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Spatially invariant CNNs are specified by a control 
template A containing a , a feedback template B 

containing , and the cell bias i = ic . Node template, 
T=<A, B ,i>, determines together with input image u and 
an initial output y(0) completely the dynamic behaviour of 
the DT-CNN. Convergence to a stable state will be 
achieved after a number of iterations n, i.e. at time k=n. 

Abstract. Computationally hard problems, such as operations on 
n-dimensional maps, are in need of efficient solutions. Cellular 
Neural Networks have this promise. This paper explores digital 
realizations of such computational paradigms through the case 
of real-time image processing. It is shown that a behaviour-
based spatial unrolling of the time-critical numerical 
convergence loop outperforms a classical function-based 
architecture. An FPGA implementation on Xilinx Virtex-II 
illustrates a 50 times higher throughput, bringing intelligent 
vision into reach. 

Keywords – Cellular Neural Network, Virtual Sensing, Real-
Time System, Image Processing, Spatial Architecture 

I. Introduction 
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)(kycTheir local connectivity gives Cellular Neural Networks 
(CNNs) a first-hand advantage to VLSI implementation 
with very high speed and complexity. A fully digital 
implementation relies on the field-programmable gate-
array (FPGA) for reasons like explicit parallelism and 
reconfigurability. FPGA architectures provide large 
amounts of Configurable Logic Blocks with optimized 
Block Select RAM and multiplier macros. Such macros, 
specialized for popular digital signal processing functions, 
increase the flexibility to map modular neural structures. Figure 1 Block diagram of a DT-CNN cell. However, the limitation of hardware resources in an 
FPGA makes it necessary to use every hardware element 
as much as possible. Scheduling the computational 
process is usually applied to achieve this. Such 
unravelling in time gives it the name “temporal 
computing”, in contrast to “spatial computing”, where the 
process is unravelled in space to reduce spurious latency 
[1]. The facility of spatial computing makes the FPGA 
already very popular as a hardware accelerator.  

This paper stresses the exploitation of the built-in 
macros to spatially unroll the local feedback. After some 
general consideration, we discuss in section 0 the image 
processing considerations that determine the architectural 
options. Then a classical pipelined architecture of a DT-
CNN system is introduced. Ensuing section V reviews the 
ILVA architecture, followed by a short evaluation of these 
architectural alternatives. 

A DT-CNN (Discrete Time CNN), introduced by 
Harrer and Nossek [2], is a regular multidimensional grid 
of locally connected cells. Each cell c communicates 
directly with its r-neighbours, i.e. a set of cells within a 
certain distance r to c, where r≥ 0. E.g. if r = 1 we have 3 
× 3 neighbourhood and if r=2 we have 5 × 5 
neighbourhood. Still a cell can communicate with other 
cells outside its neighbourhood due the network 
propagation effect. 

II. General Considerations 

Although neighbourhoods of any size are allowed in 
DT-CNN, it is almost impossible to realize large 
templates. Limited interconnectivity imposed by current 
VLSI technology demands that communication between 
cells is only local. In this work, we restrict ourselves to 
the use of 3 × 3 neighbourhood, where templates A and B 
are 3 × 3 matrices of real-valued coefficients. 
Additionally, the input range of a DT-CNN cell is 
restricted to [-1, +1], due to the fact that grey-scale level 
is commonly used to the purpose of image processing. A 
value of –1 represents a white pixel and a value of +1 
represents a black pixel. Other values represent grey 
levels in-between. Although floating-point representation 

The state of a cell c, denoted xc, depends mainly on two 
factors:  the time-independent input ud to its neighbours d 
and the time-variant output yd(k) of its neighbourhood. 
The neighbourhood always includes c itself. Equation 1 
describes this dependency in a discrete time k, while 
Figure 1 gives an illustration. 
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The processed image may originate from a camera or be 
artificially composed. A typical platform contains a PC-
interface, and PAL-standard camera plus monitor that 
need an additional interface board to produce the map in 
the CCIR-601 standard. We used a Video Board from 
Axis Communications, Lund (Sweden), based on Philips 
Enhanced Video Input Processor (EVIP) version 
SAA711A and Digital Video Encoder (ConDENC) 
version SAA7121. 

of real-valued numbers is generally preferred, we employ 
fixed-point representation due to its friendliness in 
hardware realizations, especially for the use of multiplier 
primitives in FPGA. Furthermore, before any 
computations can be done, the image is assumed to be 
stored in an external storage space.  

