
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Goodness of fit tests for the extreme value distribution based on regression, EDF and
the stabilized probability plot

PirouziFard, MirNabi; Holmquist, Björn

2008

Link to publication

Citation for published version (APA):
PirouziFard, M., & Holmquist, B. (2008). Goodness of fit tests for the extreme value distribution based on
regression, EDF and the stabilized probability plot. 152-162. Paper presented at 7th International Conference on
Social Science MEthodology.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/94d873bd-613b-4209-a1bb-00f01da92884


 
 
 
 
 
 
 
 

   
Goodness of fit tests for the extreme value distribution 

based on regression, EDF  
and the stabilized probability plot 

 
 

Mir Nabi Pirouzi Fard 
 

and 
 

Björn Holmquist 
 

 
                                                                                   2007:1 

 
 
 
 
 

                                                                            
 
 

DEPARTMENT OF  
STATISTICS 

 
 

S-220 07 LUND 
SWEDEN 



Goodness of fit tests for the extreme value distribution based on

regression, EDF and the stabilized probability plot

By MIR NABI PIROUZI FARD and BJÖRN HOLMQUIST
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Summary

Procedures for goodness-of-fit test of the extreme value distribution are inves-

tigated. The different procedures are all based on order statistics and take into

account the dependence structure within the ordered sample. The power of the test

statistics are examined, and shows that two tests that outperform the others can be

found.

Some key words: Empirical Distribution Function; Extreme value distribution; Generalized Least

Squares; Means, variances and covariances of order statistics; Regression test.

1. Introduction

The extreme value distribution is widely used in lifetime testing, in the study of

size effects on material strengths, the reliability of systems made up of a large number

of components, in assessing the level of air pollution and in the flood frequency

analysis. This distribution has an important role in modelling lifetime data and

hence considerable efforts have been dedicated to testing the hypothesis of extreme

value distribuion. For reviews of the subject the reader is referred to D’Agostino

and Stephens (1986) and Balakrishnan and Rao (1998).



Let Y have an extreme value distribution with cumulative distribution function

F (y) = 1 − exp(− exp(
y − α

β
)) −∞ < y < ∞ (1)

where the parameters β > 0 and −∞ < α < ∞. The mean and variance of this

distribution, sometimes referred to as the Gumbel distribution, are respectively,

E(Y ) = α − γβ var(Y ) = β2π2/6

where γ ≈ 0.57721 is Euler’s constant.

In this paper we consider tests of fit based either on regression, the Empirical

Distribution Function (EDF) or the stabilized probability plot. A test of fit is a test

of H0: a random sample of Y -values comes from an extreme value distribution with

unknown parameters α and β. In section 2 we discuss the test statistics for random

samples from an extreme value distribution. The results of the power comparisons

and tables of significance points are given in section 3.

2. Test statistics

Goodness of fit tests mostly require estimation of location and scale parameters

in the tested distribution F (y) which is the cumulative distribution function in (1).

Let x1 ≤ · · · ≤ xn denote an ordered random sample of size n from equation (1)

with α = 0 and β = 1, and

mi = E(xi) (i = 1, . . . , n) and σij = cov(xi, xj) (i, j = 1, . . . , n)

Define m to be the (n × 1) vector of the expected values mi, Σ the (n × n)

matrix of variances and covariances σij . If we let Z be a vector of ordered random
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observations from equation (1) for general α and β, then the elements zi of Z may

be expressed as

zi = µ + θxi, i = 1, . . . , n (2)

where µ = α is a location parameter and θ = β a scale parameter.

In a regression model

zi = µ + θmi + εi, i = 1, . . . , n (3)

the points of the n pairs (mi, zi) should be approximately a straight line with inter-

cept µ on the vertical axis and slope θ. The parameters µ and θ, in equation (3)

can be estimated by a suitable method.

The Ordinary Least Squares (OLS) is a method for obtaining estimates of pa-

rameters in equation (3). If the variances of the dependent variable in equation (3)

are constant and the covariances are equal to 0 the estimated parameters by this

method are the minimum variance linear unbiased estimators of µ and θ.

But since the observed values in equation (3) are order statistics with var(zi) =

θ2var(xi) and cov(zi, zj) = θ2cov(xi, xj), and var(xi) depend on i and also cov(xi, xj)

depends on i and j. Thus the OLS estimators will not be the minimum variance

estimators.

