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Abstract
A magnetized thin layer mounted on a PEC surface is considered as an al-
ternative for an absorbing layer. The magnetic material is modeled with the
Landau-Lifshitz-Gilbert equation, with a lateral static magnetization having
a periodic variation along one lateral direction. The scattering problem is
solved by means of an expansion into Floquet-modes, a propagator formal-
ism and wave-splitting. Numerical results are presented, and for parameter
values close to the typical values for ferro- or ferrimagnetic media, re�ection
coe�cients below -20 dB can be achieved for the fundamental mode over the
frequency range 1-4 GHz, for both polarizations. It is found that the period-
icity of the medium makes the re�ection properties for the fundamental mode
almost independent of the azimuthal direction of incidence, for both normally
and obliquely incident waves.

1 Introduction
For absorption of electromagnetic waves, magnetic media have some features making
them more appropriate than their electric counterparts. For example, when reducing
the re�ection from a PEC surface, a thin magnetically lossy sheet can be placed
directly onto the surface whereas the corresponding electrically lossy sheet must
be suspended a quarter of a wavelength from the surface by using an additional
dielectric layer. Hence, magnetic media has the possibility to o�er designs with
larger bandwidth and less space occupancy than electric media.

Using a medium with a scalar permeability, e�cient absorption can be obtained
if the permeability is large and its imaginary (lossy) part dominates over its real
part [10]. The larger the lossy permeability is the thinner one can make the ab-
sorbing layer. For that purpose, composite media realized as laminated structures
of ferromagnetic thin �lms is a very promising alternative, since such media have
among the highest possible permeabilities in the microwave region reported up to
date. Quite recent experimental investigations [8, 17] report loss parts of the perme-
ability in the order 200 or more in the lower microwave band, for frequencies ranging
approximately from 1 to 10 GHz.

A suitable phenomenological model for ferromagnetic media is the Landau-
Lifshitz-Gilbert (LLG) equation [6], which for small-signal analysis of microwave
�elds is linearized around a static equilibrium solution for the magnetization. Due to
surface e�ects the static magnetization in ferromagnetic thin �lms is predominantly
oriented in the lateral directions. By spontaneous arrangements, subject to geomet-
rical constraints, or by externally enforced magnetic �elds [1, 14] the magnetization
assumes certain patterns, varying in both the lateral and normal directions [2, 7, 15].
Such magnetizations result in a small-signal permeability that is both anisotropic
and heterogeneous.

Engineered thin �lm magnetic layers with the magnetization vector organized
in certain patterns is a way to utilize the ubiquitous anisotropy in order to obtain
desired re�ection properties, when the layer is exposed to �elds of di�erent polariza-
tions. From the point of view of radar cross section reduction (RCSR) it is usually



2

desired to reduce the re�ection for both polarizations of the incident wave, but in
other applications it may be desired that the layer absorbs e�ciently for only one
polarization, like e.g. the suppression of surface waves in array antennas and other
periodic structures [18].

In this paper we investigate theoretically the possibility of achieving e�cient
RCSR using a magnetized layer (presumably realized as a laminate of ferromagnetic
thin �lms) having a lateral magnetization that varies periodically along one of the
lateral directions. First the conditions on a magnetic Salisbury screen, the LLG-
equation and the small-signal model for the gyrotropic permeability are reviewed.
Then, the absorption e�ciencies, under illumination in the normal direction, us-
ing two special directions of magnetization are discussed, viz. a normally directed
magnetization and a laterally directed homogeneous magnetization, and conclude
that the laterally magnetized layer is potentially more advantageous. From that,
we turn to a periodically varying lateral magnetization and derive the resulting het-
erogeneous permeability tensor, with parameter values mimicking a magnetic con-
ductivity model. Next, the metod for solving the scattering problem is presented:
a spectral representation in terms of Floquet-modes for the lateral dependencies,
a propagator method for mapping the �elds in the normal direction and a wave-
splitting technique for extracting the re�ection coe�cients for the Floquet-modes.
Numerical results are presented, for the dependencies of the re�ection coe�cients on
the polar and azimuthal angles of incidence, the saturation magnetization and the
loss parameter. The sensitivity of an RCSR design for deviations from the magnetic
conductivity model is also investigated.

2 The magnetic Salisbury screen
We de�ne an absorbing layer to be thin if d ¿ λ, where d is the thickness of the
layer and λ is the wavelength in the exterior region. The backscattered �eld from
normally impinging waves on an isotropic thin lossy sheet above a PEC surface can
be completely extinct provided [10, p.337]

σmd = η0 (2.1)
µ′′ À µ′ (2.2)

where σm ≡ ωµ0µ
′′, η0 is the vacuum wave impedance, ω the angular frequency and

µ′′ the imaginary part of the relative permeability.
The operation of this design is based on interaction inside the layer rather than

matching of the impedance at the front surface. Thus, the layer must be penetrable,
i.e., d ¿ δ, where δ is the penetration depth of the layer. Therefore, the conditions
above must be supplemented with another condition. Assume that the relative
permittivity, ε, is real valued and that the conditions above are ful�lled, whereby
the wave number becomes

k = k0
√

εµ ≈ k0

√
εµ′′

2
(1 + i) ⇒ δ = k−1

0

√
2

εµ′′
,
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where k0 = ω
√

ε0µ0 is the free space wave number.
Using (2.1) and d ¿ δ �nally gives us a third condition

√
ε

2µ′′
¿ 1 ⇒ µ′′ À ε (2.3)

In order to obtain extinction over a broad frequency range, we see from condition
(2.1) that a frequency dependent permeability with µ′′ ∝ 1/ω is desirable. This
means, analogous to the electric conductivity model, that the material exhibits a
magnetic conductivity σm. A material with the above characteristics can provide
e�cient absorption of electromagnetic energy over a very wide frequency range.
Such a design is sometimes referred to as a magnetic Salisbury screen.

