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Abstract

A method to solve the change in capacitance (or charge), if an object is intro-

duced in a parallel plate capacitor, is developed. The integral representation

of the potential is exploited in a systematic way to solve the potential ev-

erywhere inside the capacitor. In particular, the change in capacitance is

extracted. The method shows similarities with the null �eld approach to solve

dynamic problems.

1 Background

Electrostatic problems are very well understood, and to revisit such problems de-
serves a strong motivation and purpose. This inspiration is easily found in the
newborn interest in quantifying the static electric and magnetic properties of an ob-
ject, i.e., its polarizability dyadics γe and γm. The reason for this attention is that
the broadband properties of a scatterer, an antenna or a periodic structure stated
as sum rules, are determined by the values of these dyadics [2, 7�12, 24�28]. As an
example, for a �nite scatterer, we have that∫ ∞

0

σext(k)

k2
dk =

π

2

(
ê∗ · γe · ê+ (k̂i × ê)∗ · γm · (k̂i × ê)

)
which shows that the extinction cross section of the object, σext(k), as a weighted in-
tegral over the wave number k (i.e., proportional to the frequency), depends directly
on the static electric and magnetic polarizability dyadics γe and γm. The polariza-
tion of the incident plane wave is denoted ê, and the incident direction of the plane
wave is k̂i. As a consequence, the overall dynamic behavior of the scattering and
absorption properties of an object depends on the static properties of the scatterer.
Sum rules of this kind are well known in solid state physics, e.g., Kramers-Kronig
relations [1, 16], but are much less know in the electromagnetic community.

The polarizability of an object quanti�es the induced disturbance due to an
external, homogeneous, static electric �eld. The aim of this paper is to develop a
method to eliminate the e�ects of the higher modes that inevitably are present due
to fact that the exciting sources are located at a �nite distance from the object.

The obvious solution to the problem �nding the electric polarizability γe would
be to put the object inside a large plate capacitor and measure the change in capac-
itance with and without the object. From the change in capacitance, we then try
to extract the polarizability of the object. The �rst way of solving this electrostatic
problem of an object inside a plate capacitors that comes to mind is the method of
images. This approach can quite easily be accomplished for a simple object, like an
object with symmetries. However, for an arbitrary object this approach is hard to
administrate, due to the in�nite number of images, and a more systematic approach
to solve the potential problem is needed. Such a method is developed in this paper,
where we solve the electric potential inside the parallel plate capacitor containing
an arbitrary �nite object. The extraction of the polarizability from the change in
capacitance is addressed in a sequent paper.
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Figure 1: The geometry of the capacitance problem with the two con�ning surfaces
S1 and S2 and the object under test bounded by S3. Here a is the radius of the
smallest circumscribing sphere of the object.

In this paper, we exploit a solution technique which has had its main success
in solving time harmonic problems in geometries that contain both in�nite and
bounded surfaces. In particular, the solution of scattering of buried objects has
been solved with this technique both in the acoustic, electromagnetic and the elas-
todynamic cases [4, 15, 17, 20]. This method has its origin in pioneer works by P.
Waterman, see e.g., [30�32].

The outline of the paper is as follows: In Sections 2 and 3, the formulation
of the problem is made, and its solution in terms of the integral representation is
presented, respectively. The expansion functions used in the solution are introduced
in Section 4, and in Section 5 the null �eld approach is exploited and the elimination
of the surface �elds is made. The change in the capacitance due to the body is
developed in Section 6, and the induced polarizability dyadics are quanti�ed in
Section 7. The paper is concluded with some numerical examples in Section 8 and
three appendices that contain the mathematical details of the analysis.

2 The formulation of the problem

The geometry of the problem is shown in Figure 1. Two in�nite, perfectly conducting
planes, S1 and S2, parameterized by z = zi = constant, i = 1, 2, which also de�ne
the normal directions of the planes, con�ne the volume V4 (labeled region 4 in the
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�gure). With the choice of origin in the �gure, z1 < 0 and z2 > 0. For the moment,
the position of the origin is arbitrary, but it is important for the analysis that the
origin is located in region 4, as seen in the analysis below.

Region 4 contains the object under test in volume V3 (region 3), bounded by the
surface S3. For simplicity, in this paper we assume that the object in volume V3 is
a perfectly conducting object,1i.e., the potential Φ on its surface is then a constant,
which we denote by Φ′. This quantity is unknown at the moment, but it can be
determined by the analysis below. The regions below S1 and above S2 are denoted
regions 1 and 2, respectively.

The potential Φ(r) satis�es the Laplace equation in volume V4, and the appro-
priate scalar boundary value problem to solve in this paper becomes

∇2Φ(r) = 0, r ∈ V4

Φ(r) = Φi, r ∈ Si, i = 1, 2

Φ(r) = Φ′, r ∈ S3

(2.1)

The potentials Φ1 and Φ2 are given (excitation of the problem). It is no loss of
generality to assume that setup is symmetrically excited, i.e., the potential Φ2 =
−Φ1 (the di�erence in potential then is 2Φ1), and that the object S3, and the plates
S1 and S2 have no net charge, i.e.,∫∫

S3

ν̂(r) · ∇Φ(r) dS = 0 (2.2)

and ∫∫
S1

ν̂(r) · ∇Φ(r) dS +

∫∫
S2

ν̂(r) · ∇Φ(r) dS = 0

With appropriate conditions at in�nity (large lateral distances), the di�erential for-
mulation in (2.1) has a unique solution. To proceed, we adopt an integral represen-
tation of the solution to this problem.

