
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Nu-gap Model Reduction in the Frequency Domain

Sootla, Aivar

2011

Link to publication

Citation for published version (APA):
Sootla, A. (2011). Nu-gap Model Reduction in the Frequency Domain. 5025-5030. Paper presented at American
Control Conference, 2011 , San Francisco, California, United States.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/2fcfc006-95c1-4ed1-9af0-89508792008a


Nu-gap Model Reduction in the Frequency Domain

Aivar Sootla

Abstract— In this paper a model reduction algorithm in
the nu-gap metric is considered. The metric was originally
developed to evaluate robustness of a controller for a given
plant. In fact, the nu-gap metric induces the weakest topology in
which stability is a robust property. All in all the nu-gap metric
is perhaps the best metric to evaluate the distance between
two systems in a closed loop setup. In the field of distributed
control, if approximation of the subsystems is considered, such
a metric can be vital for modeling purposes. The presented
algorithm of model reduction in the nu-gap metric is based on
semidefinite programming methods and exploits the frequency
domain representation of the systems. Therefore it may be
easily extended to incorporate into the optimization procedure
constraints on a specific frequency region of a particular interest
or the closed loop performance.

I. INTRODUCTION

Model reduction of linear systems in H spaces is well

studied in the literature and reasonable suboptimal meth-

ods have been derived. The methods delivering the best

approximation quality are the, so called, Singular Value

Decomposition (SVD) methods, as balanced truncation ([1])

and optimal Hankel model reduction ([2]). The methods also

guarantee stability, however, computationally very expensive.

Krylov methods ([3], [4], [5]), on the other hand, are

considerably cheaper, however, can not guarantee stability, in

general. Krylov/SVD ([6]) is a trade-off framework, which

is cheaper than SVD, and can guarantee stability. Another

trade-off framework was developed in [7], [8], [9] it is

based on frequency response matching and the semidefinite

optimization techniques.

All of the above mentioned methods measure the error

in H∞ or H 2 spaces, meaning that it is a measure on the

distance in the open loop setup. In the closed loop setup these

norms usually do not reflect the distance adequately. The first

attempt to introduce a more reliable metric in the closed loop

setup was the introduction of the gap metric in [10], followed

by many papers including [11] and [12]. In the latter the ν-

gap metric was introduced and it is the only metric for which

“... any plant at a distance less than β from the nominal will

be stabilized by any compensator stabilizing the nominal with

a stability margin β. Furthermore, any plant at a distance

greater than β from the nominal will be destabilized by

some compensator that stabilizes the nominal with a stability

margin of at least β” ([13]). The stability margin here is bP,C

and defined therein. Moreover, the ν-gap induces the weakest

topology in which stability is a robust property. To some

extent we can evaluate the stability of a closed loop without

considering the stabilized plant. Therefore the ν-gap metric

A. Sootla is with Automatic Control, LTH, Lund University, Ole Römers
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may be a crucial tool in distributed system modeling, where

the evaluation of the entire system can be computationally

overwhelming.

Early work in ν-gap model reduction includes [14] and

[15], which use the state-space representation of the systems

and an iterative LMI program. The algorithm presented in

this paper uses semidefinite programming as a tool and

coprime fractions of the original system. As opposed to [15],

the frequency domain data is used to obtain a reduced model.

The algorithm was also extended to account for the overall

performance in controller-plant loops, which is presented in

Section IV. Although the algorithm is derived for the scalar

valued transfer functions, with extra restrictions it may be

extended to the matrix valued transfer function using the

techniques described in [9], [16].

Notation. Rm1×m2 denotes the space of discrete-time m1

by m2 matrix valued rational transfer functions. Operation
∼ denotes a complex conjugate on the unit circle i.e.,

G∼(eω) = GT (e−ω), where  is a complex identity. G(ω)
stands for the frequency response of G(eω) to ω ∈ [0, π].
The infinity norm is computed as ‖G‖∞ = supω |G(ω)|,
where G(ω) is a scalar-valued function. The Hankel norm

of a transfer function is denoted as ‖ · ‖H (for the definition

see, [17]). Function η(G) stands for the number of poles of

G outside the unit circle and finally

[G,K] =

(
G
I

)
(I −KG)−1

(
−K I

)
.

