
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Conclusions from the European Roadmap on Control of Computing Systems

Årzén, Karl-Erik; Robertsson, Anders; Henriksson, Dan; Johansson, Mikael; Hjalmarsson, H.;
Johansson, Karl Henrik

2006

Link to publication

Citation for published version (APA):
Årzén, K.-E., Robertsson, A., Henriksson, D., Johansson, M., Hjalmarsson, H., & Johansson, K. H. (2006).
Conclusions from the European Roadmap on Control of Computing Systems. Paper presented at First
International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks,
Vancouver, Canada. http://www.controlofsystems.org/febid2006/program.html

Total number of authors:
6

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 15. Jul. 2025

https://portal.research.lu.se/en/publications/af1805a0-8216-4313-a677-4c9e798469f8
http://www.controlofsystems.org/febid2006/program.html


Conclusions from the European Roadmap on Control of Computing Systems

Karl-Erik Årzén∗, Anders Robertsson, Dan Henriksson

Dept of Automatic Control, LTH

Lund University, Box 118, SE-221 00 Lund, Sweden

Mikael Johansson, Håkan Hjalmarsson, Karl Henrik Johansson

Dept of Signals, Sensors and Systems

Royal Institute of Technology, SE-100 44 Stockholm, Sweden

1. Background

The use of control-based methods for resource manage-

ment in real-time computing and communication systems

has gained a substantial interest recently. Applications ar-

eas include performance control of web-servers, dynamic

resource management in embedded systems, traffic con-

trol in communication networks, transactionmanagement in

database servers, error control in software systems, and au-

tonomic computing. Within the European EU/IST FP6 Net-

work of Exellence ARTIST2 on Embedded System Design

a roadmap on Control of Real-Time Computing Systems

has recently been completed. The focus of the roadmap is

how flexibility, adaptivity, performance and robustness can

be achieved in a real-time computing or communication

system through the use of control theory. The item that is

controlled is in most cases the allocation of computing and

communication resources, e.g., the distribution or schedul-

ing of CPU time among different competing tasks, jobs, re-

quests, or transactions, or the communication resources in

a network. Due to this, control of computing systems also

goes under the name of feedback scheduling.

The roadmap is divided into six research areas: con-

trol of server systems, control of CPU resources, control of

communication networks, error control of software systems,

feedback scheduling of control systems, and control mid-

dleware. For each area an overview is given and challenges

for future research are stated. The aim of this position paper

is to summarize the conclusions concerning these research

challenges. In this paper, we will only cover the first four of

the areas above. A preliminary version of the roadmap can

be found on http://www.control.lth.se/user/

karlerik/roadmap1.pdf

1.1 Motivation

Feedback-based approaches have always been used in en-

gineering systems. One example is the flow and congestion

control mechanisms in the TCP transport protocol. Typical

of many applications of this type is that feedback control is

used in a more or less ad hoc way without any connections

to control theory. During the last 5-10 years this situation

1Corresponding author. Email: karlerik@control.lth.se

has changed. Today control theory is beginning to be ap-

plied to real-time computing system in a more structured

way. Dynamic models are used to describe how the perfor-

mance or quality of service (QoS) depend on the resources

at hand. The models are then analyzed to determine the

fundamental performance limitations of the system. Based

on the model and the specifications control design is per-

formed. In some cases the analysis and design are based on

optimization. A recent textbook, [Hellerstein et al., 2004],

addresses the question of how to introduce control theory

for computer science students.

The publications in the area are rapidly increasing, see

e.g., [Hellerstein et al., 2005] and the references therein.

However, so far most of the work presented in literature

have been conducted by scientists working either in the real-

time computing or telecommunication fields, or in the auto-

matic control field. Unfortunately, this has sometimes led

to erroneous models and strange results. In order to achieve

good results a multi-disciplinary approach is necessary.

1.2 Modeling

Control of computing systems introduces new types of

problems that are not present when controlling physical

plants. Amain problem is the lack of first principles models.

