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COMPARISON OF PERIODIC AND EVENT BASED
SAMPLING FOR FIRST-ORDER STOCHASTIC

SYSTEMS

Karl Johan Åström 1 and Bo Bernhardsson

Department of Automatic Control, Lund Institute of Technology

Box 118, S-221 00 Lund, Sweden

fax: +46 46 13 81 18, email: kja,bob@control.lth.se

Abstract: Event based sampling is an alternative to traditional equidistant
sampling. This means that signals are sampled only when measurements pass
certain limits. Systems with event based sampling are much harder to analyze
than systems with periodic sampling because the time varying nature of the
closed loop system can not be avoided. In this paper we investigate some simple
first order systems with event based sampling and compare achieved closed loop
variance and sampling rate with results from periodic sampling. The analysis
shows that event based sampling gives better performance than periodic sampling.
Copyright c� 1999 IFAC
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1. INTRODUCTION

The traditional way to design digital control
systems is to sample the signals equidistant in
time, see ?. A nice feature of this approach is
that analysis and design becomes very simple.
For linear time-invariant processes the closed
loop system become linear and periodic. It is
often sufficient to describe the behavior of the
the closed loop system at times synchronized
with the the sampling instants. This can be
described by difference equations with constant
coefficients.

There are several alternatives to periodic sam-
pling. One possibility is to sample the system
when the output has changed with a speci-
fied amount. Such a scheme has many concep-
tual advantages. Control is not executed un-
less it is required, control by exception, see
Kopetz (1993). This type of sampling is natural

1 This project was supported by the Swedish Research
Council for Engineering Science under contract 95-759.

when using many digital sensors such as en-
coders. A disadvantage is that analysis and de-
sign are complicated. This type of sampling can
be called event based sampling. Referring to to
integration theory in mathematics we can also
call conventional sampling Riemann sampling
and event based sampling Lebesgue sampling.

Because of their simplicity event based sam-
pling was used in many of early feedback sys-
tems. An accelerometer with pulse feedback is
a typical example, see Draper et al. (1960). A
pendulum was provided with pulse generators
that moved the pendulum towards the center
position as soon as a deviation was detected.
Since all correcting impulses had the same form
the velocity could be obtained simply by adding
pulses.

Event based sampling occurs naturally in many
context. A common case is in motion control
where angles and positions are sensed by en-
coders that give a pulse whenever a position
or an angle has changed by a specific amount.



Event based sampling is also a natural ap-
proach when actuators with on-off character-
istic are used. Satellite control by thrusters
is a typical example, Dodds (1981). Systems
with pulse frequency modulation, Polak (1968),
Pavlidis and Jury (1965), Pavlidis (1966),
Skoog (1968), Noges and Frank (1975), Skoog
and Blankenship (1970), Frank (1979), Sira-
Ramirez (1989) and Sira-Ramirez and Lischinsky-
Arenas (1990) are other examples. In this case
the control signal is restricted to be a positive or
negative pulse of given size. The control actions
decide when the pulses should be applied and
what sign they should have. Other examples
are analog or real neurons whose outputs are
pulse trains, see Mead (1989) and DeWeerth et
al. (1990).

Systems with relay feedback are yet other ex-
amples which can be regarded as special cases
of event based sampling, see Tsypkin (1949
1950), Tsypkin (1984) and ?. The sigma delta
modulator or the one-bit AD converter, Nor-
sworthy et al. (1996), which is commonly used
in audio and mobile telephone system is one
example. It is interesting to note that in spite
of their wide spread there does not exist a good
theory for design of systems with sigma delta
modulators.

Traditionally systems with event based sam-
pling were implemented as analog systems. To-
day they are commonly implemented as digital
systemswith fast sampling. Apart from their in-
trinsic interest systems with event based sam-
pling may also be an alternative way to deal
with systems with multi-rate sampling, see .

Analysis of systems with event based sam-
pling are related to general work on discon-
tinuous systems, Utkin (1981), Utkin (1987),
Tsypkin (1984) and to work on impulse control,
see Bensoussan and Lions (1984). It is also rele-
vant in situations where control complexity has
to be weighted against execution time. It also
raises other issues such as complexity of control.
Control of production processes with buffers is
another application area. It is highly desirable
to run the processes at constant rates and make
as few changes as possible to make sure that
buffers are not empty and do not overflow, see
Pettersson (1969). Another example is where
limited communication resources put hard re-
strictions on the number of measurement and
control actions that can be transmitted.

Much work on systems of this type was done in
the period 1960-1980. It has not received much
attention lately. It is often rewarding to recon-
sider old problems in the light of new theoretical
development. Therefore we will analyze a sim-
ple example of event based sampling. The sys-

tem considered is a first order system with ran-
dom disturbances. In this case it is possible to
formulate and solve sensible control problems,
which makes it possible to compare Riemann
and Lebesgue sampling. The control strategy is
very simple, it just resets the state with a given
control pulse whenever the output exceeds the
limits. The analysis indicates clearly that there
are situations where it is advantageous with
Lebesgue sampling. The mathematics used to
deal with the problem is based on classical
results on diffusion processes, Feller (1952),
Feller (1954a), Feller (1954b). An interesting
conclusion is that the steady state probability
distribution of the control error is non-Gaussian
even if the disturbances are Gaussian.