However, magnetic media are often anisotropic, and the magnetization depends
on the magnetic �eld in a complicated way. This anisotropy may be an undesired
e�ect since good absorption for both polarization of the wave is often wanted. Hence,
accurate modeling of magnetic media requires methods that handles anisotropy.

3 Equation of motion
In ferromagnetic media, the magnetic moments of the atoms tend to be aligned
with each other in certain directions. This alignment is due to a strong coupling
between the magnetic moments in neighboring atoms. The precise mechanism of
this coupling is not easy to understand, but may be modeled in a phenomenological
way. The dynamics of the magnetic moment per unit volume, i.e., the magnetization
M , is described by the Landau-Lifshitz-Gilbert (LLG) equation [6, 12]

∂M

∂t
= −γµ0M ×Heff + α

M

MS

× ∂M

∂t
(3.1)

where γ = 1.759 · 1011 C/kg is the gyromagnetic ratio and µ0 is the permeability of
vacuum. The dimensionless factor α is related to the losses and is typically of the
order of α ≈ 0.1. The right hand side is orthogonal to M , which results in that the
magnitude of the magnetization is preserved, |M | = MS, where MS is the saturation
magnetization. The magnitude of MS is typically in the interval 105−2 ·106 A/m [9].

The e�ective �eld Heff has several contributions, of which some are of quite
di�erent origin than that of the classical magnetic �eld described by the Maxwell
equations [6, 14]. Besides from the classical magnetic �eld, the e�ective �eld takes
e�ects like exchange interactions and magnetocrystalline anisotropy into account.
Since we in this paper mainly investigate the e�ect of the large scale periodicity of
the medium, the equation of motion is kept simple by only taking into account the
classical magnetic �eld.

4 The small-signal permeability dyadic
When the magnetic specimen is subjected to a weak time-varying magnetic �eld,
equation (3.1) may be linearized around the static solution M 0. For this purpose
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we assume that the classical magnetic �eld has one static bias part and one signal
part (time convention e−iωt), with the resulting splitting of the magnetization

H = H0 + H1e
−iωt, M = M 0 + M 1e

−iωt (4.1)
where index 0 corresponds to �elds constant in time, and time harmonic �elds are
indexed by 1. The magnetization M 0 is the static solution of (3.1) to an applied
static magnetic �eld H0. The small-signal magnetic �eld M 1 then represents small
deviations from the static magnetization due to the small-signal �eld H1. The
static magnetic �eld also consists of two part: H0 = He

0 + HM0 , where He
0 is an

external applied static magnetic �eld and HM0 is the magnetic �eld due to the
static magnetization M 0. For the special case of a spheroidal particle immersed in
a static homogeneous external �eld He

0, the particle is uniformly magnetized, and
the total static �eld within the particle can be shown to be

H0 = He
0 + HM0 = He

0 −NdM 0 (4.2)
where Nd is the demagnetization tensor for the particle. Letting M 0 = MSm0,
where the unit vector m0 is the direction of the static magnetization, and following
the procedure in [14] we obtain a small signal permeability

µ = µmm0m0 + µt(I−m0m0)− iµgm0 × I (4.3)
where I is the identity dyadic and the coe�cients are

µm(ω) = 1 (4.4)

µt(ω) = 1 +
β − iαω/ωS

(β − iαω/ωS)2 − (ω/ωS)2
(4.5)

µg(ω) =
ω/ωS

(β − iαω/ωS)2 − (ω/ωS)2
(4.6)

with
ωS = γµ0MS (4.7)

The constant β depends on the shape of the specimen and on the external bias �eld
He

0. For a thin layer biased in the normal direction β = |He
0|/MS − 1 and when

biased in the plane β = |He
0|/MS. Furthermore, from the typical range of values for

MS, we see that the intrinsic precession frequency, fS = ωS/2π, typically is in the
range from 3 to 70 GHz.

5 Special cases of magnetization
The approach for achieving a broadband absorber will be to investigate whether
the anisotropic media described by (4.3) can approximately mimic the magnetic
Salisbury screen. We will review the two special cases when the static magnetization
M 0 is either in the normal direction of the layer surface or in the lateral direction;
see Figure 1. We choose z as the normal direction and (x, y) as lateral directions. It
is also assumed that layer thickness d is much smaller than the lateral dimensions
of the layer.
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M0
M0d

PEC

Figure 1: Two special cases of the static magnetization direction inside a layer of
thickness d. The left �gure illustrates the case when the magnetization is in the
normal direction and the right corresponds to the case of lateral magnetization.

5.1 Normal magnetization
The re�ection properties for this case has been studied in [14] and the results ob-
tained are brie�y summarized here. With a strong enough bias �eld He

0 in the
normal direction, a static solution M 0 = MSẑ of (3.1) is obtained. The permeabil-
ity dyadic (4.3) then has the following matrix representation

µ =




µt −iµg 0
iµg µt 0
0 0 µm


 (5.1)

This small-signal permeability represents a gyrotropic medium and its invariance
under rotations around the z-axis yields the attractive property that re�ection of
normally incident plane waves are unchanged if the layer is rotated around the z-
axis. It is well known that the eigenmodes for propagation along the magnetization
direction (z-axis) in such a medium correspond to circularly polarized waves. The
eigenvalues of the permeability dyadic corresponding to these circularly polarized
eigenmodes are given by

µ± = µt ± µg (5.2)

where the di�erent signs correspond to the mode being either right or left hand
circularly polarized. In terms of wave-number and wave-impedance, each mode
experiences an e�ective permeability given by its associated eigenvalue. This means,
for instance, that left and right hand circularly polarized waves have di�erent phase
velocities.