When controlling a physical plant the laws of nature decide

to a large degree the behaviour of the plant and can be use

to derive dynamical models. A computing system, on the

other hand, is a man-made artifact whose internal behaviour

is not governed by any laws of nature, at least not on

the macroscopic level. This means that it is, generally,

not possible to derive any first principles models. One

exception, where theoretical models are available is queuing

theory [Kleinrock, 1975]. Queuing-theorymodels have also

been used with some success in the design of computing-

system controllers. A drawback with queuing models is

that they in most cases only hold in the average case and

that they assume certain statistical properties, e.g., Poisson

traffic.

Computing systems are discrete-event dynamic systems

(DEDS). This makes it natural to use a timed discrete-

event modeling formalism, such as timed automata or timed

Petri nets. This is, however, in many cases too fine-grained



and easily leads to state-space explosion. Another issue is

the types of problems that these formalisms typically lend

themselves to. Automata-based formalisms are well-suited

for expressing and analyzing safety properties and block-

ing properties. These properties are, however, not the main

concerns in performance control. Instead, issues such as sta-

bility, performance, and robustness are the main concerns.

For these types of problems a time-driven approach is more

natural. However, the lack of first principles knowledge ne-

cessitates a system identification-based approach, in which

a discrete-time difference equation model is derived from

measured input and outputs. The models and controllers de-

rived in this way are based on periodic sampling. Although

periodic controllers are, to a large extent, the approach that

is mostly used in applications, it is frommany respects more

natural to invoke the controller in an event-driven fashion.

For example, in a queue-length control problem it makes

more sense to calculate a new control action when a request

is queued or dequeued, or every nth enqueue/dequeueevent,

rather than periodically. A problem with aperiodic or event-

based systems and aperiodic control of this type, though, is

the lack of theory and tools for analysis and design.

2. Control of Server Systems

More and more business and services rely on Internet and

server technology. Queue management is important in all

servers, e.g., web servers. Server requests are stored in

an input queue, the server or worker thread servicing the

requests are stored in the ready queue or in different waiting

queues, e.g., in order to access memory. Many aspects of

the real-time performance of server systems can be inferred

from the behaviour of queues.

In a queue it is the difference between the service rate

and the arrival rate that determines the delay experienced

by the requests. Two types of actuators can be used. An

enqueue actuator influence the arrival rate of the queue. One

example of this is admission control. A dequeue actuator

instead influences the service rate of the requests. Examples

of this type of actuator mechanisms are different forms of

quality adaptation.

A queue can be modelled in various ways. Using queu-

ing theory, several types of models can be developed. One

example is Tipper’s nonlinear flow model [Tipper and Sun-

dareshan, 1990]. At a high level, a queue can be seen as

an integrator. This can be modeled using, e.g., a difference

equation and then analyzed with control theory. Both Tip-

per’s model and integrator-based models can be used as the

basis for control design, e.g., [Robertsson et al., 2003].

Flow models of queuing systems approximate the

steady-state behaviour of the queue and are typically more

accurate the higher the load is on the server. However, for

small and medium loads these types of models are less

appropriate. An open question is how to combine queu-

������
��
��
�������
�����
�����
������������
�������
�������
�����������������

����������
����������

����������
����������
����������

��������������
��������������
��������������

��������������
��������������
��������������

���������������
���������������
���������������

���������������
���������������
���������������
�����������������
�����������������
�����������������
�����������������������������������

������������������
������������������
�������������������������������������

�������������������
�������������������
�������������������

������
������
������

������
������
������

A B

CD

E

F

tnow

processing time

queuing time

t

cu
m
u
la
ti
v
e
ar
ri
v
al
s

an
d
d
ep
ar
tu
re
s

Figure 1 Server queuing and processing delay over time.

ing models with control-theoretic methods. A common

approach in delay control is to use nonlinear models from

queuing theory for feedforward combined with simple feed-

back control of PID type, e.g., [Sha et al., 2002]. The aim of

the feedforward path is to provide fast setpoint responses,

whereas the role of the feedback controller is to compen-

sate for disturbances and incorrect modeling assumptions.