II. PRELIMINARIES

Firstly, it may be useful to illustrate why and in which

situations the ν-gap metric is employable. Consider a toy

example borrowed from [18, pp. 349-350].

Example 1: Distance between systems. Given the systems

P1 =
100

s+ 1
P2 =

100

(s+ 1)(0.0025s+ 1)2
P3 =

100

s− 1

investigate the step responses in open loop and closed loop

(simple negative feedback) settings in Fig. 1. The plants P1

and P2 are close in the H∞ norm, on the other hand plants

P1 and P3 are close in the ν-gap metric. Notice, that P2

is unstable in the closed loop setup, however stable in the

open loop. P3 on the other hand is stable in the closed loop

setting, but unstable in the open loop and P1 is stable in both

settings. Fig. 1(a) shows that the open loop step responses

of P1 and P2 are almost identical, however the closed loop

ones are not. Fig. 1(b) shows the opposite situation: P1 is

close to P2 in the closed loop, which is open loop unstable.

Therefore the ν-gap showed itself as a better measure on the
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distance than the H∞ norm in this particular closed loop

setup.
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Fig. 1. Determining when the distance between two systems is small. The
figures in (a) show that the open step responses of the plants P1 and P2

are close, but the closed loop responses are not. The figures in (b) show
the opposite situation: the plants P1 and P3 are close in closed loop but
different different in open loop.

There exist a few equivalent definitions of the metric. The

one chosen in this paper is more convenient for our goal.

Denote b, a a normalized left coprime factorization (NRCF)

of G1 = a−1b, and p, q a right coprime factorization (RCF),

not necessarily normalized, of G2 = pq−1.
Definition 1 (ν-gap metric): Define a function δν (·, ·) :

Rm1×m2 ×Rm1×m2 → R as follows

δν (G1, G2) =






δL2
(G1, G2) if η ([G2,−G∗

1]) =

= η ([G1,−G∗
1])

1 otherwise

where

δL2
(G1, G2) =

√

1 −
∥∥∥∥

(
p
q

)
(a∗q + b∗p)−1

∥∥∥∥
−2

∞

The constraint η ([G2,−G∗
1]) = η ([G1,−G∗

1]) is usually

called a winding number condition in the literature. Note, that

throughout the paper it is assumed that G1 and G2 are scalar,

not necessarily stable, transfer function. Therefore a, b, p and

q are scalar transfer functions as well.

Finally, we are ready to formulate the problem as an

optimization one. Given asymptotically stable a and b, such

that b∗b+ a∗a = I and b/a not necessarily stable, solve

γopt = min
γ>0,p,q

γ s. t.:

∥∥∥∥

(
p
q

)
(a∗q + b∗p)−1

∥∥∥∥
∞

≤ γ

η

([
p

q
,−

(
b

a

)∗])
= η

([
b

a
,−

(
b

a

)∗])

Notice, that δν (b/a, p/q) ≤
√

1 − 1/γ2
opt by construction.

However, the obtained program is not generally convex even

for the scalar valued function due to the winding number

condition and the computation of H∞ norm. Therefore, a

convexification is required. To authors best knowledge, using

the described formulation a meaningful convex relaxation

is impossible. Therefore the two-step techniques proposed

in [19] (developed in [8]) will be employed to address the

problem. First, a so called “central” transfer function will be

computed and then around it the solution will be constructed

using semidefinite programming.

III. MODEL REDUCTION IN THE ν-GAP METRIC

A. Main Result

As the main result the algorithm of approximation in the

ν-gap metric is presented in this subsection. The details and

theoretical justification follow in the sequel.

Consider a scalar valued discrete-time transfer function

G with a normalized coprime factorization (NCF)
(
b a

)
,

where b and a are stable transfer functions of the same order

l as the system G. Note, G is not necessarily a stable system.