Image 
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Figure 2 Dimensionality of CNN image processing. Figure 3 The CNN-based image processing system 

The operation of a DT-CNN on images covers many 
dimensions. The local operation is performed in a two-
dimensional plane (width & length) and iterates in time. 
Due to the limited capacity of the CNN implementation 
this has to be repeated over image slices and iterates over 
the surface to handle potential wave propagation. Finally, 
the operation is performed on sequences of images 
(Figure 2). All this has to be facilitated on the two-
dimensions in a FPGA. Consequently, the dominating 
architectural question is: how to reduce the dimensions 
from the functional requirements to the platform 
facilities? 

The camera generates frames with a rate of 25 frames 
per second, where each frame has the actual size of 
720x576 pixels. The grey level part of a pixel is 8 bits 
wide, which needs to be converted to a signed fixed-point 
number. 

According to the PAL standard, a video frame is 

IV. Temporal Architecture 
The nodal equation (1) consists mainly of two 

ac

divided into two fields: an odd field containing all odd 
lines and an even field containing all even lines. All 
compliant PAL equipment processes the odd field first 
(“interlaced video”). A Frame Buffer is needed, because 
the 3x3 neighbourhood can’t be obtained until both odd 
and even lines are available. Due to the big storage 
needed and the limited resources on the FPGA in use, an 
external SRAM is used. See Figure 3. Communication 
with this SRAM is provided by an SRAM I/O, which uses 
two one-directional data busses. SRAM I/O is shared 
between the DT-CNN and a Video I/O. The major 
drawback of the external SRAM is its low speed (27 
MHz) compared to what our DT-CNN system must 
handle. This motivates the need of fast and flexible Work 
Buffer in-between. This buffer fits two stripes and uses 
Block Select RAM primitives on the FPGA.  

Figure 1 depicts the requirement of all data to be 
present simultaneously in order to compute the state, and 
then the output, of a certain neuron (cell). Due to the 
limited wiring of the FPGA, this is almost impossible to 
implement. There are two aspects of time that can be 
spatially unrolled: (a) the temporal ordering of the images 
parts, which we discuss in [3], and (b) the time steps in 
convergence of each nodal operation to reach consensus 
with its neighbours. The latter will be discussed here from 
both temporal and spatial view. 

III. Principle of Image Processing 

The RGB standard reigns in the field of image 
processing. It generates any colour by mixing the 
intensities of the three basic ones, red, green and blue. 
Unfortunately, the RGB standard does not make it easy to 
extract grey-level; the digital standard CCIR-601 is more 
suitable. It is defined in the YCbCr colour space, where 
the luminance Y-channel holds the grey intensity and 
channels Cb and Cr contain colour information. In this 
way, the grey level information is obtained without any 
need of conversion. An added advantage is that the CCIR-
601 also provides timing information. 

cumulated sequences of multiplications. Every 
sequence contains nine multiplications, and therefore can 
be realized in nine stages. In this case, pipelining each 
sequence gives a simple design, which will reduce 
memory access required per pipeline step. Data 
dependencies between scan-lines in an image are then 
stretched to cover all nine stages of the pipeline. Pixels 
needed to perform the desired computation of the output 
for one cell, are fetched from three series of registers 
connected to the pipeline. Based on the observation that 
both multiplication sequences are independent, the desired 
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network behaviour is implemented as two 9-stage 
pipelines per one DT-CNN node. Output is obtained by 
thresholding the sum.  