An example of the latter is incorrect assumptions about the

stochastic nature of arrivals and departures.

In [Henriksson et al., 2004] an improved feedforward

scheme is presented, that makes no assumptions about the

statistical properties of the traffic. Instead, it predicts future

delays as a function of instantaneous measurements of the

situation in the server queue. This includes current queue

length and the arrival times of the queued requests, which

are assumed to be recorded for use in the prediction, see

Fig. 1. The basic idea with the predictor is to choose the

service rate that achieves a desired average delay of the

requests in the system taking into account their average

queuing delay up until the current time. By continuously

updating the predictor as requests enter and leave the queue,

sudden variations are taken care of more rapidly than using

the queuing-theoretic models. A similar approach can also

be applied to admission control.

Much work has also been performed on multi-class

queuing systems using priority queues. Here it is the ratio

between the average delays of adjacent service classes that

is subject to control.

2.1 Research Challenges

The main challenge in control of servers and software sys-

tems in general is to derive a unified theory and framework

for performance control of queuing systems that combine

elements from control theory and queuing theory and allow

an integration of both time-driven liquid model formalisms

and event-driven formalisms. Modeling plays a major role

here. Which is the right or optimal abstraction level for this

type of control problem is still a question with no clear an-

swer. Models at different levels and types need to be com-

bined. We also need better insight in how one should cor-



rectly abstract a real server by a suitable queuingmodel. It is

further desirable to combine time-based models with event-

based discrete models. Better understanding is needed for

which models types that are best suited for a particular ap-

plication. It is also possible that new models types must be

derived for this type of problems.

The challenges for control are connected to the mod-

elling challenges. How do we develop a control theory

based on this type of models? The combination of time-

driven control design with event-driven implementation is

one major issue. In control in general and process control

in particular, the characteristics of different types of con-

trol loops and control problems are well known and even

in some cases formally categorized. Similarly a number of

well-defined controller structures exist, e.g., cascade con-

trol and ratio control. The same type of classification is

necessary also in control of computer systems. One possi-

bility is to make use of ideas from design patterns to cre-

ate well-defined patterns for server control problems. Large

eCommerce servers are multi-tier systems consisting of web

server front-ends, business logic in the intermediate layers,

and database servers as back-ends. The overall system is

a MIMO system where control is needed at several lay-

ers. Model-based predictive control (MPC) is an interest-

ing possibility here. MPC also explicitly handles constraints

on control signals and state variables, which is common in

queueing problems, e.g., buffer size limits.

Our current notion of dynamics is based on the behaviour

of physical systems, e.g., mechanical systems. It is not

necessarily so that this type of dynamics also suits software

systems. The same holds for stability. It is not completely

clear what an unstable software system really means or

what type of stability definitions that make sense. Related

to this is the question of how we design or program

software systems in such a way that they are observable

and controllable.Which types of sensor and actuatorsmakes

most sense for this type of systems.

In order to make control of server systems applicable

on a wider industrial scale it is necessary to have built-in

support for this in operating systems and/or middleware. On

which level this should be handled is not clear. Should there

be a special POSIX/Control standard defined?

3. Control of CPU Resources

Feedback scheduling of CPU resources is an area where

fairly much research has been performed, especially for

embedded real-time systems. In feedback scheduling the

allocation of CPU resources is based on a comparison of

the actual resource consumption by, e.g., a set of tasks, with

the desired resource consumption. The difference, or control

error, is then used for deciding how the resources should

be allocated to the different users. Feedback scheduling

is primarily suited for applications with soft or adaptive

Feedback
scheduler

Tasks Resources

Feedforward

Feedback

Figure 2 A general feedback scheduling system. The scheduler

adjusts the tasks’ demands based on feedback from the current

use of critical resources. The tasks may also inform the scheduler

that they are about to consume more resources (feedforward).

real-time requirements. This includes different types of

multimedia applications, but also a large class of control

applications. Feedback scheduling pf CPU resources has

strong relationships with the queue control employed for

server systems and many of the results in one area can be

directly applied in the other area.