Compute its k-th order approximation Ĝ in the ν-gap metric

as:

Algorithm 1: 1) Compute a k-th order approximation(
n/θ m/θ

)
of a transfer matrix

(
b a

)
using any

stability preserving model reduction method, where m,
n and θ are finite impulse response (FIR) filters of

order k
2) Fix a “central” transfer function φ = ma∗ + nb∗ and

solve the following semidefinite program:

γN
ν = min

p,q
γ subject to

∀ω ∈ [0, π] : Re((q(ω)a∗(ω) + p(ω)b∗(ω))/φ(ω)) > 0

∀ i = 1, . . . , N : ωi ∈ [0, π],

∣∣∣∣

(
p(ωi)
q(ωi)

)
/φ(ωi)

∣∣∣∣ <

γRe((q(ωi)a
∗(ωi) + p(ωi)b

∗(ωi))/φ(ωi))

p(ω) =

k∑

i=0

pie
−iω q(ω) =

k∑

i=0

qie
−iω

(1)

3) The reduced order plant Ĝ is computed as p/q.
4) If required, compute an NCF m/θ, n/θ of Ĝ and repeat

steps 2 − 4.

Denote γ∞ν the solution to the relaxed problem in the step

2 of the Algorithm 1, in the case when N = ∞ and

{ωi}∞i=1 are dense in [0, π], and γc
ν , if all the constraints

are enforced for all the frequencies ω. It can be shown that

lim
N→∞

γN
ν = γ∞ν , moreover, since {ωi} is dense in [0, π], γc

ν

is equal to γ∞ν . Therefore with a big enough N it is possible

to approximate γc
ν with a good accuracy.

Theorem 1: Consider the Algorithm 1 with a full sam-

pling, i.e. the constraints are enforced for all the frequencies

ω, where γc
ν , p, and q is the output of the algorithm. Then

δν (G, p/q) ≤
√

1 − (1/γc
ν)2.
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B. Theoretical justification and details

In Section II a minimization program was constructed to

approximate a system in the ν-gap metric:

γopt = min
γ>0,p,q

γ (2)
∥∥∥∥

(
p
q

)
(a∗q + b∗p)−1

∥∥∥∥
∞

≤ γ (3)

η

([
p

q
,− b∗

a∗

])
= η

([
b

a
,− b∗

a∗

])
(4)

Both constraints (3,4) are not convex. The technique ap-

plied to the program was introduced in [8]. Firstly, consider

another program with only (3) as a constraint, rewriting (3)

in the process as an infinite number of constraints:

γ1 = min
γ>0,p,q

γ

∀ ω ∈ [0, π] :

∣∣∣∣

(
p(ω)
q(ω)

)∣∣∣∣ < γ|q(ω)a∗(ω) + p(ω)b∗(ω)|

As in [8] introduce a new variable φ into the program as:

γ2 = min
γ>0,p,q,φ

γ

∀ ω ∈ [0, π] :

∣∣∣∣

(
p(ω)
q(ω)

)
/φ(ω)

∣∣∣∣ <

γRe((q(ω)a∗(ω) + p(ω)b∗(ω))/φ(ω))

The programs are equivalent, which is understood as

equality γ1 = γ2. It can be shown that an optimal choice

of φ(ω) is q(ω)a∗(ω) + p(ω)b∗(ω). Basically, φ(ω) is an

initial guess on q(ω)a∗(ω)+p(ω)b∗(ω). Introducing an extra

variable φ does not solve all the problems. However, by

computing φ in advance and fixing it in the minimization

the program becomes quasi-convex.

Surely, there is a question of conservatism of the positive

real condition. Is the described set big enough to provide any

improvement at all? This question was studied in [19] and

[20], besides the mentioned work [8]. The results for low

orders as 2 and 3 are colorfully illustrated in [19]. Indeed,

given two polynomials θ and ξ this condition describes all

positive real transfer functions with a fixed polynomial θ and

the set of all possible ξ is shown in numerical examples to be

sufficiently big comparing to the set of all stable ξ. However,

no theoretical results were provided in any work.

In ν-gap reduction algorithm φ should be an initial guess

on qa∗+pb∗. Given an initial point p0 and q0, the algorithm

can be iterated, therefore the choice of the starting point is the

most important part. Reasonable p0 and q0, can be obtained

by order reduction of the normalized coprime factors of G
a and b.

