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Robustness of a Design Method Based on
Assignment of Poles and Zeros

K. J. ASTROM

Abstract—The sensitivity of a pole-zero placement deslgn with respect
to variations in the process model is discussed. Inequalities which guaran-
tee stability and precision in the assigned poles are given,

I. INTRODUCTION

It is an empirical fact that complex processes can often be controlled
well by surprisingly simple regulators. When regulators are designed
using analytical methods the comiplexity of the regulator is often de-
termined by the complexity of the model, A high-order model will give a
high-order regulator and vice versa. To obtain a simple regulator it is
therefore important to base the design on a simplified model. It is then
of interest to investigate the sensitivity of the closed-loop system to
variations in the model used for the design. A problem of this type is
formulated and solved in this paper.

The sensitivity of a closed-loop system with respect to perturbations in
the open-loop transfer.function is a classical problem [1] which recently
has received new interest [2), [3]. The problem studied in this paper could
be considered from this viewpoint. By making more assumptions,
namely, that the closed-loop system is derived from a particular design
technique, stronger results can, however, be obtained. The notations are
given in Section II. A simple design method based on pole-zero assign-
ment is used. This method is briefly described in Section III. The main
results are given in Section IV. It is believed that results of the type given
in this paper are useful for understanding design methods and their
practical applications. The results given can be extended in many direc-
tions. Other design methods could be investigated [4]. Assumptions can
be relaxed and multivariable systems could be considered.

II. PRELIMINARIES

It is assumed that the systems considered are linear time-invariant and
that they have one input and one output. The input-output characteris-
tics of such systems can be described by analytic transfer functions. Both
continuous-time and discrete-time systems are considered.

The stability region is a subset of the complex plane. For continuous-

" time systems it is the left half-plane excluding the imaginary axis, For

discrete-time systems the stability region is the interior of the unit circle.
A system is stable if all the poles of its transfer function are inside the
stability region. The instability region is the complement of the stability
region. From a practical point of view it is useful to introduce a

. restricted stability region ¥ which is strictly inside the stability region.

For a continuous-time system the region Z could, e.g., be characterized
by
3n/d<args<5w/4
Res< ~54,<0.
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The image of this region under the transformation z =exp(sT) could be
the restricted stability region for discrete-time systems.

The critical curve I 1s the imaginary axis for continuous-time systems
and the unit circle for discrete-time systems.

III. POLE AND ZERO PLACEMENT

A simple servo design method is chosen as a typical representative for
analytical design techniques. The design is based on classical pole-zero
assignment as described in [5], [6], and [7]. A brief description together
with some useful interpretations are given below.

The problem of designing a servo with a given closed-loop transfer
function will now be described and solved.

Formulation

Consider a process characterized by the rational transfer function
G= 3 3.h

where 4 and B are polynomials. It is assumed that 4 and B are coprime
and that

degB<degA4.

It is desired to find a controller such that the closed loop is stable and
that the transfer function from the command input u, to the output is
given by

Gy = % (3.2)
where P and Q are coprime and
deg P —degQ > degA —degB. (3.3)
Design Procedure
A general linear regulator can be described by
Ru=Tu.— Sy. (3.4)

The regulator can be thought of as a combination of a feedback having
the transfer function

S
Grp= R 3.5
and a feedforward with the transfer function
T
GFF= i . (36)

The closed-loop transfer function relating y to u, is given by

TB
AR+ BS’

Since this transfer function should equal the desired closed-loop transfer
function G,, given by (3.2) we get

8

B _9Q
AR+BS~ P

(3.7
The design problem is thus equivalent to the algebraic problem of
finding polynomials R, S, and T such that (3.7) holds. It follows from
(3.7) that factors of B which are not also factors of Q must be factors of
R. Since factors of B correspond to open-loop zeros, it means that
open-loop zeros which are not desired closed-loop zeros must be
canceled. Factor B as

B=B*B~ (3.8)
where all the zeros of B* are in the restricted stability region € and all
zeros of B~ outside £. This means that all zeros of B* correspond to
well damped modes and all zeros of B~ correspond to unstable or
poorly damped modes.
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A necessary condition for solvability of the servo problem is thus that
the specifications are such that

0=0,B".