There are many interesting extensions of the
problem discussed in the paper. Extensions to
systems of higher order and output feedback are
examples of natural extensions.

2. AN INTEGRATOR

We will first consider a simple case where all
calculations can be performed analytically. For
this purpose it is assumed that the system to
be controlled is described by the equation

dx � udt+ dv,

where v(t) is a Wiener process with unit incre-
mental variance and u the control signal. The
problem of controlling the system so that the
state is close to the origin will be discussed.
Conventional periodic sampling will be com-
pared with event based sampling where control
actions are taken only when the output is out-
side the interval −d < x < d. We will compare
the distribution of x(t) and the variances of the
outputs for both sampling schemes.

Periodic Sampling

First consider the case of periodic sampling with
period h. The output variance is then mini-
mized by the minimum variance controller, see
Åström (1970). The sampled system becomes

x(t + h) � x(t) + u(t) + e(t)

and the mean variance over one sampling pe-
riod is

V �
1
h

∫ h

0
Ex2(t) dt �

1
h
Je(h)

+
1
h

(

ExTQ1(h)x + 2xTQ12(h)u + uTQ2(h)u
)

�
1
h

(R1(h)S(h) + Je(h)), (1)



where

Q1(h) � h

Q12(h) � h2/2

Q2(h) � h3/3
R1(h) � h

Je(h) �

∫ h

0
Q1c

∫ t

0
R1c dτ dt � h2/2.

(2)

The Riccati equation for the minimum variance
strategy gives S(h) �

√
3h/6, and the control

law becomes

u � −
1
h

3 +
√
3

2 +
√
3
x

and the variance of the output is

VR �
3 +

√
3

6
h. (3)

Lebesgue Sampling

We will now consider the case of Lebesgue sam-
pling, i.e. the situation when control actions
are taken only when tx(tk)t � d. When this
happens, an impulse control that makes x(tk +
0) � 0 is applied to the system.With this control
law the closed loop system becomes a Marko-
vian diffusion process of the type investigated
in Feller (1954a).

Let T±d denote the exit time i.e. the first time
the process reaches the boundary tx(tk)t � d

when it starts from the origin. The mean exit
time can be computed from the fact that t−x2t is
a martingale between two impulses and hence

hL :� E(T±d) � E(x2T±d
) � d2.

The average sampling period thus equals hL �
d2.

The stationary probability distribution of x is
given by the stationary solution to the Kol-
mogorov forward equation for the Markov pro-
cess, i.e.

0 �
1
2
�2 f

�x2
(x) −

1
2
� f

�x
(d)δ x +

1
2
� f

�x
(−d)δ x.

with f (−d) � f (d) � 0 This ordinary differen-
tial equation has the solution

f (x) � (d − txt)/d2 (4)

The distribution is thus symmetric and trian-
gular with the support −d ≤ x ≤ d. The steady
state variance is

VL �
d2

6
�

hL

6
.

Comparison

To compare the results obtained with the differ-
ent sampling schemes it is natural to assume
that the average sampling rates are the same in
both cases, i.e. hL � h. This implies that d2 � h

and it follows from equations (3) and (2) that

VR

VL

� 3 +
√
3 � 4.7.

Another way to say this is that one must sample
4.7 times faster with Riemann sampling to get
the same mean error variance.

Notice that we have compared event based sam-
pling with impulse control with periodic sam-
pling with conventional sampling and hold. A
natural question is if the improvement is due to
the impulse nature of control or to the sampling
scheme. To get some insight into this we ob-
serve that periodic sampling with impulse con-
trol gives and error which is a Wiener process
which is periodically reset to zero. The average
variance of such a process is

Ex2 �
1
h
E

∫ h

0
e2(t)dt �

1
h

∫ h

0
tdt �

1
h

(5)

Periodic sampling with impulse control thus
gives

VR

V ′
L

� 3

The major part of the improvement is thus due
to the sampling scheme.

Approximate Lebesgue Sampling

In the analysis it has been assumed that sam-
pling is instantaneous. It is perhaps more real-
istic to assume that that sampling is made at a
high fast rate but that no control action is taken
if x(t) < d. The variance then becomes

VAL � d2(
1
6

+
5
6

ha

ha + d2 ).

The second term is negligible when ha << d2 �
hL. Approximate Lebesgue sampling is hence
good as long as d is relatively large.

The results are illustrated with the simula-
tion in Figure 1. The simulation was made by
rapid sampling (h�0.001). The parameter val-
ues used were d � 0.1, hR � 0.012 andσ e �

√
d.

In the particular realization shown in the Fig-
ure there were 83 switches with Riemann sam-
pling and 73 switches with Lebesgue sampling.
Notice also the clearly visible decrease in output
variance.
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Fig. 1. Simulation of an integrator with Rie-
mann and Lebesgue sampling.

