
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An exploration of digital CNN implementations

Malki, Suleyman; Spaanenburg, Lambert

Published in:
Proceedings SSOCC

2004

Link to publication

Citation for published version (APA):
Malki, S., & Spaanenburg, L. (2004). An exploration of digital CNN implementations. In Proceedings SSOCC

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1d42af77-7336-4817-a832-52826b0c722c

Download date: 13. Feb. 2026

An exploration of digital CNN implementations
Suleyman Malki and Lambert Spaanenburg

Lund University, Institute of Information Technology,
P.O.Box 118, 22 100 Lund (Sweden)

Email: suleyman@it.lth.se, lambert@it.lth.se

∑∑
∈∈

++=
)()(

)()(
cNd

cdc
d

cNd

dc
d

c

rr

iubkyakx

c
d

c
db

(1)

Spatially invariant CNNs are specified by a control
template A containing a , a feedback template B

containing , and the cell bias i = ic . Node template,
T=<A, B ,i>, determines together with input image u and
an initial output y(0) completely the dynamic behaviour of
the DT-CNN. Convergence to a stable state will be
achieved after a number of iterations n, i.e. at time k=n.

Abstract. Computationally hard problems, such as operations on
n-dimensional maps, are in need of efficient solutions. Cellular
Neural Networks have this promise. This paper explores digital
realizations of such computational paradigms through the case
of real-time image processing. It is shown that a behaviour-
based spatial unrolling of the time-critical numerical
convergence loop outperforms a classical function-based
architecture. An FPGA implementation on Xilinx Virtex-II
illustrates a 50 times higher throughput, bringing intelligent
vision into reach.

Keywords – Cellular Neural Network, Virtual Sensing, Real-
Time System, Image Processing, Spatial Architecture

I. Introduction

A

B

ƒ∑

)(cNd r∈

)1(−kyd

du

)(cNd r∈

i

)1(−kxc

)(kycTheir local connectivity gives Cellular Neural Networks
(CNNs) a first-hand advantage to VLSI implementation
with very high speed and complexity. A fully digital
implementation relies on the field-programmable gate-
array (FPGA) for reasons like explicit parallelism and
reconfigurability. FPGA architectures provide large
amounts of Configurable Logic Blocks with optimized
Block Select RAM and multiplier macros. Such macros,
specialized for popular digital signal processing functions,
increase the flexibility to map modular neural structures. Figure 1 Block diagram of a DT-CNN cell. However, the limitation of hardware resources in an
FPGA makes it necessary to use every hardware element
as much as possible. Scheduling the computational
process is usually applied to achieve this. Such
unravelling in time gives it the name “temporal
computing”, in contrast to “spatial computing”, where the
process is unravelled in space to reduce spurious latency
[1]. The facility of spatial computing makes the FPGA
already very popular as a hardware accelerator.

This paper stresses the exploitation of the built-in
macros to spatially unroll the local feedback. After some
general consideration, we discuss in section 0 the image
processing considerations that determine the architectural
options. Then a classical pipelined architecture of a DT-
CNN system is introduced. Ensuing section V reviews the
ILVA architecture, followed by a short evaluation of these
architectural alternatives.

A DT-CNN (Discrete Time CNN), introduced by
Harrer and Nossek [2], is a regular multidimensional grid
of locally connected cells. Each cell c communicates
directly with its r-neighbours, i.e. a set of cells within a
certain distance r to c, where r≥ 0. E.g. if r = 1 we have 3
× 3 neighbourhood and if r=2 we have 5 × 5
neighbourhood. Still a cell can communicate with other
cells outside its neighbourhood due the network
propagation effect.

II. General Considerations

Although neighbourhoods of any size are allowed in
DT-CNN, it is almost impossible to realize large
templates. Limited interconnectivity imposed by current
VLSI technology demands that communication between
cells is only local. In this work, we restrict ourselves to
the use of 3 × 3 neighbourhood, where templates A and B
are 3 × 3 matrices of real-valued coefficients.
Additionally, the input range of a DT-CNN cell is
restricted to [-1, +1], due to the fact that grey-scale level
is commonly used to the purpose of image processing. A
value of –1 represents a white pixel and a value of +1
represents a black pixel. Other values represent grey
levels in-between. Although floating-point representation

The state of a cell c, denoted xc, depends mainly on two
factors: the time-independent input ud to its neighbours d
and the time-variant output yd(k) of its neighbourhood.
The neighbourhood always includes c itself. Equation 1
describes this dependency in a discrete time k, while
Figure 1 gives an illustration.