Since deg P is normaily less than deg(4R + BS) it is clear that there are
factors in (3.7) which cancel. In state space theory it can be shown that
the regulator (3.4) corresponds to a combination of an observer and a
state feedback (see [8]). It is natural to assume that the observer is
designed in such a way that changes in command signals do not generate
errors in the observer. This means that the factor which cancels in the
right-hand side of (3.7) can be interpreted as the observer polynomial T',.

The design procedure can be formulated as follows.

Data: Given the desired response specified by the polynomials P and
Q, subject to degP=degA4 and the conditions (3.3), (3.9), and the
desired observer polynomial T. It is assumed that P and T, have all
their zeros in Z.

Step 1: Solve the equation

(3.9)

AR,+B~S=PT, (3.10)

with respect to R, and S.
Step 2: The regulator which gives the desired closed-loop response is
the given by (3.4) with
R=RB* 3.11)
and

T=T,0,. (3.12)

Equation (3.10) can always be solved because it was assumed that 4
and B were coprime. This implies, of course, that 4 and B~ are also
coprime. Equation (3.10) has infinitely many solutions. Al solutions will
give the specified closed-loop transfer function. The solutions will, how-
ever, differ with respect to disturbance rejection properties (see [8]).

Analysis
A direct calculation gives

8~ T\QB*B-  T\QB”
AR+BS B*(AR,+B-S)  PT,

2
P

which shows that the regulator gives the desired closed-loop response.
Notice that in this calculation we have divided with the factors B* and
T,. This is permitted since it was assumed that all their zeros are well
damped.

A direct calculation shows that the closed-loop system has the char-
acteristic polynomial B * T, P. The polynomial B * has all its zeros in the
restricted stability region £ by definition. Since the observer polynomial
T, and the polynomial P were chosen to have all their zeros in Z it
follows that the closed-loop system has all its poles in Z.

Interpretation as Model Following

The regulator (3.4) can be interpreted as a model following servo. It
follows from (3.10), (3.11), and (3.12) that

T_TQ _(AR+B"S)0, AQ, SB‘Q1=14‘.2+£_2
R B*R, PB*R, B*P BYRP B P R P’
The feedback law (3.4) can thus be written as
A S
u=prt =y (3.14)
where
1%
yc=Fur'

The signal y, can be interpreted as the output obtained when the
command signal u_ is applied to the model Q/P. When the regulator
(3.4) is rewritten as (3.14) it is clear that it can be thought of as

composed of two parts, one feedforward term (A/B)y. =
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(A/BXQ/ P)u, and one feedback term (S/R)(y,—y). The feedforward
is a combination of the ideal model and an inverse of the process model.
The feedback term is obtained by feeding the error y,—y through a
dynamical system characterized by the operator S/R. It is thus clear
that the regulator can be interpreted as a model following servo. Notice,
however, that the system 4/ B is not realizable although the combination

AQ/(BP)is.

IV. Main RESULTS

It follows from the discussion in Section III that an (n— Dth order
regulator may be obtained when the design method is applied to an nth
order system. Equation (3.10) will be poorly conditioned if the system
has poles and zeros which are close together. It is an empirical fact that
this often happens for models of high order. To use the analytical design
method it is therefore necessary to base it on a low-order model. It is
therefore of interest to investigate what happens when the design method
is applied to a simplified model

B

G=A’

(4.1)
of a process with the transfer function Gg.

The stability of the closed-loop system will first be discussed. The
sensitivity of the closed-loop poles are then considered.

Stability

A sufficient condition for stability is given by the following theorem.

Theorem 1: Consider the regulator (3.4) obtained by applying the
pole-zero assignment design to the stable model G=B/A with the
specification that the closed-loop transfer function should be G,, = Q/ P.
Let the regulator control a stable system with the transfer function G,.
The closed-loop system is then stable if

BPT|_| G || Ger
|G GOI<|AQS‘—| Gl Cra 4.2)
on the critical curve I' and at z = co.
Proof: Consider the function
F=R+G,S. (43)

This function is regular outside the stability region because the system
G, was assumed stable. The zeros of the function F are equal to the
closed-loop poles. Solving (3.10) for R and insertion into (4.3) gives

F=PB*T,/A—BS/A+G,S=PB*T,/A+ S(Gy— G).