The best linear unbiased estimates of µ and θ can be obtained from the general-

ized least-squares (GLS) regression of the order statistic (Aitken, 1935; Lloyd, 1952)

and are given by

µ̂ =
m′Σ−1(m1′ − 1m′)Σ−1Z

1′Σ−11m′Σ−1m − (1′Σ−1m)2
(4)

and

θ̂ =
1′Σ−1(1m′ − m1′)Σ−1Z

1′Σ−11m′Σ−1m − (1′Σ−1m)2
(5)

3



where 1 is a n-dimensional vector of ones.

Thus the ith fitted value ẑi is given by the equation

ẑi = µ̂ + θ̂mi i = 1, . . . , n (6)

The use of GLS requires information on the expected values and the variance-

covariance matrix of the order statistics from the standard extreme value distribu-

tion.

Lieblein and Zelen (1956) presented the expected values, variances and covari-

ances of the order statistics from the standard extreme value distribution for n =

1(1)6. Lieblein and Salzer (1957) presented a table of expected values of order statis-

tics for n = 1(1)10(5)25 and the first 26 largest values for n = 30(5)60(10)100. White

(1967, 1969), tabulated means and variances of order statistics for n = 1(1)50(5)100.

For sample sizes n = 1(1)15(5)30, Balakrishnan and Chan (1992) presented tables

of means, variances and covariances of the order statistics.

To calculate µ̂ and θ̂ in equations (4) and (5) we use the approximate values of

means of order statistics, suggested by Pirouzi Fard and Holmquist (2007)

mi ≈



− log n − γ for i = 1,

log(− log(1 − ((i − 0.4866)/(n + 0.1840)))) for i = 2, ..., n,
(7)

We also apply the approximate variances and covariances of the order statistics,

given by Pirouzi Fard and Holmquist (2006) in an unpublished statistical research

report as
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σij ≈



π2/6 for i = j = 1
(i−0.469)[(n+0.831−i)(n+0.073)]−1

log(n+0.831−i
n+0.356

) log(n+0.779−j
n+0.356

)
1 ≤ i ≤ j ≤ n

(8)

and σji = σij is the covariance of the ith and jth order statistics of standard extreme

value distribution.

2.1 Regression tests based on residuals

We are interested in using residuals to test how well the data fit {ẑi}. The

residuals can be expressed as zi − ẑi i.e. the differences between the observed values

and the values given by the model. We will examine two methods to measure

linearity of data. The first method of measure linearity is the error (or unexplained)

sum of squares (ESS) divided by the total sum of squares (TSS) given by

T1 =
ESS

TSS
=

(Z − Ẑ)′(Z − Ẑ)

(Z − Z̄1)′(Z − Z̄1)

where Ẑ is the vector of estimated values (by using the GLS regression) with elements

given in equation (6) and Z̄ = (1′Z)/(1′1).

The other method to measure linearity of data is

T2 =
GESS

GTSS
=

(Z − Ẑ)′Σ−1(Z − Ẑ)

(Z − Z̄∗1)′Σ−1(Z − Z∗1)

where GESS is the generalized error (or unexplained) sum of squares, GTSS is the

generalized total sum of squares and Z̄∗ is a constant which Buse (1973) has defined

as (1′Σ−1Z)/(1′Σ−11). Both measures of linearity are location and scale invariant.
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2.2 Test of fit based on EDF

Let x1, . . . , xn be the order statistics from a continuous distribution function

F (y) of size n. The empirical distribution function for the sample, given by

Fn(y) =
number of observations ≤ y

n
; −∞ < y < ∞

is a step function with a step size 1/n at the order statistics x1 < · · · < xn. The

distance between the EDF and the hypothesized distribution, F (y) = F̂ (y) can be

considered as a way of testing for H0. Large values of the test statistics indicate

that H0 should be rejected. In our case, F̂ (y) is given by

F̂ (y) = 1 − exp(−e(y−µ̂)/θ̂)

i.e. the estimated cumulative distribution function of the extreme value distribution,

where the parameters are estimated by GLS according to equations (4) and (5).