With the aid of the external bias �eld He
0, via the parameter β, the behavior

of the material can be altered and it is shown in [14] that the largest bandwidth is
obtained when β → 0, i.e., |He

0| = MS, whereby the e�ective permeabilities become

µ± = 1± ωS

ω(1 + α2)
+ i

αωS

ω(1 + α2)
(5.3)

From this we see that the imaginary part of the e�ective permeabilities have exactly
the frequency dependence required for a broadband matching using condition (2.1)
and that the losses can be described by a magnetic conductivity

σm = µ0
α

1 + α2
ωS (5.4)
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Using this expression in (2.1), we see that in order to obtain a thin absorber, a large
σm is needed. Therefore, large values for the loss parameter α and the saturation
magnetization MS is desirable. However, for condition (2.2) to be ful�lled, one can
show that the loss parameter must ful�ll

1 ¿ α ¿ ωS

ω
(5.5)

Hence, for this material to behave approximately as an isotropic material in a Salis-
bury screen, unrealistically high values of α are required and even though they could
be realized ω must be exceedingly smaller than ωS, i.e., well below the microwave
region.

Additional disadvantages with this design is that a very strong external bias
�eld He

0 is needed in order to magnetize the layer in the normal direction [3, 4]. To
obtain a stable static magnetization in the normal direction a positive β is required,
i.e., |He

0| > MS, which can be di�cult to achieve practically. In [14], it is also
found that the re�ection properties when β ≈ 0 are very sensitive to changes in β,
making it di�cult to control the material with an external bias �eld. Furthermore,
only one of the circularly polarized modes will experience substantial absorption in
the material. This is due to the fact that the LLG equation describes a precessive
behavior of the magnetization and only the mode that works with this precession
will be damped in an e�cient way. Hence, when combined into linearly polarized
modes, the co-polarized re�ection can be reduced e�ciently only by allowing the
cross-polarized re�ection to become substantial [14].

5.2 Lateral magnetization
In the absence of an external bias �eld it will be energetically favorable for the
magnetization to assume a lateral direction in the layer. The exact direction of
the magnetization can be controlled by a bias �eld in the (x, y) plane, forcing the
magnetization to align with the bias �eld. With a lateral bias �eld such that M 0 =
MSx̂ the permeability dyadic (4.3) now has the following matrix representation

µ =




µm 0 0
0 µt −iµg

0 iµg µt


 (5.6)

with β = |He
0|/MS. In this case, the eigenmodes associated with a normally incident

plane wave are linearly polarized. The mode with the magnetic �eld in the x-
direction is not a�ected by the parameters in the LLG-equation, and thus can not
be treated for absorption as described in this paper. The other mode experiences
the e�ective permeability [13, p. 459]

µe� = µt − µ2
g/µt (5.7)

We once again examine the case when β → 0, i.e., |He
0| → 0, whereby

µg(ω) = − ωS

(1 + α2)ω
, µt(ω) = 1 +

iαωS

(1 + α2)ω
= 1− iαµg (5.8)
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Introducing t = − 1

αµg
and assuming t ¿ 1 we obtain

µ′e� ≈ 1− 1

α2
, µ′′e� ≈

1

t

(
1 +

1

α2

)
=

ωS

αω
À 1 (5.9)

where µe� = µ′e� +iµ′′e�. From this it is seen that if t ¿ 1, then condition (2.1), (2.2)
and, quite likely, also condition (2.3) approximately hold, regardless of the value of
α. The condition t ¿ 1 is equivalent with

ω ¿ α

1 + α2
ωS (5.10)

Thus, for small enough frequencies this material behaves approximately as the de-
sired material in a Salisbury screen, no matter what value α assumes. Unfortunately,
this only applies for one of the polarizations. However, unlike the previous case of
magnetization in the normal direction, no bias �eld is required in order to obtain
β = 0 and thus ful�lling the Salisbury conditions.

We also note from (5.9) that for t ¿ 1, the magnetic conductivity becomes

σm = µ0
ωS

α
(5.11)

Once again returning to (2.1), we �nd that for this case a large saturation magneti-
zation MS but a small loss parameter α is needed in order to obtain a thin absorber.
However, to obtain good absorption in the high frequency range a large α is desir-
able, as seen from (5.10). Hence, thin absorbers may have di�culties in performing
well in the high frequency range.

6 Periodically rotating lateral magnetization
The results in the previous section implies that for realistic values on the loss param-
eter α and the external bias �eld He

0, an approximation to the magnetic Salisbury
screen that provides good absorption over a wide frequency range can be obtained
only for the laterally magnetized medium and then only for one of the linearly po-
larized eigenmodes. Inspired by that case, we consider using a lateral magnetization
that varies periodically. The hypothesis is to cancel out the anisotropy associated
with the magnetization direction and thus achieving decent absorption for both
polarizations.

We assume that M 0 is periodic in the x-direction, with the following dependence

M 0 = MS

[
cos

(2πx

a

)
x̂ + sin

(2πx

a

)
ŷ
]

(6.1)

where a is the periodicity, the width of the unit cell. As before, |M 0| = MS, but
the direction now changes along the x-direction; see Figure 2.