One pipeline, consisting of 18 multipliers and 
additional logic, is needed for every column of the image. 
Due to the organisation of multiplier macros in the target 
FPGA, only six nodes can be mapped. Figure 4 shows a 
node net consisting of 4 nodes. de net consisting of 4 nodes. 
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Figure 4 An overview of a temporal node net. 

V. Spatial Architecture 
The early ILVA implementation [4] is focussed on 

si

This makes all values for 3 lines to be available for the 
co

The floor plan of the FPGA realization shows this 
co

ngle images. To delineate the temporal effects of line-
oriented image inspection and CNN iteration, it unrolls 
the iteration on the pixel timing axis [5]. The principle of 
operation is illustrated in Figure 5. The local interaction 
between CNN nodes in a 1-neighbourhood requires 3 
lines of 3 pixels to be present. As the pixel lines come in 
one-by-one, this can be implemented as an array of CNN 
nodes with a feedback that stores the history of the passed 
two lines, assuming one RAM available per CNN node. 

Figure 5 Unrolling the iteration loop. 
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mputation of a single discrete iteration. The result is 
passed to the next array for CNN nodes, synchronized 
with the arrival of new pixel lines, where the next 

iteration is performed with the same compute & store 
principle as in the first array. 

ncept as follows. We let each column represents a line 
in the image stripe and the columns will then form 
iterations performed on the image. In this way grid 
structure and number of iterations are implemented by 
using columns of nodes, and image size is handled by 
slicing the image. Coupling scheme of multiplier and 
Block Select RAM macros in the target FPGA limits the 
number of iterations to 5. In other words, our CNN system 
consists of six columns of nodes where the maximum of 
24 pixels can be handled in parallel. 

The nodal formula  consists of two parts: the constant 
part ∑ + ixA. (implemented as U cell) and the state 

dependent remainder ∑ uB.  (implemented as Y cell). 

computed state dependent part. Or in other words, the 
incoming line can be consumed directly in the 
computation of the constant that in turn will be passed to 
every node at the moment that corresponds with the 
consumed pixel. This way, the line-by-line pixel flow 
becomes synchronized with unrolling the convergence 
loop (Figure 6). 

At every iteration, the constant part is added to the newly 

U-cell
Precalc

Y-cell
Iter. 1

Y-cell
Iter. 2

Y-cell
Iter. 3

Y-cell
Iter. 4

Y-cell
Iter. 5

output

u

y

 

Figure 6 Dataflow of U and Y matrix. 

Intuitively, resources of the FPGA should be grouped in 
nodes or Processing Elements (PEs), where each node 
corresponds to a cell in the CNN, which in turn represents 
a pixel in the image stripe. This model is preferred since it 
maps very well to the mathematical model of a DT-CNN. 
The major drawback seemed that loading data to and from 
the FPGA contributes with a tangible loss in performance 
and bandwidth. In [3] it is discussed how packet switching 
techniques can solve this problem. 
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VI. Discussion The last point of attention is the accuracy of the 
operations. At present we have used 8 bits representations 
for pixels input and output, since it has been applied with 
success in the analogue alternative architecture. As noted 
in [6], there are reasons to believe that more accuracy is 
required. In both architectures, this cannot be easily 
accommodated because the multiplier macros are fixed at 
maximum 18 x 18 bits. 

Depending on interpretation of the nodal equation, 
temporal and spatial approaches use different data 
representations. Common for both approaches is the use 
of fixed-point instead of float-point representation of real-
valued numbers, which usually is preferred in the related 
literature. Table 1 shows how different data are 
represented, comparing the temporal approach with Ilva 
implementation of the spatial approach. First part is the 
number of bits in use. The notation [x+y] means that the 
number consists of x-bits integer part and y-bits fractional 
part.  