111

mailto:suleyman@it.lth.se
mailto:lambert@it.lth.se

The processed image may originate from a camera or be
artificially composed. A typical platform contains a PC-
interface, and PAL-standard camera plus monitor that
need an additional interface board to produce the map in
the CCIR-601 standard. We used a Video Board from
Axis Communications, Lund (Sweden), based on Philips
Enhanced Video Input Processor (EVIP) version
SAA711A and Digital Video Encoder (ConDENC)
version SAA7121.

of real-valued numbers is generally preferred, we employ
fixed-point representation due to its friendliness in
hardware realizations, especially for the use of multiplier
primitives in FPGA. Furthermore, before any
computations can be done, the image is assumed to be
stored in an external storage space.

Image
stream

stripe

line

DT-CNN
implementation S/P

DT-CNN

P/S

W
ork B

uffer

Frame Buffer

Video Adapt

SRAM

PAL/CCIR

Local controlC
am

era

M
onitor

Figure 2 Dimensionality of CNN image processing. Figure 3 The CNN-based image processing system

The operation of a DT-CNN on images covers many
dimensions. The local operation is performed in a two-
dimensional plane (width & length) and iterates in time.
Due to the limited capacity of the CNN implementation
this has to be repeated over image slices and iterates over
the surface to handle potential wave propagation. Finally,
the operation is performed on sequences of images
(Figure 2). All this has to be facilitated on the two-
dimensions in a FPGA. Consequently, the dominating
architectural question is: how to reduce the dimensions
from the functional requirements to the platform
facilities?

The camera generates frames with a rate of 25 frames
per second, where each frame has the actual size of
720x576 pixels. The grey level part of a pixel is 8 bits
wide, which needs to be converted to a signed fixed-point
number.

According to the PAL standard, a video frame is

IV. Temporal Architecture
The nodal equation (1) consists mainly of two

ac

divided into two fields: an odd field containing all odd
lines and an even field containing all even lines. All
compliant PAL equipment processes the odd field first
(“interlaced video”). A Frame Buffer is needed, because
the 3x3 neighbourhood can’t be obtained until both odd
and even lines are available. Due to the big storage
needed and the limited resources on the FPGA in use, an
external SRAM is used. See Figure 3. Communication
with this SRAM is provided by an SRAM I/O, which uses
two one-directional data busses. SRAM I/O is shared
between the DT-CNN and a Video I/O. The major
drawback of the external SRAM is its low speed (27
MHz) compared to what our DT-CNN system must
handle. This motivates the need of fast and flexible Work
Buffer in-between. This buffer fits two stripes and uses
Block Select RAM primitives on the FPGA.

Figure 1 depicts the requirement of all data to be
present simultaneously in order to compute the state, and
then the output, of a certain neuron (cell). Due to the
limited wiring of the FPGA, this is almost impossible to
implement. There are two aspects of time that can be
spatially unrolled: (a) the temporal ordering of the images
parts, which we discuss in [3], and (b) the time steps in
convergence of each nodal operation to reach consensus
with its neighbours. The latter will be discussed here from
both temporal and spatial view.

III. Principle of Image Processing

The RGB standard reigns in the field of image
processing. It generates any colour by mixing the
intensities of the three basic ones, red, green and blue.
Unfortunately, the RGB standard does not make it easy to
extract grey-level; the digital standard CCIR-601 is more
suitable. It is defined in the YCbCr colour space, where
the luminance Y-channel holds the grey intensity and
channels Cb and Cr contain colour information. In this
way, the grey level information is obtained without any
need of conversion. An added advantage is that the CCIR-
601 also provides timing information.

cumulated sequences of multiplications. Every
sequence contains nine multiplications, and therefore can
be realized in nine stages. In this case, pipelining each
sequence gives a simple design, which will reduce
memory access required per pipeline step. Data
dependencies between scan-lines in an image are then
stretched to cover all nine stages of the pipeline. Pixels
needed to perform the desired computation of the output
for one cell, are fetched from three series of registers
connected to the pipeline. Based on the observation that
both multiplication sequences are independent, the desired

222

network behaviour is implemented as two 9-stage
pipelines per one DT-CNN node. Output is obtained by
thresholding the sum.