The static �elds H0 and M 0 must simultaneously satisfy the LLG-equation and
the static Maxwell equations with the appropriate boundary conditions [4, p. 27].
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x

y

a

Figure 2: One period in an approximation to a layer with the magnetization (6.1).
Thin homogeneously magnetized stripes with progressively changing magnetization.

These combined equations are typically nonlinear and di�cult to solve even numer-
ically. Thus in general one cannot specify M 0, but instead has to solve a non-linear
boundary value problem to �nd stable periodic solutions. To avoid this, (6.1) is
tacitly considered as a quali�ed guess, and the resulting �elds will be determined in
order to see the deviation from the ideal case.

Assume that the layer is between 0 < z < d, with a PEC surface at z = d and
air in the region z < 0. With πd/a ¿ 1, i.e., a very thin layer compared with its
periodicity, one can show that to �rst order in πd/a the magnetic �eld inside a layer
is given by (see Appendix A)

H0 = MS

[
− πd

a
cos

(2πx

a

)
x̂ +

2π

a

(
z − d

2

)
sin

(2πx

a

)
ẑ
]
, 0 < z < d (6.2)

In the limit d → 0 we obtain H0 = 0 (assuming He
0 = 0). Thus, in this limit

(6.1) and (6.2) satisfy both the LLG-equation and the static Maxwell equations,
and for πd/a ¿ 1 this solution will be assumed to hold approximately. Also, again
we obtain the case β = 0 and the simpli�ed expressions (5.8) for µg and µt.

Introduce φ = 2πx/a, the direction-angle of M 0 measured from the +x-axis, and
a local coordinate system rotated around the z-axis so that the local x-direction is
along M 0. In this local system the permeability tensor is given by

µ′ =




µm 0 0
0 µt −iµg

0 iµg µt


 (6.3)

Using a similarity transformation we obtain the following heterogeneous permeabil-
ity tensor in the main coordinate system

µ(φ(x)) = R−1µ′R =




µm cos2 φ + µt sin
2 φ (µm − µt) sin φ cos φ iµg sin φ

(µm − µt) sin φ cos φ µm sin2 φ + µt cos2 φ −iµg cos φ
−iµg sin φ iµg cos φ µt




(6.4)
where

R =




cos φ sin φ 0
− sin φ cos φ 0

0 0 1


 (6.5)
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7 Propagation in a laterally periodic anisotropic layer
In [5], this problem is solved in detail for isotropic media, whereas the case of bian-
isotropic media is merely outlined . Here we �ll in some details for the magnetically
anisotropic case where the relative permeability µ(x) is periodic in the x-direction.
Although it is reasonable to assume that also the permittivity dyadic is in general
periodic, we restrict this study to magnetic parameters only, wherefore the relative
permittivity is assumed to be isotropic and homogeneous i.e. ε = εI.

7.1 Fundamental equation
In cartesian components, the time-harmonic Maxwell's equations ∇×E = iωµ0µH
and ∇×H = −iωε0εE, become

∂Ez

∂y
− ∂Ey

∂z
= iωµ0(µ11Hx + µ12Hy + µ13Hz) (7.1)

∂Ex

∂z
− ∂Ez

∂x
= iωµ0(µ21Hx + µ22Hy + µ23Hz) (7.2)

∂Ey

∂x
− ∂Ex

∂y
= iωµ0(µ31Hx + µ32Hy + µ33Hz) (7.3)

and
∂Hz

∂y
− ∂Hy

∂z
= −iωε0εEx (7.4)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εEy (7.5)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz (7.6)

respectively. Using (7.3) and (7.6), the z-components of the �elds become

Ez =
i

ωε0ε

(∂Hy

∂x
− ∂Hx

∂y

)
(7.7)

Hz = µ−1
33

[ −i

ωµ0

(∂Ey

∂x
− ∂Ex

∂y

)
− µ31Hx − µ32Hy

]
(7.8)

Inserting this into (7.1), (7.2), (7.4) and (7.5), we obtain

∂Ex

∂z
= iωµ0[(µ21 − µ23µ

−1
33 µ31)Hx + (µ22 − µ23µ

−1
33 µ32)Hy]

+ µ23µ
−1
33

(∂Ey

∂x
− ∂Ex

∂y

)
+

∂

∂x

{ i

ωε0ε

(∂Hy

∂x
− ∂Hx

∂y

)}
(7.9)

∂Ey

∂z
= −iωµ0[(µ11 − µ13µ

−1
33 µ31)Hx + (µ12 − µ13µ

−1
33 µ32)Hy]

− µ13µ
−1
33

(∂Ey

∂x
− ∂Ex

∂y

)
+

∂

∂y

{ i

ωε0ε

(∂Hy

∂x
− ∂Hx

∂y

)}
(7.10)
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∂Hx

∂z
= −iωε0εEy +

∂

∂x

{
µ−1

33

[ −i

ωµ0

(∂Ey

∂x
− ∂Ex

∂y

)
− µ31Hx − µ32Hy

]}
(7.11)

∂Hy

∂z
= iωε0εEx +

∂

∂y

{
µ−1

33

[ −i

ωµ0

(∂Ey

∂x
− ∂Ex

∂y

)
− µ31Hx − µ32Hy

]}
(7.12)

Assume an incident plane wave with the transversal wave-vector components

k0x = k0 sin θ cos ϕ, k0y = k0 sin θ sin ϕ (7.13)

where θ and ϕ are the polar and azimuthal angles of incidence. The tangential �elds
are expanded into the following Fourier-series (Floquet-modes)