3. A FIRST ORDER SYSTEM

Consider now the first order system

dx � axdt + udt+ dv. (6)

Periodic Sampling

Sampling the system (6) with period h gives

x(t + h) � eahx(t) +
1
a

(eah − 1)u(t) + e(t) (7)

where the variance of e is given by

Je(h) �

∫ h

0

∫ t

0
e2aτ dτ dt �

( e2 ah − 1
2 a

)2
� R1

(8)

The sampled loss function is characterized by

Q1 �
e2 ah − 1

2 a

Q12 �
eahah − eah + 1

a2

Q2 �
h3

3
The minimum variance control law is obtained
by solving a Riccati equation for S(h). The
formula which is complicated is omitted. The
variance of the output is shown in Figure 2 for
different values of the parameter a. Notice that
the increase of the variance with the sampling
period increases much faster for unstable sys-
tems a > 0.

Lebesgue Sampling

For event based sampling we assume as in Sec-
tion 2 that the variable x is reset to zero when
tx(tk)t � d. The closed loop system obtained is
then a diffusion process. The average sampling
period is the mean exit time when the process
starts at x � 0. This can be computed from the
following result in Feller (1954a).
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Fig. 2. Variance VR(h) as a function of sam-
pling time for a � −1,0,1 with Riemann
sampling.
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Fig. 3. Mean exit time E(T±d) � hL(0) as a
function of d for a � −1,0,1 with Lebesgue
sampling.

Theorem 1. Consider the differential equation
dx � b(x)dt + σ (x)dv and introduce the back-
ward Kolmogorov operator

(Ah)(x)
4
�

1
2

n
∑

i�1

n
∑

k�1

aik(x)
�2h(x)

�xi�xk
+

n
∑

i�1

bi(x)
�h(x)

�xi
,

(9)

where h ∈ C2(Rn) and aik � [σ σ T]ik. The mean
exit time from [−d, d], starting in x, is given by
hL(x), where

AhL � −1

with hL(d) � hL(−d) � 0.

In our case the Kolmogorov backward equation
becomes

1
2
�2hL

�x2
+ ax

�hL

�x
� −1

with hL(d) � hL(−d) � 0. The solution is given
by

hL(x) � 2
∫ d

x

∫ y

0
e−a(y2−t2) dt dy,

which gives



hL(0) �
∞
∑

k�1

22k−1(−a)k−1(k − 1)! d2k/(2k)!

� d2 −
a

3
d4 +

4 a2

45
d6 + O

(

d8
)

).

Figure 3 shows hL(0) for a � −1,0,1.
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Fig. 4. Variance as a function of level d for
a � −1,0,1, using Lebesgue sampling.

The stationary distribution of x is given by the
forward Kolmogorov equation

0 �
�

�x

(

1
2
� f

�x
− axf

)

−

(

1
2
� f

�x
− axf

)

x�d

δ x

+

(

1
2
� f

�x
− axf

)

x�−d

δ x.

(10)

To solve this equation we observe that the
equation

0 �
�

�x

(

1
2
� f

�x
− axf

)

(11)

has the solutions

f (x) � c1e
ax2 + c2

∫ x

0
ea(x2−t2)dt.

The even function

f (x) � c1e
ax2 + c2 sign(x)

∫ x

0
ea(x2−t2)dt,

then satisfies (10) also at x � 0. The constants
c1, c2 are determined by the equations

∫ d

−d

f (x)dx� 1, (12)

f (d) � 0, (13)

which gives a linear equation system to deter-
mine c1, c2.

Having obtained the stationary distribution of x
we can now compute the variance of the output

VL �

∫ d

−d

x2 f (x)dx.

The variance VL is plotted as a function of d in
Figure 4 for a � −1,0,1, and as a function of
mean exit time hL in Figure 5.
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Fig. 5. Variance as a function of mean exit
time T±d for a � −1,0,1, with Lebesgue
sampling.

Comparison

The ratio VR/VL as a function of h is plotted in
Figure 6 for a � −1,0,1. The figure shows that
Lebesgue sampling gives substantially smaller
variances for the same average sampling rates.
For short sampling periods there are small dif-
ferences between stable and unstable system as
can be expected. The improvement of Lebesgue
sampling is larger for unstable systems and
large sampling periods.
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Fig. 6. Comparison of VL and VR for a �
−1,0,1. Note that the performance gain
of using Lebesgue sampling is larger for
unstable systems with slow sampling.

Note that the results for other a can be ob-
tained from these plots since the transformation
(x, t, a, v) → (α 1/2x,α t,α −1a,α 1/2v) for α > 0
leaves the problem invariant.

4. CONCLUSIONS

There are issues in event based sampling that
are of interest to explore. The signal represen-
tation which is a mixture of analog and discrete
is interesting. It would be very attractive to
have a system theory similar to the one for
periodic sampling. The simple problems solved
in this paper indicate that event based sampling



may be worth while to pursue. Particularly
since many sensors that are commonly used
today have this character. Implementation of
controller of the type discussed in this paper
can be made using programmable logic arrays
without any need for AD and DA converters.
There are many generalizations of the specific
problems discussed in this paper that are wor-
thy of further studies for example higher order
systems and systems with output feedback.
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