When G = G, the zeros of F are thus equal to the zeros of the polynomi-
als B*, P, and T,. Since both the system and the model were assumed to
be stable the functions PB*T;/A4 and S(Gy—G) are both regular
outside the stability region. The functions are thus regular on a contour
which encloses the instability region. Notice that

‘BPT _ B*BPT\Q, _

B*PT,
AQS ~  4QB°S )

AS

Condition (4.2) thus implies that
IS(Go— G| < |PB*T/ Al

on the critical curve and at infinity.

It now follows from Rouche’s theorem [9, p. 119] that the functions F
and PB *T,/A have the same number of zeros in the instability region.
It follows from the design procedure that the polynomial PB * T, has all
its zeros in the restricted stability region. The closed-loop system is thus
stable. The equality in (4.2) follows from

BPT _ BPTR _ GG
AQS ~ AQRS ~ Gy Gpy

where (3.5) and (3.6) have been used. ]
Theorem 1 gives good insight into the sensitivity of the design to
modeling errors. When a model has been obtained and a regulator has
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been designed, the right-hand side of (4.2) can be determined. The
polynomials 7, S and the transfer function Ggr and Gpp are then
known. Bounds on the transfer function G which will give a stable
closed-loop system are then given by (4.2). Notice that the bound is
proportional to |Grr/Grgl. The requirements on model precision are
thus less for designs which lead to a high ratio of feedforward to
feedback as can be expected. For single-degree-of-freedom systems [10]
Gpp=Grp and the bound is simplified further. Also notice that the
bound is proportional to |G/G,,|. For a normal servo the desired
transfer function G,, is unity for low frequencies. It then remains
constant up to frequencies corresponding to the specified bandwidth
where it starts to decrease. From the point of view of stability it is thus
advantageous to have a high process gain. The ratio |G/ G,,| is normally
large for low frequencies because the low-frequency gain of the process
is typically larger than the desired low-frequency gain. Reasonable
specifications are also often such that |[G/G,,| is constant for high
frequencies. Since G and G normally are small for high frequencies, this
means that the inequality (4.2) can be satisfied even if G and G deviates
substantially at high frequencies. Normally, it is only in a fairly narrow
frequency range around the bandwidth where (4.2) gives critical require-
ments on the model accuracy. This agrees well with empirical facts and
explains qualitatively why simple models can be useful for pole-place-
ment design. Notice also that it follows from (4.2) that the requirements
on model precision will be reduced by reducing the bandwidth of desired
closed-loop system.

Sensitivity of Closed-Loop Poles to Model Errors

So far the discussion has been focused on the stability problem.
Having established that a model is sufficiently accurate to guarantee
stability it is, of course, of interest to analyze the problem further and to
investigate the requirements on model precision which are necessary to
have the dominating poles close to their specified values.

In the proof of Theorem 1 it was shown that the closed-loop poles are
the zeros of the function F defined by (4.3), i.e,,

F=PB*T,/ A+ S(Gy— G)=H+ S(Gy— G).

When G = G, the system has thus poles at the zeros, p;, of P, By, and T.
Consider F as a function of z and G. A Taylor series expansion at z=p;
and G = G|, gives

F(z)=H(p)+ H'(p)(z—p;)) — S(pILG(p)) — Go( p)].

An approximative formula for the change of the pole p; due to a
modeling error is thus

z=p,—[H'(p)]” ' S(p)Gol 1) — G(p)]-

If it is required that a pole p; change by at most a|p;| due to a modeling
error the following inequality is obtained:

[Go(P) — G(p)| <alH'(p)IIS (2| 2il-

A requirement that certain dominant poles do not change too much will
thus lead to a requirement that the values of the model pulse transfer
function is close to the process pulse transfer function on the contour I’
and at the poles of interest. Such a requirement can of course also be
satisfied by a fairly simple model provided that the number of dominant
poles is not too large.

4.4)
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