An early result is given in [Stankovic et al., 1999]

where the Feedback Control EDF scheduling algorithm is

presented. A PID controller is used to regulate the deadline

miss-ratio for a set of soft real-time tasks with varying

execution times, by adjusting their CPU utilization. The

approach has later been extended with an additional PID

controller that controls the CPU utilization.

Many scheduling techniques that allow QoS adaptation

have been developed. An interesting mechanism for work-

load adjustments is given in [Buttazzo et al., 1998], where

an elastic task model for periodic tasks is presented. A large

amount of feedback-based or adaptive global QoS manage-

ment systems have also been proposed. Some examples are

[Chu and Nahrstedt, 1999; Aparah, 1998]. In [Yuan and

Nahrstedt, 2003] issues of QoS and energy savings are ex-

perimentally evaluated using the CPU scheduler GRACE-

OS.

Control-based ideas have also been used for dynamic

allocation of bandwidth in aperiodic task servers and for

dynamic allocation of resource reservations in reservation-

based scheduling. The main application area for these tech-

niques is multimedia applications, e.g., streamed audio and

video. The idea behind resource reservation is to explicitly

control the computing resources assigned to a given activity

(job, task, or application). Each activity receives a fraction

(reservation), Ui, of the processor capacity and will behave

as if it was executing alone on a slower, virtual processor.

The motivation for feedback is the need to cope with incor-

rect reservations, to be able to reclaim unused resources and

distribute them to more demanding tasks, and to be able to

adjust to dynamic changes in resource requirements. Hence,

a monitoring mechanism is needed to measure the actual

demands and a feedback mechanism is needed to perform

the reservation adaptation. Two types of feedback are possi-

ble. On a global, system-wide level a QoS controller adjusts



the size of the individual reservations given to the different

activities based on the measured performance and resource

utilization. On a task or activity level, local feedback is em-

ployed to adjust the resource requirements of the individual

tasks based on the experienced QoS levels and the amount

of resources available to the task, as decided by the global

QoS controller. The local resource usage can be adjusted

through rate adaptation, by executing the task at different

service levels, and by job skipping.

3.1 Research Challenges

In addition to several of the challenges for server systems,

the following items are important for control of CPU re-

sources. Multiprocessor systems will become common in

the near future also for certain embedded applications. So

far very little of the control-based methods to CPU re-

source management have been applied to multiprocessor

systems. Power saving is becoming increasingly important

in all computer applications, including server systems. Ad-

justing the CPU speed using, e.g., Dynamic Voltage Scal-

ing (DVS) techniques, is an alternative way of adjusting

the service requirements of a task. Minimizing the power

consumption is also an important goal in itself for many

networked embedded systems, e.g., sensor networks. The

joint optimization problem of minimizing energy while still

meeting real-time constraints already today receives consid-

erable attention from the research community. However, it

is an important area also for the future. Resource manage-

ment in distributed systems where an activity spans multi-

ple nodes is also an important issue. How do we adapt the

resources individually in the different nodes in order to ob-

tain a good global behaviour, e.g., acceptable end-to-end re-

sponse times?

Hierarchical resource allocation schemes based on dy-

namic reservations in combination with local feedback con-

trol loops for the individual tasks is an interesting and

promising approachwhere more research is needed. How do

we enforce the notion of virtual CPUs that execute within a

real CPU with, possibly, different scheduling policies, and

where the share that each virtual CPU receives of the total

CPU resources is dynamically adjusted based on resource

requirements and availability?

One of the goals of feedback scheduling is to better

make use of scarce resources. If this should be achieved it

requires that the feedback scheduling mechanism itself does

not consume too much resources. Hence, efficient feedback

scheduling mechanisms are of great importance.