Ei(x, y, x) = ei(k0xx+k0yy)

∞∑
n=−∞

ei,n(z)ein 2π
a

x, i = x, y (7.14)

Hi(x, y, x) = ei(k0xx+k0yy)

∞∑
n=−∞

hi,n(z)ein 2π
a

x, i = x, y (7.15)

The expansions are truncated at n = ±N and the coe�cients are collected into the
vectors

ēi(z) =




ei,−N(z)
...

ei,N(z)


 , h̄i(z) =




hi,−N(z)
...

hi,N(z)


 , i = x, y (7.16)

From this we can rewrite (7.9)-(7.12) into a system of ordinary di�erential equations
for the expansion coe�cients (the fundamental equation)

d
dz

(
ē
h̄

)
=

(
W11 W12

W21 W21

)(
ē
h̄

)
, ē =

(
ēx

ēy

)
, h̄ =

(
h̄x

h̄y

)
(7.17)

The matrices Wij are determined by Fourier-expansions of the components of µ as
well as the tangential derivatives; detailed expressions are given in Appendix B.

7.2 Re�ection
In this case, when the material is homogeneous in the z-direction, the propagator
that maps the �elds from the plane z = z1 to the plane z = z2 becomes [16]

P(z2, z1) = eW(z2−z1) (7.18)

and the mapping from the rear surface to the front surface thus becomes
(

ē(0)
h̄(0)

)
= P(0, d)

(
ē(d)
h̄(d)

)
≡

(
Pee Pem
Pme Pmm

)(
ē(d)
h̄(d)

)
(7.19)

With a PEC surface at z = d, we have ē(d) = 0 whereby (7.19) simpli�es into

ē(0) = Pemh̄(d) (7.20)
h̄(0) = Pmmh̄(d) (7.21)
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In the region z < 0, a wave-splitting is applied whereby the �elds are divided
into ±z-propagating TM- and TE-modes, with respect to the plane of incidence.
Particularly, at the front surface we obtain

(
ē+(0)
ē−(0)

)
=

1

2

(
Φ ZΦ
Φ −ZΦ

)(
ē(0)
h̄(0)

)
(7.22)

where
ē+ =

(
ē+
TM

ē+
TE

)
, ē− =

(
ē−TM
ē−TE

)
(7.23)

Here Φ is a rotation matrix in the azimuthal direction and Z is an impedance matrix,
containing the mode impedances for the Floquet-modes; see Appendix B.

The re�ection coe�cient matrix, r, which relates the incident and re�ected tan-
gential electric �elds, is de�ned from the relation

ē− ≡ rē+ (7.24)

and since the tangential �elds are continuous across the surface z = 0, insertion of
(7.20) and (7.21) into (7.22) and the usage of (7.24) yield

ē+ =
1

2
(ΦPem + ZΦPmm)h̄(d) (7.25)

rē+ =
1

2
(ΦPem − ZΦPmm)h̄(d) (7.26)

wherefrom elimination of h̄(d) and the arbitrariness of ē+ yield

r = (ΦPem − ZΦPmm)(ΦPem + ZΦPmm)−1 (7.27)

Since for the TM-modes, only the tangential projections of the electric �eld enters
(7.24), the complete re�ection coe�cients are found by applying the corresponding
back-projections on the components of r [5].

8 Numerical re�ection results for a periodic layer
The incoming plane wave that propagates in the +z-direction, with transversal
wave-number given by (7.13), appears in the coe�cients e+

TM,0 and e+
TE,0, for the

fundamental mode (for n 6= 0 we have e+
TM,n = e+

TE,n = 0). The re�ected fundamental
modes appear in e−TM,0 and e−TE,0. Extracting the appropriate elements from the
re�ection matrix r, we obtain the following 2×2 re�ection coe�cient matrix for the
fundamental modes

(
ē−TM,0

ē−TE,0

)
=

(
rTMTM,0 rTMTE,0

rTETM,0 rTETE,0

)(
ē+
TM,0

ē+
TE,0

)
(8.1)

For the special case of normal incidence (θ = 0), the division into TM- and TE-modes
is ambiguous since both modes become TEM. We then choose the polarizations of
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Figure 3: Re�ection for di�erent angles of incidence. The PEC-backed layer has a
periodicity a = 1 · 10−1 m, thickness d = 4.5 · 10−3 m, α = 0.1,MS = 5 · 105 A/m and
an isotropic permittivity ε = 5. The maximum mode number N = 26.
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Figure 4: Curves of constant re�ection (in dB) at 2 GHz with the polar coordinate
in the radial direction. The PEC-backed layer has a periodicity a = 1 · 10−1 m,
thickness d = 4.5 · 10−3 m, α = 0.1,MS = 5 · 105 A/m, β = 0 and an isotropic
permittivity ε = 5. The maximum mode number N = 26.
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(a) α = 0.05, MS = 5 · 105 A/m
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Figure 5: Re�ection at normal incidence for di�erent material parameters. The
PEC-backed layer has a periodicity a = 1 · 10−1 m, thickness d = 2.5 · 10−3 m, and
an isotropic permittivity ε = 5. The maximum mode number N = 26.

the modes such that their electric �elds are in the x- and y-directions, respectively
and denote TM(TE) by X(Y).

In Figure 3 and Figure 4 we examine the re�ection coe�cients for di�erent angles
of incidence for a speci�c choice of material parameters. Besides from the desired
case β = 0, we have in Figure 3 also included the in�uence of a small perturbation
β = 0.05. For normal incidence we see from Figure 3a that rXX and rYY are quite
equal in magnitude and between 0.8 and 4 GHz they are for β = 0 below -20 dB. The
curves are not completely identical since the structure is periodic in the x-direction
but constant in the y-direction. No cross-polarization was observed, within the
numerical accuracy, i.e., rXY = rYX = 0.

