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Abstract

Shift-map image processing is a new framework
based on energy minimization over a large space of
labels. The optimization utilizes α-expansion moves
and iterative refinement over a Gaussian pyramid. In
this paper we extend the range of applications to im-
age registration. To do this, new data and smoothness
terms have to be constructed. We note a great improve-
ment when we measure pixel similarities with the dense
DAISY descriptor. The main contributions of this paper
are:

• The extension of the shift-map framework to in-
clude image registration. We register images for
which SIFT only provides 3 correct matches.

• A publicly available implementation of shift-map
image processing (e.g. inpainting, registration).

We conclude by comparing shift-map registration to a
recent method for optical flow with favorable results.

1 Introduction to shift-maps

Shift-map image processing has recently [8] been in-
troduced and applied to image inpainting, content aware
resizing, texture synthesis and image rearrangement.
This paper will extend the range of applications to im-
age registration. The motivation behind this work is
the fact that we already were in possession of images
we found to be impossible to register using standard
methods (e.g. SIFT correspondences). The results we
obtained with shift-map registration seem promising.

1.1 Problem formulation

Registration can be performed using a parametric
model, e.g. an affine or a projective transformation es-
timated from point correspondences between the two
images. In this paper, we consider a non-parametric

(a) input image I (b) base image B

(c) shift-map (d) final location of pixels

Figure 1. Registration of two images us-
ing a shift-map. Each pixel in the input
image is placed on the base image as de-
scribed by the shift-map.

model. We have a base image B(i, j) and an input im-
age I(i, j). These two imaged need not have the same
size. The goal is to register the pixels of the input im-
age onto the base image using a shift-map T(i, j) =(
ti(i, j) , tj(i, j)

)
. The pixel I(i, j) is registered onto

B
(
i + ti(i, j) , j + tj(i, j)

)
. Figure 1 shows the in-

put and base images and the resulting image obtained
by moving all pixels in the input image as specified by
the computed shift-map.

Each possible shift-map is assigned an energy, based
on a priori assumptions on what a good shift-map typ-
ically looks like and how well the two images match
each other. The goal is then to find the optimal shift-



Figure 2. Shift-map between two images

map, that is, the shift-map with the lowest energy:

E(T) = α
∑

1≤i≤m
1≤j≤n

Eij
d (T(i, j))+

∑
1≤i≤m
1≤j≤n

∑
(i′,j′)

Eij
s (T(i, j),T(i′, j′)),

(1)

where the last summation refers to summations over all
(i′, j′) in a neighborhoodN (i, j) of (i, j). Figure 2 one
such neighbor. We have used 4-connectivity of adjacent
pixels throughout this paper. Eij

d and Eij
s are the data

terms and smoothness terms, respectively. They will be
described in separate sections below.

2 Registration energy terms

The methods in [8] deal with constructing a new
image from an old one and the registration problem
is about finding a map between two existing images.
Hence the energy previously used for finding shift-maps
is not suitable for registration and new energy terms
must be constructed.

Comparison of pixels A related problem to image
registration is dense depth estimation from two images
of the same object with known camera positions. This
problem has been studied extensively, see for example
[5]. Recently a new descriptor, DAISY, was proposed
by Tola et al. [9], tailored to dense stereo estimation
where the position of the two cameras differ by a large
amount. This descriptor is shown to outperform other
approaches (e.g. SIFT, SURF and pixel differences) in
extensive experiments. Therefore, it seems relevant to
try and apply this descriptor to the related problem of
estimating a dense image registration.

Not unlike SIFT [7], a DAISY descriptor samples the
image derivative in different directions. Eight different
directions and three different scales are used. By sam-
pling these fields at different points around the feature
location, a descriptor of dimensionality 200 is obtained.
Since the same fields are used for all image locations, a
dense field of descriptors can be computed in a couple
of seconds. The main goal of the DAISY descriptor was

efficient dense computation. In order to choose relevant
parameters, we found [10] helpful.

Data terms The data terms Eij
d were previously used

in [8] to enforce hard constraints on the shift-map.
When inpainting an image, the data term makes sure
no pixels in the “hole” are used in the output image by
assigning such shifts a cost of∞.

In this paper, where image registration is considered,
we need to develop more complex data terms to incor-
porate the fact that we want to find a mapping between
two images such that similar pixels are mapped to sim-
ilar pixels The data terms dictates that similar parts of
the images should end up on top of each other. To mea-
sure similarity, dense DAISY is used.

It might only be possible to register parts of the input
image, so shifting pixels outside the base image is per-
mitted, at a constant cost P per pixel. The data terms
are then given by

Eij
d (T) =

{∣∣∣∣∣∣Î(i, j)− B̂
(
(i, j) +T(i, j)

)∣∣∣∣∣∣
2

P when (i, j) +T(i, j) is outside B,
(2)

where Î(i, j) is the DAISY descriptor describing the im-
age I at pixel location (i, j). If the shift takes pixel (i, j)
outside the bounds of the base image, a constant cost
is issued. Otherwise, dissimilarity of the pixels deter-
mines the cost of the assignment. Figure 6f shows a
heat map of the distance from the circled feature in the
first row to all locations in the image in row 2.