In this study we discuss three such tests. The first of the EDF-based test we

consider is the Dn statistic:

Dn = sup
y

|Fn(y) − F̂ (y)| = max(D+
n , D−

n )

introduced by Kolmogorov-Smirnov, where D+
n and D−

n is obtained by

D+
n = max

1≤i≤n
(
i

n
− F̂ (xi)), D−

n = max
1≤i≤n

(F̂ (xi) − i − 1

n
)

The second EDF test statistic is the Cramer-von Mises statistic, W 2
n :

W 2
n = n

∫ ∞

−∞
[Fn(y) − F̂ (y)]2dF̂ (y)
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which can also be expressed by the formula

W 2
n =

1

12n
+

n∑
i=1

(F̂ (xi) − i − 0.5

n
)2

The third EDF test is the Anderson-Darling statistic, A2
n:

A2
n = n

∫ ∞

−∞

(Fn(y) − F̂ (y))2

F̂ (y)(1 − F̂ (y))
dF̂ (y)

This test statistic can be calculated by the formula

A2
n = −n −

n∑
i=1

2i − 1

n
[log(F̂ (xi)) + log(1 − F̂ (x(n+1−i)))]

2.3 Test of fit based on stabilized probability plot

Let x1, . . . , xn be the ordered observations in a random sample of size n from the

distribution of the form F (x) = F0((x−µ)/θ), where µ is a location parameter and

θ is a scale parameter. A probability plot is a plot of the xi versus a corresponding

theoretical quantities ui = F−1
0 (di), where di is an estimate of F0((xi − µ)/θ). In

such a plot the points should lie fairly near the line xi = µ+θui, and it indicates that

the hypothesized distribution is a resonable model for the data. The interpretation

of the plot can be complicated due to the existence of outliers and the unequal

variances of the plotted points. The stabilized probability plot is introduced by

Michael (1983) to handle the problem. The plot is formed by plotting

si = (2/π)sin−1[F 0.5
0 {(xi − µ)/θ}] (9)

against

ri = (2/π)sin−1[{(i − 0.5)/n}0.5] (10)
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where according to Michael (1983), s follows the sine distribution and all its order

statistics have the same asymptotic variance. Hence by this transformation, the

variance of the plotted points are approximately equal over the range of probability

values.

A goodness-of-fit statistic based on stabilized probability plot is also suggested

by Michael (1983) as

Dsp = max |ri − si| (11)

Kimber (1985) used the statistic Dsp for testing of the extreme value distribution

of maxima. He applied Downton’s estimates (1966) of µ and θ, to obtain the critical

values. Coles (1989) investigated the statistic Dsp for testing the extreme value

distribution of minima and denoted it by D∗
sp. He estimated the parameters α

and β in equation (1), by using Blom’s procedure (1958) and showed that due to

the improved estimation procedure, the test statistic D∗
sp had higher power than

Kimber’s proposed test statistic.

The best linear unbiased estimates of the parameters whose distribution function

is of a location - scale form have been considered by Lloyd (1952). Therefore we

estimate the parameters in equation (1) by using equations (4) and (5) to get the

test statistic

D+
sp = max |ri − ŝi| (12)

where ŝi is obtained from equation (9) by replacing µ and θ by the estimates from

(4) and (5).

A power comparison of the D∗
sp, D+

sp and some other test statistics are given in

section 3.
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3 The results of the monte carlo study

3.1 Power of the tests

The power of test statistics have been examined for samples from equation (1)

against a range of alternative distributions based on 40000 replicates. As mentioned,

the purpose of this study is to apply the expected values, variances and covariances

of order statistics of the standard extreme value distribution in order to estimate

the unknown parameters in equation (1) by GLS regression.

In Tables 1 and 2 the power of the test statistics by using approximations (equa-

tions (7) and (8)) are compared with the power when exact values are used for

sample size 20. These tables show that the differences are negligible, most of the

differences being in the second decimal place. The power also reveals that the test

statistic T1 has higher power in comparison with the other test statistics for many

of the alternatives.

In the case of the extreme value distribution, Stephens (1977) determined ap-

proximate critical values of the Cramer-von Mises statistic when using the maximum

likelihood estimates of µ and θ. The W 2
n and A2

n tests have also been studied by

Littel et al. (1979), in which case again the maximum likelihood estimates were

used in substitution for µ and θ.