4. Control of Communication Networks

The success of the Internet as a worldwide information car-

rying network can be attributed to the feedbackmechanisms

that control the data transfer in the transport layer of the IP

stack. These algorithms have historically managed to dis-

tribute network resources among contending users in a suf-

ficiently fair and resource-efficient way. An explanation to

this is that the control is allocated at the end-systems (users)

and hence obey a decentralized structure. Furthermore, to-

gether with the source control, buffers have played a key-

role during the evolution of the Internet. Since end-users

base control action on limited, corrupt and delayed informa-

tion; buffers are used at links inside the network to smooth

out errors in the control, hence making the system more ro-

bust. Auxiliary control from the network interior has also

been introduced by “intelligent” links that mark or drop

packets depending on the traffic load. This is referred to as

Active Queue Management (AQM).

Historically, congestion control algorithms have been de-

signed by computer scientists outside the framework of

control theory. The tremendous complexity of the Internet

makes it extremely difficult to model and analyze, and it

has been questioned if mathematical theory can offer any

major improvements in this area. Recently, however, signif-

icant progress in the theoretical understanding of network

congestion control has been made following seminal work

by Kelly and coworkers [Kelly et al., 1998]. The key is to

work at the correct level of aggregation, which is fluid flow

models with validity at longer time-scales than the round-

trip time. By explicitly modeling the congestion measure

signal fed back to sources, posing the network flow control

as an optimization problem where the objective is to maxi-

mize the total source utility, it is shown that the rate control

problem can be solved in a completely decentralized man-

ner [Kelly et al., 1998; Low and Lapsley, 1999]. This as-

sumes that each source has a (concave) utility function of

its rate.

To ensure that the system will reach and maintain a fa-

vorable equilibrium, it is important to assess the dynam-

ical properties, such as stability and convergence, of the

schemes. Stability of the basic schemes, which allow dy-

namic rate control and static marking, or dynamic queue

management schemes and static source rate control, was es-

tablished already in [Kelly et al., 1998; Low and Lapsley,

1999] but under idealized settings. A unifying framework

for global stability of congestion control laws based on pas-

sivity has been proposed in [Wen and Arcak, 2004].

The above results have all ignored the effect of network

delay, and assumed that price information is available in-

stantaneously at the source, that the sources take immediate

action, and that the new rates affect the link prices instanta-

neously. However, stability of the protocols in equilibrium

depends critically on the feedback delay. Recent research

therefore focuses on source- and link control laws that guar-

antee stability for more general network configurations and

delay distributions.

Wireless networks are specially interesting from a re-

source control point of view. Whereas the link capacities

in wireline networks are fixed, the capacities of wireless



links can be adjusted by the allocation of communication re-

sources, such as transmit powers, bandwidths, or time-slot

fractions, to different links. Adjusting the resource alloca-

tion changes the link capacities, influences the optimal rout-

ing of data flows, and alters the total utility of the network.

Hence, optimal network operation can only be achieved by

coordinating the operation across the networking stack. This

is often referred to as cross-layer optimization.

A basic question is whether it is worthwhile to introduce

advanced resource management and coordination schemes.

One way of attacking this problem is to try to determine the

information-theoretic capacity, which includes optimiza-

tion over all possible modulation and coding schemes and

involves many of the unsolved problems of network infor-

mation theory. An alternative approach is to focus on net-

work layer capacity, where coding and modulation schemes

are fixed, and one optimizes over some critical parameters,

such as power allocations and scheduling decisions.

4.1 Research Challenges

Control-based approaches in communication networks is a

very large research field, in particular if wireless systems,

e.g., sensor networks, are included. In order to be able to

control the network performance it is necessary to measure

and modify the network parameters. The current ISO-OSI

stack layer is not ideally supported for cross layer designs

where information from the lower layers must be made

available at the application layer and where the application

layer must be able to modify the behaviour of the lower

layer protocols dynamically. Hence, new protocols and

protocol models are needed that simplify this.

Theories and engineering principles for dynamically al-

locating resources in wireless ad hoc networks to ensure

quality of service are needed for a wide range of applica-

tions. One interesting suggestion is to have a formal, pos-

sibly optimization-based, theory for the design of network

protocols based on a model of the underlying network and

a specification of the application requirements.