 
 Temporal Spatial / Ilva 
Input Data 8 , [8+0] 8 , [1+7] 
Template 
Coefficients 

16 , [7+9] 8 , [4+4] 

Bias 36 , [18+18] 8 , [8+0] 
Feedback 
Constant 

Not defined 20 , [9+11] 

Output 8 , [8+0] 8 , [1+7] 

The low clock rate of 17 MHz, mainly caused by the 
complexity of the pixel address generation, is a major 
drawback for the temporal architecture. There is of course 
room for more optimization, but maximum theoretical 
performance remains low, about 70 Mpixels/sec. Together 
with other observations, this leads to the conclusion that 
the spatial architecture brings clear benefits. 

 

Halvar Ilva Wickie Temporal

Slice utilization 50% 37% 47% 13%

LUT utilization 28% 28% 36% 12% 

Multipliers/BSRAMs 144/144 132/132 144/144 78/0 

Clock rate(MHz). 106 100 103 17,3 

Cycles per iteration 15 10 13 17 

Throughput 170/180 205/220 185/190 4.1 

Table 1  Representation of data. 

Both temporal and spatial implementations target a 
Virtex-II 6000 FPGA from Xilinx. Three different 
implementations of the spatial architecture have been 
considered: Ilva, Halvar and Wickie. They illustrate a 
different balance between cycles per iteration and 
maximum clock speed. Table 2 shows a comparison 
between the implementations. These results were obtained 
after synthesis with Synplify. For Ilva, the simulation was 
done with a design of 22 rows only.  

Table 2 Comparison of different implementations. 
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ways. Firstly the modular structure of the spatial design 
offers a better usage of the distributed memory than the 
sliced structure of the temporal design. Modules based on 
the distribution of multiplier and SRAM macros provide 
for localization of concerns, which in turn opens the way 
for reconfiguration of the module hardware in order to 
boost performance further. Secondly, a sliced design with 
pipelines for the succession of multiplying-adder 
operations for a single DT-CNN node needs a frequent 
access to the external SRAM, while the modular design 
allows unrolling the design for the required computational 
iterations. This eases the demands on external SRAM 
access and therefore leads to an intrinsically better 
performance. Thirdly, the need for a system controller 
within the iteration loop for the temporal approach 
complicates the implementation considerably. As further 
the pipeline slice need to be located in the width of the 
FPGA, while the slices of the modules can use the length 
of the FPGA, the maximum capacity of a spatial 
architecture in terms of parallelized pixels is about 5-6 
times higher than that of a temporal architecture. 

References 
[1] A. deHon, “Reconfigurable Architectures for General-

Purpose Computing”, Ph.D. thesis, MIT, Cambridge 
(USA), 1996. 

[2]  H. Harrer and J. A. Nossek, “Discrete-Time Cellular 
Neural Networks”, International Journal of Circuit Theory 
and Applications, 20, 453-467, September 1992.  

[3] S. Malki, L. Spaanenburg and N. Ray, “Neural vision 
sensors for surface defect detection”, to be presented at 
IJCNN (Budapest, July 2004). 

[4] S. Malki, and L. Spaanenburg, “CNN Image Processing on 
a Xilinx Virtex-II 6000”, Proceedings ECCTD’03 
(Krakow, Poland, 1-4 September 2003) pp. 261-264. 

[5] Z. Nagy and P. Szolgay, “Configurable Multi-Layer CNN-
UM Emulator on FPGA”, Proceedings 7th IEEE Int. 
Workshop on Cellular Neural Networks and their 
Applications, 164 – 171, 2002.  

[6] R. Tetzlaff, “Solitons in Cellular Non-linear Networks”, 
Proceedings ECCTD, Vol. II, 434-439, 2003. 

[7] L. Spaanenburg, “The RedBeard files, Experiments in 
Application-Configurable VLSI Architectures”. 2003. URL: 
http://www.it.lth.se/lambert/RedBeard (2004-03-18). 

http://www.it.lth.se/lambert/RedBeard