Remark 1: Normalized coprime factors are the central

point of the ν-gap metric theory. Moreover, using the H∞

the distance between two NCFs it is possible to bound the

ν-gap metric between those, as it is shown in [21], [17].

Therefore, by applying the described algorithm the quality

of approximation in the metric is improved comparing to the

NCF quality.

Remarkably, by convexifying the condition (3) the con-

dition (4) was incorporated into the convexified norm con-

straint. A proof of this fact is summed up in the following

lemma.

Lemma 2: Assume that a, b are the normalized coprime

factors of G, p and q are coprime factors of Ĝ, and φ is

chosen according to Remark 1. If Re((qa∗ + pb∗)/φ) > 0
for all frequencies ω then the winding number condition

η ([p/q,−b∗/a∗]) = η ([b/a,−b∗/a∗]) is satisfied.

Proof: Recall, that φ = p0b∗ + q0a∗ where

η
([
p0/q0,−b∗/a∗

])
= η ([b/a,−b∗/a∗]) . Therefore

we only need to show that η
([
p0/q0,−b∗/a∗

])
=

η ([p/q,−b∗/a∗]) . Which is shown in a straight forward

manner from the condition Re((qa∗ + pb∗)/φ) > 0. Indeed,

the positive real condition Re(c/d) > 0 is equivalent to “c
has the same number of unstable zeros as d” given that the

poles for c and d are equal. It is true if the number of zeros

of c and d is equal, which is the case in the Algorithm 1.

Therefore η
([
p0/q0,−b∗/a∗

])
= η ([p/q,−b∗/a∗]) and

finally η ([p/q,−b∗/a∗]) = η ([b/a,−b∗/a∗]) .
Remark 2: In the proof it has been assumed that the

number of zeros of qa∗ + pb∗ and φ = q0a∗ + p0b∗ is

equal. In semidefinite programming obtaining a qa∗ + pb∗

which has fewer zeros than φ = q0a∗ +p0b∗ is equivalent to

obtaining a matrix which is rank deficient. The set of rank

deficient matrices is a null measure subset of the space of

full-rank matrices. Therefore it is highly unlikely to obtain a

rank deficient matrix in the semidefinite programming. With

a similar reasoning it can be stated that p and q are in fact

coprime.

Finally, the quasi-convex semidefinite program of approx-

imation in the ν-gap metric for a given φ may be deduced:

γc
ν = min

p,q
γ subject to

∀ ω ∈ [0, π] :

∥∥∥∥

(
p(ω)
q(ω)

)
/φ(ω)

∥∥∥∥
2

<

γRe((q(ω)a∗(ω) + p(ω)b∗(ω))/φ(ω))

(5)

Theorem 1: Consider the Algorithm 1 with a full sampling,

i.e. the constraints are enforced for all the frequencies ω,
where γc

ν , p, and q is the output of the algorithm. Then

δν (G, p/q) ≤
√

1 − (1/γc
ν)2.

Proof: Shown by construction using Lemma 2.

C. Tractable Algorithm and Implementation

The first step of the algorithm is choosing an appropriate

“central” φ. According to the Remark 1 such a φ may be

produced as follows

1) Compute an approximation
(
n/θ m/θ

)
of

(
b a

)
,

which is a NCF of the full model G. Note that m,n
and θ are FIR filters.

2) Fix φ = nb∗ +ma∗.

Surely, there is a number of other ways to choose φ (e.g.

the choice φ = θ also provided excellent results) and author

did not provide a rigorous proof, that this particular choice of

φ will always deliver results. However, the intuition behind
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the choice, which is described in the Remark 1 is reasonable

and provides reasonable results in numerical experiments.

The program (5) is quasi-convex and can be solved using

standard tools. The second order cone constraint can be

easily transformed into an LMI using the Schur complement,

providing a semidefinite constraint instead. A frequency

dependent semidefinite constraint may be imposed for all

frequencies at ones using the KYP lemma, e.g. a formulation

from [22]. To provide a computationally cheaper program the

constraints may be enforced on a frequency grid {ωi}N
i=1,

where N is big enough to avoid over-fit.