Spinelli (1980), in an unpublished M.Sc. Thesis at Simon Fraser University, stud-

ied the test statistics based on regression and EDF for the extreme value distribution,

of maxima. He pointed out problems arising when using the GLS method for the

extreme value distribution due to the unavailability of the variances and covariances

of the order statistics for large sample sizes.
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We have also performed a power study for the extreme value distribution, of

maxima. Comparison of the power of the tests for some different distributions with

the results presented by Spinelli show that our results seems to be of the same order

as Spinelli’s results except for T2 statistic. Our result mostly give lower power for

the T2 statistic than is indicated in Spinelli’s study.

The test based on the T1 statistic is in terms of power, superior to most others

test statistics in this study. The test based on D+
sp is almost of the same power as

the T1 test.

Table 1 also shows that due to the improved parameter estimation, the test

statistic D+
sp is generally more powerful than D∗

sp. The procedure for parameter

estimation used in D+
sp is simple to implement which is another advantage of this

test statistic.

3.2 Percentage Points

The critical values of the T1 statistic for n = 10(10)100 are given in Table 3. In

this table for n = 10(10)30, the percentage points of the statistics based on both

the exact and approximate values of means and covariances. Table 3 reveals that

the approximation yield an error less than 6 % for all sample sizes. This encourages

us to trust the use of approximations of means and variances in calculating the test

statistics.
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Table 1: Empirical power for tests on level 0.10, for selected alternative distribu-

tions based on 40000 replicates by using the exact values of means, variances and

covariances of order statistics for n=20. 1Density 4(1 − x)3, 0 < x < 1. 2Density

1
16

xe−x/4, x ≥ 0. 3Density 10x4e−2x5
, x ≥ 0.

Distribution T1 T2 W 2
n A2

n Dn D+
sp D∗

sp

U(0, 1) 0.46 0.22 0.34 0.38 0.27 0.47 0.40

Beta(1,4)1 0.98 0.41 0.88 0.92 0.81 0.98 0.96

N(0, 1) 0.43 0.13 0.32 0.33 0.26 0.38 0.33

Student t(6) 0.48 0.21 0.42 0.44 0.35 0.45 0.42

Gamma(2,4)2 0.97 0.46 0.87 0.90 0.78 0.96 0.93

χ2(5) 0.95 0.42 0.83 0.86 0.73 0.93 0.90

Weibull(2,5)3 0.26 0.10 0.19 0.20 0.17 0.24 0.20

Empirical Critical

Values, level= 0.10 0.14 0.47 0.10 0.61 0.17 0.11 0.11
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Table 2: Empirical power for tests on level 0.10, for selected alternative distributions

based on 40000 replicates by using the estimated values of means, variances and

covariances of order statistics for n=20.

Distribution T1 T2 W 2
n A2

n Dn D+
sp D∗

sp

U(0, 1) 0.46 0.23 0.35 0.39 0.28 0.47 0.40

Beta(1,4) 0.98 0.42 0.88 0.92 0.81 0.98 0.97

N(0, 1) 0.44 0.14 0.32 0.33 0.26 0.38 0.33

Student t(6) 0.48 0.21 0.42 0.44 0.35 0.45 0.41

Gamma(2,4) 0.97 0.47 0.87 0.90 0.78 0.96 0.94

χ2(5) 0.95 0.42 0.83 0.87 0.73 0.94 0.90

Weibull(2,5) 0.27 0.10 0.19 0.20 0.17 0.24 0.20

Empirical Critical

Values, level= 0.10 0.13 0.46 0.10 0.61 0.17 0.11 0.11
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Table 3: Quantiles of the test statistic T1 based on 40000 replicates.

n 0.80 0.85 0.90 0.95 0.975 0.99

10 0.15 0.17 0.21 0.27 0.33 0.41 exact

0.15 0.17 0.20 0.26 0.32 0.41 approx.

20 0.10 0.11 0.14 0.17 0.22 0.28 exact

0.10 0.11 0.14 0.18 0.22 0.28 approx.

30 0.07 0.09 0.10 0.13 0.17 0.21 exact

0.07 0.09 0.10 0.13 0.17 0.21 approx.

40 0.06 0.07 0.09 0.11 0.14 0.18

50 0.05 0.06 0.07 0.10 0.12 0.15

60 0.05 0.05 0.06 0.08 0.10 0.13

70 0.04 0.05 0.06 0.07 0.09 0.12

80 0.04 0.04 0.05 0.07 0.08 0.11

90 0.03 0.04 0.05 0.06 0.08 0.10

100 0.03 0.04 0.04 0.06 0.07 0.09
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