-
dustrial robot.

Figure 4: The ball and beam process. The control
is based on sensors measuring the ball position and
beam angle.

execute under the control of the RM. The different
service levels correspond to different sampling periods
of the controllers, where a higher service level implies
faster sampling, higher bandwidth requirements, and
better QoS, i.e., control performance.

The video quality adaptation demonstrator con-
sists of a video player client executing under the con-
trol of the RM. The video player can either be im-
plemented in CAL or be a legacy media player. The
video stream is received over the network from a video
server. When the available resources for the decoding
decrease and it needs to lower its service level it issues
a command to the video server to adapt the video
stream by skipping frames, in the case of MPEG-2
streams [12], or by skipping macro block coefficients
in the case of MPEG-4 streams.

The third demonstrator consists of a CAL MPEG4-

5



SP decoder connected to an Axis network camera
that streams MPEG4-SP frames. The decoder has
two partitions, three service levels, and can report
its happiness value to the resource manager. When
the decoder is required to switch to a lower service
level it configures the camera to reduce the frames
per second (fps) and resolution in order to reduce the
resources required to decode the video frames. The
happiness indicates if the resulting frame rate of the
displayed video corresponds to what can be expected
at the current service level.

In order to evaluate the behaviour of the decoder
at different service levels a second application is in-
troduced. This application corresponds to a CAL pe-
riodic pipeline with two partitions and three service
levels. The importance value of the decoder and the
pipeline applications correspond to 1 and 10 respec-
tively, which implies that the pipeline application is
more important than the decoder application.

Table 2 shows the service level information pro-
vided for the two applications during registration.

Table 2: Service level table of the decoder and
pipeline applications

Application SL QoS BW TG BWD
name [%] [ms] [%]

Decoder 0 100 120 100 [60, 60]
1 80 100 33 [50, 50]
2 60 40 100 [20, 20]

Pipeline 0 100 80 20 [40, 40]
1 90 54 30 [27, 27]
2 70 32 50 [16, 16]

Figure 5 shows the used bandwidth UB (green),
the assigned bandwidth AB (red) and the exhaus-
tion percentage EP (blue) signals of the two virtual
processors VP0 and VP1 of the decoder application.
For this example the exhaustion percentage set point
EPSP was set to 15%.

At time t = 0 the decoder application registers
with the resource manager, since there is no other
application executing on the system, the resource
manager assigns the highest service level 0 to the
application, which corresponds to an initial assigned

Figure 5: CAL SP decoder application.

bandwidth AB equal to 0.6. After registration the
bandwidth controllers adapt the assigned bandwidth
AB in each of the VPs trying to keep the EP be-
low 0.15. If the EP is greater than 0.15 the band-
width controllers increment the AB. The decoder
application becomes unhappy at time t = 10 and
t = 210 which causes the bandwidth controllers to
increment the allocated bandwidth until the applica-
tion is happy again. The periodic pipeline application
registers with the resource manager at time t = 240.
Since this application has higher importance than the
decoder, the resource manager assigns service level 0
to the pipeline application and reduces the service
level of the decoder application from 0 to 1. The ini-
tial assigned bandwidth of the decoder application at
the new service level equals 0.5, which later on is de-
creased by the bandwidth controllers. Around time
t = 410, the pipeline application unregisters, this in-
creases the amount of free CPU resources, and trig-
gers a new service level assignment for the decoder
application, which in this case increases from service
level 1 to service level 0.

7 Conclusions

Adaptive resource management in combination with
reservation-based scheduling provides a flexible, and

6



yet predictable, platform for execution of a large
class of real-time applications. In the ACTORS EC
project a C++ based framework has been devel-
oped. Applications can either be implemented in the
CAL dataflow language or consist of legacy software.
The underlying scheduler is the new Linux scheduler
SCHED EDF.

The approach has been evaluated on different types
of applications, from media streaming to feedback
control. Although the current functionality of the re-
source manager is fully adequate for the applications
where it has been used, there are several possible ex-
tensions:

• Support for power management. With relatively
small means it would be possible to extend the
resource manager to also support powering down
cores, either using discrete power saving modes
or using dynamic voltage and frequency scaling.
Using power saving mode requires that the re-
source manager dynamically can pack the vir-
tual processors onto as few physical processors
as possible, making it possible to turn off the
rest. The functionality for this, i.e., to be able to
dynamically migrate virtual processors and their
threads is already available. Using dynamic scal-
ing techniques implies the possibility to dynami-
cally modify the amount of available bandwidth,
something that also is very straightforward.

• Model-free adaptation. The service level tables
can be seen as models provided by the applica-
tions to the resource manager. Based on these,
quite detailed models, the resource manager then
performs the service level allocation. This can
be viewed as a feedforward approach. The feed-
back then dynamically adjusts the size of the as-
sociated reservations. An interesting approach
would be to instead have a completely feedback-
based resource manager.

• Support for other resources than CPU time is
clearly necessary if the framework should be ap-
plicable also to hard real-time applications.

7.1 Acknowledgments

The work has been done with partial support
from the EC FP7 project ACTORS (Contract IST-
216586).

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating
multimedia applications in hard real-time sys-
tems. In Proceedings of the Real-Time Systems
Symposium (RTSS), Madrid, Spain, 1998.