If required Re((q(ω)a∗(ω) + p(ω)b∗(ω))/φ(ω)) > 0 can

be enforced for all frequencies to ensure the winding number

condition (e.g. using the KYP lemma). The total cost of

the algorithm will not be drastically affected by adding this

feature.

The algorithm is implemented using the interior-point

solvers SEDUMI ([23]) and SDPT3 ([24]) and the parser

YALMIP ([25])

D. Computational Complexity

There are two main contributors computational complex-

ity: computation of normalized coprime factors and optimiza-

tion problem. Computation of NCFs is done using Riccati

equations and therefore complexity is O(l3) floating point

operations (flops), where l is the order of the equation (of

the full order model G).

The optimization cost of a semidefinite program differs

depending on the tolerance level, number of decision vari-

ables and if the constraints are enforced for all frequencies

or just on a grid. The cost of one iteration when solved

with SEDUMI does not exceed O(N2
1N

2.5
2 + N3.5

1 )) flops,

where N1 being the number of decision variables and N2

the number of constraints. If constraints are enforced on a

frequency grid, then N1 = O(k) and N2 = N. Computing

the frequency samples costs in general O(l3) and can be

lowered to O(l log(l)) in certain cases ([26], [27]). If all

the constraints are enforced using the KYP lemma for all

frequencies, then N1 = O(l2k2). In both cases k is the order

of approximation and N is the number or frequency points

in the grid. The number of iterations is bounded by solvers

tolerance ε as O(
√
N1 log 1

ε
), although in practice more than

50 iterations is rarely required.

Since the program is quasi-convex it is solved using

bisection. The tolerance of bisection should be higher than in

the similar model reduction methods. Indeed, low values of

δν correspond to the values of γ very close to 1, for instance

if δν = 0.05 then γ = 1.00125. Therefore the tolerance of

approximation has to be modified accordingly depending on

an application.

IV. EXAMPLES

Throughout the section METHOD 1 will denote approx-

imation in the ν-gap metric and METHOD 2 will denote

approximation in the ν-gap with a fixed performance degra-

dation level, which will be introduced shortly.

Example 2: Approximation of a Flexible Beam Model.

In this example it is possible to see the effect of the

approximation in the ν-gap metric. A continuous time model

of a flexible beam is described in [28]. As may be seen in

Table I, METHOD 1 always provides a better ν-gap match

than Hankel approximations. For orders 2 and 4 considerable

improvement was not achieved, since any method can only

match peaks in the frequency response (every peak corre-

sponds to a pair of complex conjugate poles). For orders 1
and 3 there is extra freedom in the choice of poles of the

system which is exploited by the METHOD 1. Fig. 2 depicts

the frequency responses of the reduced order and full order

models.
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Fig. 2. Frequency responses of the original beam model (thin solid
black), Hankel approximation (thick green lines), Hankel approximation of
normalized coprime factors (thick red lines) and the proposed method (thick
blue lines). Hankel approximations almost coincide. Order 4 approximations
are dashed, order 3 approximations are thick solid.

TABLE I

APPROXIMATION ERRORS IN δν · 10−2 OF VARIOUS METHODS IN

EXAMPLE 2

Reduction Orders 1 2 3 4

HMR 67.2 11.4 11.5 1.88

HMR of NCFs 60.7 11.3 11.5 1.88

METHOD 1 37.9 11.2 6.2 1.87

A. Application. Controller Reduction

The controller reduction is a very complicated problem

since a designer must keep in mind both robustness and

performance criteria to obtain a reasonable controller. Good

surveys of methods using coprime factorization and fre-

quency weighted approaches, which tackles both criteria

are given in [17] and [29]. ν-gap does not account for

the performance of the closed loop system, therefore it is

desirable to include the constraints on performance into the

optimization problem. Using the semidefinite program as

a tool makes it possible. As a basis the method briefly

described in [8] is used. As example, consider a closed loop
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transfer function H(G,K) where G is a plant and K is a

controller and H is a so called gang-of-four:

H(G,K) =





G

1 +GK

−KG
1 +GK

1

1 +GK

−K
1 +GK





Another closed-loop function may be approached in a

similar manner, for example, T (G,K) = GK/(1 + KG).
Denote b/a an NCF of K and c/d an NCF of G.

min
γr>0,p,q

γr subject to
∣∣∣∣

(
H(ω)e(ω) −

(
q(ω)c(ω) −p(ω)c(ω)
q(ω)d(ω) −p(ω)d(ω)

))
/ψ(ω)

∣∣∣∣ <

< γpRe(e(ω)) ∀ω∣∣∣∣

(
p(ω)
q(ω)

)
/φ(ω)

∣∣∣∣ < γrRe(f(ω)) ∀ω

Re(f(ω)) > 0 Re(e(ω)) > 0 ∀ω
e(ω) = (q(ω)d(ω) + p(ω)c(ω))/ψ(ω)

f(ω) = (q(ω)a∗(ω) + p(ω)b∗(ω))/φ(ω)

where γp is a pre-determined performance degradation level

and φ is an initial guess on qa∗ + pb∗, and ψ is an initial

guess on q(ω)d(ω) + p(ω)c(ω).

TABLE II

APPROXIMATION ERRORS OF VARIOUS METHODS IN THE ν-GAP METRIC

AND EFFECT ON THE CLOSED LOOP PERFORMANCE IN EXAMPLE 4

DISTANCE BETWEEN K AND bK IN THE ν-GAP METRIC (·10−2)

Reduction Orders 2 3 4 5 6 7

HMR 72.9 83.14 24.58 18.88 12.67 6.77

HMR of NCF 67.01 70.48 13.47 4.96 6.29 2.67

METHOD 1 38.03 7.49 3.35 3.23 3.22 1.25

METHOD 2 44.56 7.84 4.63 4.05 4.27 1.42

DISTANCE BETWEEN T (G, K) AND T (G, bK) IN H∞

Reduction Orders 2 3 4 5 6 7

HMR 3.64 26.02 1.09 0.84 0.35 0.31

HMR of NCF 2.37 2.34 0.92 0.34 0.38 0.19

METHOD 1 2.05 0.58 0.27 0.26 0.26 0.11

METHOD 2 1.53 0.43 0.21 0.19 0.19 0.08

Example 3: Altitude Controller of a Flexible Spacecraft

The controller was designed in [30] using loop shaping

procedures. Controller has two unstable poles, which is not a

particularly robust solution to the design problem. Therefore

slight changes in controller may result in an unstable close

loop. Using the ν-gap reduction method it was possible to

obtain a stable closed loop only for order 2 with δν error

of 0.014, however the performance did not match at all.

Moreover, a controller of order 4 with δν distance to the

original one equal to 0.005, was destabilizing to the control

loop. Conventional methods (such as weighted reduction and

reduction of normalized coprime factors) always provided a

destabilizing controller.

Example 4: Approximating a Youla Controller. Consider

gang-of-four H(G,K), where the plant G is controlled in a

robust manner by a controllerK. The 152-nd order controller

K was obtained in [31] using Youla parameterization, there-

fore the controller itself is stable and so is the third order

plant G. For every order the level γp will be fixed to 75 %
of the performance obtained by the METHOD 1.The results

are presented in Table 4.
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V. CONCLUSION

A linear system approximation method in the ν-gap metric

is presented in the paper. Such a method may be very

useful for modeling of structured or multi-agent systems.

Approximation is obtained using semidefinite programming

and a normalized coprime factorization of the original model.

The method can be applied to controller reduction with

taking into account the performance of closed loop.

Future work on the method includes comparison with the

method from [15], which uses the LMI formulation of the

problem and the state-space data of the systems. It also relies

on an iterative procedure to obtain a solution. The second

direction of the future work is a MIMO extension using the

techniques in the mentioned [9], [16].

The current algorithm has some advantages comparing

to [15] regardless of the future comparison. Incorporating

extra constraints, adding frequency-depended weights and/or

restricting the objective to a specific frequency interval is

straight-forward using the frequency domain representation.
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