While the use of mathematical decomposition techniques

as guiding principle for organizational design is well-known

in economics and operational research (e.g., [Holmberg,

1995]), the application of such ideas to networked systems

has just begun to appear [Chen et al., 2005; Chiang, 2005;

Lin and Shroff, 2004; Johansson and Johansson, 2006].

Breaking up the layered structure of the networking

stack may also have negative consequences, partially in

terms of maintenance and compatibility issues but also in

terms of the resulting performance. In particular, it has

been observed that cross-layer coordination protocols can

introduce dependency relations and unintended interactions

[Kwadia and Kumar, 2005]: in some situations, adaption

mechanisms in different layers can start working against

each other, leading to worse practical performance than in

a layered network. It is thus important to develop control-

theoretic tools for analyzing protocol dynamics in order to

guarantee stable and efficient overall behaviour.

The control of network performance often requires ac-

cess to network state variables, such as available bandwidth,

round-trip times, and packet loss. These variables are typi-

cally not immediately available, but must be estimated from

other quantities. The design of reliable and efficient estima-

tors for network state is thus instrumental for many applica-

tions, and requires the development of simple and flexible

models of network dynamics together with the associated

advances in estimation theory.

Improving congestion control is intimately linked to the

quality of the used models. The development of accurate

fluid flow models will help understanding the limitations

communication networks are subject to and provide a basis

for new control laws. Present fluid flow models disregard

important system aspects and very little has been done in

terms of experimental validation of the proposed models.

5. Error Control of Software Systems

The development of completely defect-free complex soft-

ware systems is extremely difficult, if not impossible. At

the same time several large existing software systems are re-

markably stable and reliable in the presence of thousands or

maybe millions of residual software bugs, e.g., the telecom

networks or the WWW system of systems. Hence, rather

than focusing the development effort on trying to eliminate

all bugs at design time it is important to develop meth-

ods that allow us to develop safe and stable software sys-

tems that still can utilize COTS-quality software compo-

nents with a considerable amount of residual bugs. Hence,

the focus should be on detection and recovery from software

errors at run-time, in addition to elimination of software er-

rors at design-time.

The idea behind error control of software is to use tech-

niques from feedback control in order to detect malfunc-

tioning software components and, in that case fall back on,

a well-tested core software component that is able to pro-

vide the basic application service with guarantees on per-

formance and safety. Hence, the basic idea assumes that a

certain amount of defect-free components are available, that

can be used to implement the fall-back safety core service.

The second key idea is to always design your system to have

a simple and well-formed dependency tree, with a minimal

number of dependency relations among components. This

is necessary in order to be able to identify the core services

and keep them small. The background to several of the key

ideas of the area is given in [Sha, 2001].

In software error control, our view of what control is

has to be broadened substantially. Control is normally con-

cerned with the temporal behaviour of systems. The ideas

behind software error control are, however, not restricted



to the temporal behaviour. The same approach can in prin-

ciple also be used for applications that only contain func-

tional requirements. In this case software error control has

strong relationships to techniques that are commonly asso-

ciated with fault tolerance, e.g., hardware and software re-

dundancy and diversity through replication and N-version

programming. However, the principles behind software er-

ror control have so far mainly been applied to reactive ap-

plications, i.e., avionics control systems.

5.1 Research Challenges

The major challenge is to develop a new paradigm for soft-

ware stability control, based on an integration of concepts

from fault-tolerant computing and control, that is applicable

to a wide range of application types. The number of doc-

umented examples where software error control has been

applied is small. In order to increase the understanding for

the subject and to develop the necessary methods and the-

ory, more documented applications must be developed. The

relationships to the methods within the traditional fault tol-

erance area must also be clarified. It is further necessary to

investigate for which application types, other than feedback

control, the approach is suitable.

6. Acknowledgements

This work has been funded by the EU/IST FP6 NoE

ARTIST2. We gratefully acknowledge the valuable com-

ments of the reviewers.