One pipeline, consisting of 18 multipliers and
additional logic, is needed for every column of the image.
Due to the organisation of multiplier macros in the target
FPGA, only six nodes can be mapped. Figure 4 shows a
node net consisting of 4 nodes. de net consisting of 4 nodes.

A * y(k-1)

A * y(k-1)

A * y(k-1)

A * y(k-1)

B * u

B * u

B * u

B * u

y(k)

u
0

y(k-1)
i

Figure 4 An overview of a temporal node net.

V. Spatial Architecture
The early ILVA implementation [4] is focussed on

si

This makes all values for 3 lines to be available for the
co

The floor plan of the FPGA realization shows this
co

ngle images. To delineate the temporal effects of line-
oriented image inspection and CNN iteration, it unrolls
the iteration on the pixel timing axis [5]. The principle of
operation is illustrated in Figure 5. The local interaction
between CNN nodes in a 1-neighbourhood requires 3
lines of 3 pixels to be present. As the pixel lines come in
one-by-one, this can be implemented as an array of CNN
nodes with a feedback that stores the history of the passed
two lines, assuming one RAM available per CNN node.

Figure 5 Unrolling the iteration loop.

Iteration 0

Iteration 1

Pixel
lines

CNN
topology

Timing & control

2

3

4

1

2

3

mputation of a single discrete iteration. The result is
passed to the next array for CNN nodes, synchronized
with the arrival of new pixel lines, where the next

iteration is performed with the same compute & store
principle as in the first array.

ncept as follows. We let each column represents a line
in the image stripe and the columns will then form
iterations performed on the image. In this way grid
structure and number of iterations are implemented by
using columns of nodes, and image size is handled by
slicing the image. Coupling scheme of multiplier and
Block Select RAM macros in the target FPGA limits the
number of iterations to 5. In other words, our CNN system
consists of six columns of nodes where the maximum of
24 pixels can be handled in parallel.

The nodal formula consists of two parts: the constant
part ∑ + ixA. (implemented as U cell) and the state

dependent remainder ∑ uB. (implemented as Y cell).

computed state dependent part. Or in other words, the
incoming line can be consumed directly in the
computation of the constant that in turn will be passed to
every node at the moment that corresponds with the
consumed pixel. This way, the line-by-line pixel flow
becomes synchronized with unrolling the convergence
loop (Figure 6).

At every iteration, the constant part is added to the newly

U-cell
Precalc

Y-cell
Iter. 1

Y-cell
Iter. 2

Y-cell
Iter. 3

Y-cell
Iter. 4

Y-cell
Iter. 5

output

u

y

Figure 6 Dataflow of U and Y matrix.

Intuitively, resources of the FPGA should be grouped in
nodes or Processing Elements (PEs), where each node
corresponds to a cell in the CNN, which in turn represents
a pixel in the image stripe. This model is preferred since it
maps very well to the mathematical model of a DT-CNN.
The major drawback seemed that loading data to and from
the FPGA contributes with a tangible loss in performance
and bandwidth. In [3] it is discussed how packet switching
techniques can solve this problem.

333

444

VI. Discussion The last point of attention is the accuracy of the
operations. At present we have used 8 bits representations
for pixels input and output, since it has been applied with
success in the analogue alternative architecture. As noted
in [6], there are reasons to believe that more accuracy is
required. In both architectures, this cannot be easily
accommodated because the multiplier macros are fixed at
maximum 18 x 18 bits.

Depending on interpretation of the nodal equation,
temporal and spatial approaches use different data
representations. Common for both approaches is the use
of fixed-point instead of float-point representation of real-
valued numbers, which usually is preferred in the related
literature. Table 1 shows how different data are
represented, comparing the temporal approach with Ilva
implementation of the spatial approach. First part is the
number of bits in use. The notation [x+y] means that the
number consists of x-bits integer part and y-bits fractional
part.