For oblique incidence the re�ection coe�cients rTMTM and rTETE are no longer
equal but still quite good broad band absorption is achieved and the cross polariza-
tion levels (not shown) remain below -20 dB for all frequencies. However, the results
are very sensitive to disturbances in β for both angles of incidence, which means
that such an absorber is unstable to small perturbing magnetic �elds. Furthermore,
from Figure 4 it is seen that the re�ection coe�cients are fairly independent of the
azimuthal angle, i.e., the material behaves approximately as if isotropic.

From the discussion following (5.11) we might expect that a decrease in the layer
thickness d needs to be accompanied by an increase in the saturation magnetization
MS or a decrease in the loss parameter α, in order to maintain low re�ection for
normal incidence. Indeed, this behavior is con�rmed in Figure 5, which displays
two variations of the design used in Figure 3a for a reduced thickness: one changes
only α, and one changes only MS. Simultaneously increasing or decreasing α and
MS resulted in poorer results. However, in agreement with (5.10), when decreasing
α we see from Figure 5a that the absorption at higher frequency is worse than in
Figure 5b were α remains unchanged and MS is increased. Thus, in terms of band
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Figure 6: Curves of constant re�ection (in dB) at 3.2 GHz with the polar coordinate
in the radial direction. The PEC-backed layer has a periodicity a = 1 · 10−1 m,
thickness d = 2.5 · 10−3 m, α = 0.1,MS = 1 · 106 A/m, β = 0 and an isotropic
permittivity ε = 5. The maximum mode number N = 26.

width, it seems preferable to increase MS rather than decreasing α when reducing
the thickness of the absorber. Further, the results remain sensitive to small changes
in β, and no cross polarization was observed. From Figure 6 we once again infer
that the material is approximately isotropic. Also note that, for all cases of oblique
incidence, the TM mode appears to have the best absorption.

Finally, here we have only considered the fundamental modes even though higher
order modes start to propagate (in the −z-direction) within the frequency range
investigated; in the numerical examples, at 3 GHz for normal incidence and below
that for oblique incidence. For incidence in the xz-plane it may happen that a higher
order mode is re�ected in the opposite direction of the incoming wave. However,
upon examination, the re�ection coe�cients for these higher order modes proved to
remain below the -20 dB level at all the frequencies presented here.

9 Discussions and conclusions
The numerical examples indicate that composites and laminated �lms based on
ferro- and ferrimagnetic media having a large saturation magnetization are possible
candidates for thin absorbers operating in the lower microwave region. Unfortun-
ately, they appear to be quite sensitive to perturbations in the parameter β, i.e.,
to perturbing magnetic �elds. To understand this consider moderate values of α.
Then high losses in µt implies (cf.(5.8)) ω ¿ αωS. In the general expressions (4.5),
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we see that β has minor in�uence if βωS ¿ αω, i.e.

β ¿ α2,

a condition that can be very di�cult to reach uniformly within a layer.
Apart from being sensitive to deviations from β = 0, a periodically rotating

lateral magnetization can �average out" the in�uence of anisotropy. Particularly, for
normal incidence, with a layer of only a few millimeters in thickness, quite equal
re�ection coe�cients for both polarizations with levels below - 20 dB are obtained
for several octaves. For oblique incidence the re�ection coe�cients are di�erent for
the two polarizations, but almost independent of the azimuthal angle of incidence.
Still, rather good absorption is achieved for several octaves up to 30◦ in the polar
angle for both polarizations. However, when the wavelength of the incident wave
is of the same order as the periodicity of the magnetization, i.e. λ ≈ a, we can no
longer expect the material to behave as if isotropic, which is seen from Figure 6.
Also, at these frequencies the higher order modes will most likely a�ect the isotropic
behavior of the fundamental mode. Thus, in order to avoid these e�ects the absorber
should be designed to operate for wavelengths λ > a.

A limitation of the numerical method is that for large n, the mode wave-numbers
in the z-direction becomes kz,n ≈ in2π/a. Hence, the higher order evanescent modes
will exhibit strong exponential growth/decay, resulting in ill-conditioned matrices.
For thick layers, this may reduce the truncation number N considerably. However,
in this paper where relatively thin layers are considered, the number of Floquet-
modes used seems to be su�cient for the numerical results to converge before the
matrices become ill-conditioned. As we have only considered a single-periodic layer,
the trade-o� between convergence and ill-conditionality must be re-examined in any
extension of the present method to double-periodic layers. Securing the condition
λ > a by reducing the periodicity a the condition πd/a ¿ 1 can be violated (even
though the layer still is thin in terms of the wavelength, d ¿ λ). In such a case,
the numerical propagator method described becomes inapplicable, and one must
consider another method, like for example homogenizing the medium in the lateral
directions [11].

In the present study we have overlooked the nonlinear magnetostatic problem
that has to be solved in order to �nd the stable solutions of the static magnetization
M 0. In general, one then ends up with a static magnetization varying in the z-
direction as well, and with all its cartesian components non-zero [2, 7]. The permea-
bility tensor in (6.4) will then be strati�ed, i.e. with an additional z-dependence.
The strati�ed case can be solved by replacing the matrix exponential in (7.18) by
numerical integration of equation (7.17), which makes the method computationally
slower, but the implementation is straight forward [5].