7. References

Aparah, D. (1998): “Adaptive resource management in a multime-

dia operating system.” In Proceedings of the 8th International

Workshop on Network and Operating System Support for Dig-

ital Audio and Video.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model

for adaptive rate control.” In Proc. 19th IEEE Real-Time

Systems Symposium, pp. 286–295.

Chen, L., S. Low, and J. Doyle (2005): “Joint congestion control

and media access control design for ad hoc wireless networks.”

In Proc. of IEEE Infocom. IEEE, Miami, FL.

Chiang, M. (2005): “Balancing transport and physical layers

in wireless multihop networks: Jointly optimal congestion

control and power control.” IEEE JSAC, 23:1, pp. 104–116.

Chu, H. and K. Nahrstedt (1999): “CPU service classes for multi-

media applications.” In Proceedings of the IEEE International

Conference on Multimedia Computing and Systems.

Hellerstein, J., Y. Diao, S. Parekh, and D. Tilbury (2005): “Control

engineering for computing systems.” IEEE Control Systems

Magazine, 25:6, pp. 56–68.

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004):

Feedback Control of Computing Systems. John Wiley.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved

prediction for web server delay control.” In Proceedings of the

16th Euromicro Conference on Real-Time Systems (ECRTS

04). Catania, Sicily, Italy.

Holmberg, K. (1995): Design Models for Hierarchical Organiza-

tions: Computation, Information, and Decentralization, chap-

ter Primal and dual decomposition as organizational design:

Price and/or resource directive decomposition, pp. 61–92.

Kluwer Academic Publishers.

Johansson, B. and M. Johansson (2006): “Mathematical decom-

position techniques for distributed cross-layer optimization of

data networks.” IEEE Journal on Selected Areas in Communi-

cations, November. (to appear).

Kelly, F., A. Maulloo, and D. Tan (1998): “Rate control in commu-

nication networks: shadow prices, proportional fairness and

stability.” Journal of the Operational Research Society, 49,

pp. 237–252.

Kleinrock, L. (1975): Theory, Volume 1, Queuing Systems. Wiley-

Interscience.

Kwadia, V. and P. R. Kumar (2005): “A cautionary perspective on

cross layer design.” W. IEEE Wireless Communication, 12:1,

pp. 3–11.

Lin, X. and N. B. Shroff (2004): “Joint rate control and scheduling

in multihop wireless networks.” In Proc. of IEEE Conference

on Decision and Control. IEEE, Paradise Island, Bahamas.

Low, S. H. and D. E. Lapsley (1999): “Optimization flow control –

I: Basic algorithm and convergence.” IEEE/ACMTransactions

on Networking, 7:6, pp. 861–874.

Robertsson, A., B. Wittenmark, and M. Kihl (2003): “Analysis

and design of admission control in web-server systems.”

In Proceedings of the 2003 American Control Conference

(ACC’03), pp. 254–259. Denver, Colorado, USA.

Sha, L. (2001): “Using simplicty to control complexity.” IEEE

Software, 18:4.

Sha, L., X. Liu, Y. Lu, and T. Abdelzaher (2002): “Queuing model

based network server performance control.” In IEEE Real-

Time Systems Symposium.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The

case for feedback control real-time scheduling.” In Proc. 11th

Euromicro Conference on Real-Time Systems, pp. 11–20.

Tipper, D. and M. K. Sundareshan (1990): “Numerical models for

modeling computer networks under nonstationary conditions.”

IEEE Journal on Selected Areas in Communications, 8:9,

pp. 1682–1695.

Wen, J. T. and M. Arcak (2004): “A unifying passivity framework

for network flow control.” IEEE Transactions on Automatic

Control, 49:2, pp. 162–174.

Yuan, W. and K. Nahrstedt (2003): “Energy-efficient soft real-

time CPU scheduling for mobile multimedia systems.” In 19th

ACM Symposium on Operating Systems Principles. Bolton

Landing, NY.