 Temporal Spatial / Ilva
Input Data 8 , [8+0] 8 , [1+7]
Template
Coefficients

16 , [7+9] 8 , [4+4]

Bias 36 , [18+18] 8 , [8+0]
Feedback
Constant

Not defined 20 , [9+11]

Output 8 , [8+0] 8 , [1+7]

The low clock rate of 17 MHz, mainly caused by the
complexity of the pixel address generation, is a major
drawback for the temporal architecture. There is of course
room for more optimization, but maximum theoretical
performance remains low, about 70 Mpixels/sec. Together
with other observations, this leads to the conclusion that
the spatial architecture brings clear benefits.

Halvar Ilva Wickie Temporal

Slice utilization 50% 37% 47% 13%

LUT utilization 28% 28% 36% 12%

Multipliers/BSRAMs 144/144 132/132 144/144 78/0

Clock rate(MHz). 106 100 103 17,3

Cycles per iteration 15 10 13 17

Throughput 170/180 205/220 185/190 4.1

Table 1 Representation of data.

Both temporal and spatial implementations target a
Virtex-II 6000 FPGA from Xilinx. Three different
implementations of the spatial architecture have been
considered: Ilva, Halvar and Wickie. They illustrate a
different balance between cycles per iteration and
maximum clock speed. Table 2 shows a comparison
between the implementations. These results were obtained
after synthesis with Synplify. For Ilva, the simulation was
done with a design of 22 rows only.

Table 2 Comparison of different implementations.

Acknowledgments
We are indebted to the 2002 RedBeard Team [7] for the

development of the spatial architecture and Sebastian
Rasmussen and Tor Silfverberg for the development of
the temporal architecture. Spatial and temporal architectures differ in a number of

ways. Firstly the modular structure of the spatial design
offers a better usage of the distributed memory than the
sliced structure of the temporal design. Modules based on
the distribution of multiplier and SRAM macros provide
for localization of concerns, which in turn opens the way
for reconfiguration of the module hardware in order to
boost performance further. Secondly, a sliced design with
pipelines for the succession of multiplying-adder
operations for a single DT-CNN node needs a frequent
access to the external SRAM, while the modular design
allows unrolling the design for the required computational
iterations. This eases the demands on external SRAM
access and therefore leads to an intrinsically better
performance. Thirdly, the need for a system controller
within the iteration loop for the temporal approach
complicates the implementation considerably. As further
the pipeline slice need to be located in the width of the
FPGA, while the slices of the modules can use the length
of the FPGA, the maximum capacity of a spatial
architecture in terms of parallelized pixels is about 5-6
times higher than that of a temporal architecture.

References
[1] A. deHon, “Reconfigurable Architectures for General-

Purpose Computing”, Ph.D. thesis, MIT, Cambridge
(USA), 1996.

[2] H. Harrer and J. A. Nossek, “Discrete-Time Cellular
Neural Networks”, International Journal of Circuit Theory
and Applications, 20, 453-467, September 1992.

[3] S. Malki, L. Spaanenburg and N. Ray, “Neural vision
sensors for surface defect detection”, to be presented at
IJCNN (Budapest, July 2004).

[4] S. Malki, and L. Spaanenburg, “CNN Image Processing on
a Xilinx Virtex-II 6000”, Proceedings ECCTD’03
(Krakow, Poland, 1-4 September 2003) pp. 261-264.

[5] Z. Nagy and P. Szolgay, “Configurable Multi-Layer CNN-
UM Emulator on FPGA”, Proceedings 7th IEEE Int.
Workshop on Cellular Neural Networks and their
Applications, 164 – 171, 2002.

[6] R. Tetzlaff, “Solitons in Cellular Non-linear Networks”,
Proceedings ECCTD, Vol. II, 434-439, 2003.

[7] L. Spaanenburg, “The RedBeard files, Experiments in
Application-Configurable VLSI Architectures”. 2003. URL:
http://www.it.lth.se/lambert/RedBeard (2004-03-18).

http://www.it.lth.se/lambert/RedBeard