In summary, our results con�rm that a periodical arrangement of the magne-
tization can lead to a desired property, in this case �isotropic" re�ection of the
fundamental mode. Hence, the concept of a periodically changing medium has po-
tential usefulness when applied to other kinds of anisotropic, or even bianisotropic,
media.
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Appendix A The magnetic �eld inside a periodi-
cally magnetized layer

Here, we present how the expression (6.2) for the �eld inside the layer is obtained
from the expression (6.1) for the static magnetization. The method is general, and
can thus be used for other forms of periodic static magnetizations.

The continuous variation in the static magnetization M 0 gives rise to the mag-
netic volume charge density ρm = −∇·M 0, and at surfaces where M 0 varies discon-
tinuously there will be a magnetic surface charge density σm = n̂21 · (M 0,1 −M 0,2).

Introducing a periodic Green's function G(x, z; x′, z′) ful�lling
(

∂2

∂x2
+

∂2

∂z2

)
G(x, z) = −δ(x− x′) δ(z − z′) (A.1)

G(x + a, z; x′, z′) = G(x, z; x′, z′) (A.2)

the periodic scalar magnetic potential is determined as

Ψ0(x, z) =

∫ a

0

dx′
∫ ∞

−∞
dz′G(x, z; x′, z′) ρm(x′, z′) +

∫

C
dl′G(x, z; x′, z′) σm(x′, z′)(A.3)

where C denotes the set of surfaces (in one unit cell) where M 0 is discontinuous.
Expanding G(x, z; x′, z′) into the Fourier series

G(x, z; x′, z′) =
∞∑

n=−∞
gn(z; x′, z′) e− i2πnx

a (A.4)

it follows that
(

∂2

∂x2
+

∂2

∂z2

)
G(x, z; x′, z′) =

∞∑
n=−∞

(d2gn

dz2
− n24π2

a2
gn

)
e− i2πnx

a (A.5)

Similarly, expanding the x-part of the Dirac-delta function into a Fourier series:

δ(x− x′) =
∞∑

n=−∞

{
1

a

∫ a

0

δ(x− x′) e i2πnx
a dx

}
e− i2πnx

a =
1

a

∞∑
n=−∞

e i2πnx′
a e− i2πnx

a (A.6)

it follows, from (A.1), (A.5), (A.6) and the orthogonality of the Fourier terms, that

d2gn

dz2
− n24π2

a2
gn = −1

a
e i2πnx′

a δ(z − z′) , n = −∞ . . .∞ (A.7)

Let g+
n and g−n be the solutions to (A.7) in the regions z > z′ and z < z′, respectively.

At z = z′, the Dirac-delta term yields a step-discontinuity in dgn

dz
while gn becomes

continuous. Hence, one obtains the boundary conditions

g+
n (z′; x′, z′) = g−n (z′; x′, z′) (A.8)
dg+

n

dz
(z′; x′, z′)− dg−n

dz
(z′; x′, z′) = −1

a
e i2πnx′

a (A.9)
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For n = 0, one obtains

g+
0 = A+

0 + B+
0 z = A+

0 +
B+

0 + B−
0

2
z +

B+
0 −B−

0

2
z (A.10)

g−0 = A−
0 + B−

0 z = A−
0 +

B+
0 + B−

0

2
z − B+

0 −B−
0

2
z (A.11)

The common term B+
0 +B−0

2
z gives rise to a homogeneous �eld with sources at z =

±∞, and since this kind of �eld is absent we have B−
0 = −B+

0 , whereby (A.9) yields

B+
0 = − 1

2a
, B−

0 =
1

2a
(A.12)

Using (A.8), we thus obtain
A−

0 = A+
0 −

z′

a

Since any additive constant does not in�uence the �eld, we can impose the additional
condition g0(z

′; x′, z′) = 0, which yields A+
0 = −A−

0 = z′
2a

whereby

g0(z; x′, z′) = −|z − z′|
2a

(A.13)

For n 6= 0 we disregard solutions giving rise to �elds that grow without bound when
|z| → ∞. Hence

g+
n = A+

n e−
2π|n|z

a , g−n = A−
n e

2π|n|z
a , (A.14)

for which (A.8) and (A.9) yield

A+
n =

1

4π |n|e
i2πnx′

a e
2π|n|z′

a , A−
n =

1

4π |n|e
i2πnx′

a e−
2π|n|z′

a (A.15)

Collecting all terms, the Fourier expansion of the periodic Green's function becomes

G(x, z; x′, z′) = −|z − z′|
2a

+
1

4π

∑

n 6=0

1

|n|e
− i2πnx

a e i2πnx′
a e−

2π|n||z−z′|
a (A.16)

Finally, since the Green's function is real valued, the expansion is rewritten to

G(x, z; x′, z′) = −|z − z′|
2a

+
1

2π

∞∑
n=0

1

n

[
cos

(
2πnx

a

)
cos

(
2πnx′

a

)
+ sin

(
2πnx

a

)
sin

(
2πnx′

a

)]
e−

2πn|z−z′|
a

(A.17)

In our particular problem, we have

M 0(x) = MS

[
cos

(
2πx

a

)
x̂ + sin

(
2πx

a

)
ŷ

]
, 0 < z < d,
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with M 0 = 0 elsewhere, which yields

ρm(x) = −∇ ·M 0 =
2π

a
M sin

(
2πx

a

)
, 0 < z < d, (A.18)

σm(z = 0) = −ẑ ·M 0 = 0, σm(z = d) = ẑ ·M 0 = 0, and ρm = σm = 0 elsewhere.
By using (A.3), we thus obtain