Smoothness terms The smoothness terms are used to
enforce global consistency to the shift-map, while al-
lowing discontinuities at a limited number of places.
In [8], the smoothness terms compared the color and
gradient pixel-wise. Where a discontinuity in the shift-
map occurs, the penalty is computed as the difference
in color and gradients.

Our smoothness function takes the form of the Eu-
clidean distance between the endpoints of the two shifts:

Eij
s (T(i, j),T(i′, j′)) =

||(i′, j′) +T(i′, j′)− (i, j)−T(i, j)||2. (3)

Here, (i, j) and (i′, j′) are neighboring pixels, see (1).
Using the shift difference ||T(i′, j′) − T(i, j)||2 will
penalize smoothly varying shift-maps too much, and
hence it is important to compare the end points (as in
(3)).

Color information The DAISY descriptor does not
use color information, yet intuitively it makes little



sense to match pixels of very different colors. Be-
cause of this, we have also made experiments where the
color information of the images are incorporated into
the above data terms. The color model used assigned a
cost of P to pixels with large difference in hue, given
that the intensity and saturation allowed a reliable value
of the hue. This model improved the result of the reg-
istration in Fig. 6. We did not use color information in
the experiment shown in Fig. 1.

3 Experiments

To minimize the energy (1), we used α-expansion as
described by Boykov and Veksler [3] with the graph al-
gorithms described in [2, 4]. Each possible shift value
T(i, j) ∈ {−m. . .m}×{−n . . . n} is mapped to a 1D
label space. The number of labels for even moderately
sized images then becomes very large. In order to make
it tractable, a Gaussian pyramid was used. For the im-
ages in Fig. 6, an initial size of 128× 23 was used. The
size was doubled 3 times until the final resolution of
1024 × 179 was reached. Each doubling of the image
size is followed by a linear interpolation of the shift-
map. This shift-map was used as a starting guess for the
optimization at the larger level. At each level after the
first, only 9 possible shifts then need to be considered:
{−1, 0, 1} in each direction.

To verify our implementation, we inpainted an ex-
ample image used in [8], see Fig. 5. We tried to follow
their implementation as closely as possible and got dif-
ferent, but qualitatively similar results. We did not allow
the pixels outside the area to be removed to move at all,
which is in contrast to [8], where all pixels except the
border of the image were allowed to be shifted.

Figures 1 and 3 show shift-map registration results.
The bear image in Fig. 1 shows the same object from
two different views and is from [6]. The building im-
ages in 3 register correctly, except for the light pole,
which is very thin and does not have a large enough
data term.

We have also conducted an experiment where we
used shift-maps to recover a known image deformation.
The results are displayed in Fig. 4.

During large-scale reconstruction of a city using im-
ages taken with a cylindrical camera [1], we have en-
countered many difficult image pairs where SIFT is un-
able to provide useful correspondences. The top two
rows in Fig. 6 show one of the hardest. Computed
SIFT features for the two images (794 and 1019 feature
points, respectively) only yielded 3 correct matches.
The main reason for this was the image geometry and
large, repetitive patterns. Using shift-map we obtained
a dense, mostly correct map between the images. This

(a) input image I

(b) base image B

(c) final location of pixels

Figure 3. Registration of two images of a
building.

was then used as an aid to compute SIFT correspon-
dences. We then obtained 28 matches, of which 12 were
correct. The runtime for this image was about 2 min-
utes.

We compared shift-map registration to the optical
flow algorithm described in [11]. This algorithm did
not produce useful results for the street images, see bot-
tom of Fig. 6. Optical flow techniques are arguably not
suitable for these kinds of registration tasks.

4 Conclusion and further work

We have studied the application of shift-maps to im-
age registration. Computing the smoothness term with
color and gradient differences as in [8] did not give
satisfactory results when extended to image registra-



(a) base image (b) input image (c) Shift-map result (d) Ground truth (e) error

Figure 4. Recovering a known image distorsion. The maximum and mean error was 7.3 and 0.7
pixels, respectively. Photo by Tristan Savatier obtained through Flickr.

Figure 5. Our reimplementation of the al-
gorithm in [8]. The complete running time
for this example was 3.1415 seconds2.

tion, but we found a great improvement with the dense
DAISY descriptor. For relatively easy cases (Figs. 1
and 3), we obtained very good results. For very hard
cases (Fig. 6) we obtained results which proved very
useful for obtaining correspondences between the im-
ages. We compared shift-map registration to the optical
flow algorithm described in [11] (Fig. 6e), which was
significantly less accurate. One interesting future line
of work would be to investigate whether shift-map in-
painting can be improved by the DAISY descriptor as
well. We have also not investigated large rotations in
this paper, which would require additional considera-
tions.

The source code for our shift-map implementation
and for all experiments in this paper has been released
to the public1.
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(a) input image I

(b) base image B

(c) final locations of the pixels in I

(d) resulting shift-map

(e) result using the method in [11]

(f) DAISY distance between the circled feature in I to all pixel locations in B

Figure 6. Registration of 1024×179 Hitta images. We note that we achieved a dense, highly non-
linear registration. This shift-map allowed us to obtain useful point-correspondences between
the images, which was not possible using SIFT alone.