[2] Luca Abeni, Tommaso Cucinotta, Giuseppe
Lipari, Luca Marzario, and Luigi Palopoli.
Qos management through adaptive reservations.
Real-Time Systems, 29(2-3):131–155, 2005.

[3] C. Aurrecoechea, A. Campbell, and L. Hauw.
A survey of QoS architectures. Multimedia Sys-
tems, 6:138–151, 1998.

[4] Giorgio Buttazzo, Enrico Bini, and Yifan Wu.
Partitioning parallel applications on multipro-
cessor reservations. In Proceedings of the 2010
22nd Euromicro Conference on Real-Time Sys-
tems, ECRTS ’10, pages 24–33, Washington,
DC, USA, 2010. IEEE Computer Society.

[5] Giorgio C. Buttazzo, Marco Caccamo, and Luca
Abeni. Elastic scheduling for flexible workload
management. IEEE Transactions on Comput-
ers, 51:289–302, 2002.

[6] G. Coulson, A. Campbell, and D. Hutchi-
son. A quality of service architecture. ACM
SIGCOMM Computer Communication Review,
24:6–27, 1994.

[7] S.S. Craciunas, C.M. Kirsch, H. Payer, H. Röck,
and A. Sokolova. Programmable temporal iso-
lation through variable-bandwidth servers. In
Proc. Symposium on Industrial Embedded Sys-
tems (SIES), pages 171–180. IEEE, 2009.

[8] J. Eker and J. Janneck. CAL Language Re-
port. Technical Report ERL Technical Memo
UCB/ERL M03/48, University of California at
Berkeley, December 2003.

7



[9] M. Garca Valls, A. Alonso, J. Ruiz, and
A. Groba. An architecture of a quality of service
resource manager middleware for flexible embed-
ded multimedia systems. In Lecture Notes in
Computer Science, volume 2596, 2003.

[10] Gernot Heiser. The role of virtualization in em-
bedded systems. In Proceedings of the 1st work-
shop on Isolation and integration in embedded
systems, IIES ’08, pages 11–16, New York, NY,
USA, 2008. ACM.

[11] A. Kassler, A. Schorr, C. Niedermeier,
R. Schmid, and A. Schrader. MASA - a
scalable qos framework. In Proceedings of Inter-
net and Multimedia Systems and Applications
(IMSA), Honolulu, USA, 2003.

[12] Anand Kotra and Gerhard Fohler. Demo: Re-
source aware real-time stream adaptation for
MPEG-2 transport streams in constrained band-
width networks. In The IEEE International
Conference on Multimedia and Expo (ICME)
2010.

[13] Edward A. Lee and David G. Messerschmitt.
Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans.
Comput., 36(1):24–35, 1987.

[14] B. Li and K. Nahrstedt. A control-based middle-
ware framework for quality-of- service adapta-
tions. IEEE Journal on Selected Areas in Com-
munications, 1999.

[15] B. Li and K. Nahrstedt. Impact of control the-
ory on QoS adaptation in distributed middle-
ware systems. In Proceedings of the American
Control Conference, 2001.

[16] C. W. Mercer, S. Savage, and H. Tokuda. Pro-
cessor capacity reserves: Operating system sup-
port for multimedia applications. In Proceedings
of IEEE International Conference on Multime-
dia Computing and Systems, 1994.

[17] The ACTORS project webpage.
http://www.actors-project.eu. URL, 2010.

[18] R. Rajkumar, K. Juvva, A. Molano, and
S. Oikawa. Resource kernels: A resource-centric
approach to real-time systems. In In Proceed-
ings of the SPIE/ACM Conference on Multime-
dia Computing and Networking, 1998.

[19] Jorge Real and Alfons Crespo. Mode change pro-
tocols for real-time systems: A survey and a new
proposal. Real-Time Syst., 26:161–197, March
2004.

[20] Larisa Rizvanovic and Gerhard Fohler. The MA-
TRIX: A framework for real-time resource man-
agement for video streaming in networks of het-
erogenous devices. In The International Confer-
ence on Consumer Electronics 2007.

[21] Larisa Rizvanovic, Damir Isovic, and Gerhard
Fohler. Integrated global and local quality-of-
service adaptation in distributed, heterogeneous
systems. In The 2007 IFIP International Con-
ference on Embedded and Ubiquitous Computing.

[22] Vanessa Romero Segovia, Karl-Erik Årzén, Ste-
fan Schorr, Raphael Guerra, Gerhard Fohler,
Johan Eker, and Harald Gustafsson. Adap-
tive resource management framework for mo-
bile terminals - the ACTORS approach. In
Proceedings of the First International Workshop
on Adaptive Resource Management (WARM),
Stockholm, Sweden, 2010.

[23] M. Shankar, M. De Miguel, and J.W.S. Liu. An
end-to-end QoS management architecture. In
Real-Time Technology and Applications Sympo-
sium (RTAS), 1999.

[24] J.A Stankovic, T. Abdelzaher, M. Marleya,
G. Tao, and S. Son. Feedback control scheduling
in distributed real-time systems. In Proceedings
of the Real-Time Systems Symposium (RTSS),
2001.

[25] L. Xichen, C. Xiaomei, and W. Huaimin. The
design of qos management framework based on
corba a/v stream architecture. In High Perfor-
mance Computing in the Asia-Pacific Region,
2000.

8