Ψ0(x, z) =
MS
2

sin

(
2πx

a

) ∫ d

0

e−
2π|z−z′|

a dz′

=
MSa

2π
sin

(
2πx

a

)




sinh
(

πd
a

)
e− 2π

a (z− d
2), z > d

1− e−πd
a cosh

(
2π
a

(
z − d

2

))
, 0 < z < d

sinh
(

πd
a

)
e 2π

a (z− d
2), z < 0

(A.19)

from which H0 = −∇Ψ0 becomes

H0,x(x, z) = MS cos

(
2πx

a

)




− sinh
(

πd
a

)
e− 2π

a (z− d
2), z > d

e−πd
a cosh

(
2π
a

(
z − d

2

))− 1, 0 < z < d

− sinh
(

πd
a

)
e 2π

a (z− d
2), z < 0

(A.20)

H0,y(x, z) = 0 (A.21)

H0,z(x, z) = MS sin

(
2πx

a

)




sinh
(

πd
a

)
e− 2π

a (z− d
2), z > d

e−πd
a sinh

(
2π
a

(
z − d

2

))
, 0 < z < d

− sinh
(

πd
a

)
e 2π

a (z− d
2), z < 0

(A.22)

Assuming that πd

a
¿ 1, i.e. a thin layer, and including the �rst order terms, the

�eld inside the magnetized layer becomes

H0 ≈ MS

[
−πd

a
cos

(
2πx

a

)
x̂ +

2π

a

(
z − d

2

)
sin

(
2πx

a

)
ẑ

]
(A.23)

Appendix B Expressions for the matrices used in
the scattering analysis

The sub-matrices in the fundamental equation (7.17) are given by

W11 =

(−ik0yp
6 − ik ip7k− ik

ik0yp
1 − ik0yI −ip1k− ik0yI

)
(B.1)

W12 =




iωµ0p
8 + i

k0y

ωε0ε
k iωµ0p

9 − i
1

ωε0ε
kk

−iωµ0p
2 + i

k0y

ωε0ε
I −iωµ0p

3 − i
k0y

ωε0ε
k


 (B.2)
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W21 =




−i
k0y

ωµ0

kµ−1
33 −iωε0εI + i

1

ωµ0

kµ−1
33 k

iωε0εI− i
k2

0y

ωµ0

µ−1
33 +i

k0y

ωµ0

µ−1
33 k


 (B.3)

W22 =

(
ik0yI− ikp10 ik− ikp11

ik0yI− ik0yp
4 −ik− ik0yp

5

)
(B.4)

where

pi =




pi
0 · · · pi

2N... . . . ...
pi
−2N · · · pi

0


 , k =




kx,−N · · · 0
... . . . ...
0 · · · kx,N


 (B.5)

with

p1
n =

1

a

∫ a

0

µ−1
33 µ13e

−in 2π
a

xdx, p2
n =

1

a

∫ a

0

(µ11 − µ13µ
−1
33 µ31)e

−in 2π
a

xdx (B.6)

p3
n =

1

a

∫ a

0

(µ12 − µ13µ
−1
33 µ32)e

−in 2π
a

xdx, p4
n =

1

a

∫ a

0

µ−1
33 µ31e

−in 2π
a

xdx (B.7)

p5
n =

1

a

∫ a

0

µ−1
33 µ32e

−in 2π
a

xdx, p6
n =

1

a

∫ a

0

µ−1
33 µ23e

−in 2π
a

xdx = p7
n (B.8)

p8
n =

1

a

∫ a

0

(µ21 − µ23µ
−1
33 µ31)e

−in 2π
a

xdx, p9
n =

1

a

∫ a

0

(µ22 − µ23µ
−1
33 µ32)e

−in 2π
a

xdx

(B.9)

p10
n =

1

a

∫ a

0

µ−1
33 µ31e

−in 2π
a

xdx, p11
n =

1

a

∫ a

0

µ−1
33 µ32e

−in 2π
a

xdx (B.10)

kx,n = k0x + n
2π

a
(B.11)

The rotation matrix Φ transforms between the main coordinate system and the
plane of incidence, with respect to which the TM- and TE-type Floquet-modes in
the free space region are de�ned:

Φ =







cos ϕ−N · · · 0
... . . . ...
0 · · · cos ϕN







sin ϕ−N · · · 0
... . . . ...
0 · · · sin ϕN






− sin ϕ−N · · · 0

... . . . ...
0 · · · − sin ϕN







cos ϕ−N · · · 0
... . . . ...
0 · · · cos ϕN







(B.12)

where

cos ϕn =
kx,n

(k2
x,n + k2

y0)
1/2

, sin ϕn =
ky0

(k2
x,n + k2

y0)
1/2

(B.13)
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The impedance matrix Z gives the relation between the tangential �elds of the
Floquet-modes in the free space region:

Z =







0 · · · 0
... . . . ...
0 · · · 0







ZTM,−N · · · 0
... . . . ...
0 · · · ZTM,N






−ZTE,−N · · · 0

... . . . ...
0 · · · −ZTE,N







0 · · · 0
... . . . ...
0 · · · 0







(B.14)

where

ZTM,n = η0
kz,n

k0

, ZTE,n = η0
k0

kz,n

(B.15)

kz,n =

{
(k2

0 − k2
x,n − k2

y0)
1/2, when k2

x,n + k2
y0 ≤ k2

0

i(k2
x,n + k2

y0 − k2
0)

1/2, when k2
x,n + k2

y0 > k2
0

(B.16)
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