3 Integral representation of the solution

The integral representation of the potential is the starting point of the analysis [29].
With the directions of the unit normals on Si, i = 1, 2, 3, in Figure 1, the solution
of the problem in (2.1) must satisfy the following integral relations:

3∑
i=1

∫∫
Si

[Φ(r′)ν̂(r′) · ∇′g(|r − r′|)− g(|r − r′|)ν̂(r′) · ∇′Φ(r′)] dS ′

=

{
0, r in region 1 or 2 or 3

Φ(r), r in region 4

1A similar derivation is possible for more general objects, such as dielectrics or several bounded
objects etc.. The extension to a homogeneous, dielectric object is somewhat cumbersome but
straightforward. We comment on the generalizations to these cases below.
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where Green's function for the Laplace equation is

g(|r − r′|) =
1

4π |r − r′|
(3.1)

Note that this integral representation of the solution is consistent with the proper
condition of the potential at large lateral distances. At large lateral distances, we
require the gradient of potential to be vertical, i.e., the undisturbed electric �eld
has only a ẑ component.

The solution without an obstacle V3 is the applied potential, Φapp(r), due to
a constant electric �eld Eapp = 2Φ1ẑ/d = −∇Φapp between the plates, where the
distance between the plates is denoted d = z2 − z1 > 0. This solution is used as a
reference and the explicit solution of this problem is

Φapp(r) = Φ1
(z2 + z1 − 2z)

d
(3.2)

The di�erence in potential between the plates is then 2Φ1.
All surfaces have constant potential, which implies

−
3∑
i=1

∫∫
Si

g(|r − r′|)ν̂(r′)·∇′Φ(r′) dS ′ =

{
Φ′app(r), r in region 1 or 2 or 3

Φ(r), r in region 4
(3.3)

where the potential Φ′app is

Φ′app(r) =


Φ1, r in region 1

−Φ1, r in region 2

Φ′, r in region 3

(3.4)

To prove this, utilize that all integrals containing the normal derivative of Green's
function can be evaluated explicitly for constant potential, i.e., the surface integral
on the surface S3 is∫∫

S3

ν̂(r′) · ∇′g(|r − r′|) dS ′ =

∫∫∫
V3

∇′2g(|r − r′|) dv′ =

{
0, r outside S3

−1, r inside S3

due to the properties of Green's function

∇2g(|r − r′|) = −δ(r − r′)

Similarly, with the unit normal vectors de�ned in Figure 1, we obtain (close the plane
by adding a half-sphere in the upper or lower half-space, and repeat the argument
above) ∫∫

S1

ν̂(r′) · ∇′g(|r − r′|) dS ′ =

{
−1/2, in region 1

1/2, elsewhere∫∫
S2

ν̂(r′) · ∇′g(|r − r′|) dS ′ =

{
−1/2, in region 2

1/2, elsewhere
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These integrals, and the assumption Φ2 = −Φ1, implies (3.3).
The potential Φ′app in (3.3) serves as an e�ective applied potential, and it is

di�erent from Φapp due to recon�guration of the charges on Si, i = 1, 2, due to the
presence of the object bounded by S3.

4 Basis functions and expansions

To proceed, we need appropriate sets of functions that are adopted to the geometry.
We start by de�ning these sets of functions.

4.1 Spherical solutions

We introduce the solutions in spherical coordinates to the Laplace equation
vn(r) =

rlYn(r̂)√
2l + 1

un(r) =
r−l−1Yn(r̂)√

2l + 1

(4.1)

respectively, where n = {σ,m, l} is a multi-index, σ = e, o (even or odd in the
azimuthal angle φ),m = 0, 1, . . . , l−1, l, and l = 0, 1, 2, . . .. The spherical harmonics,
Yn(r̂) = Yσml(θ, φ), are de�ned by [3]

Yσml(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
The Neumann factor is de�ned as

εm = 2− δm,0, i.e., εm =

{
ε0 = 1

εm = 2, m > 0

Notice that the spherical solutions are not dimensionless,2 and that the solutions vn
are regular, and un are irregular (singular) at the origin, respectively.

The spherical harmonics are orthonormal on the unit sphere Ω, i.e.,∫∫
Ω

Yn(r̂)Yn′(r̂) dΩ = δnn′ = δσσ′δmm′δll′

Orthogonality of the spherical harmonics and the use of the divergence theorem

2It is a matter of taste if these functions are scaled with the radius of the circumscribing sphere
a so that they are dimensionless, or not. The �nal result does not depend on this scaling.
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imply that regular and irregular solutions satisfy

∫∫
S

(
vn
∂vn′

∂ν
− ∂vn

∂ν
vn′

)
dS = 0

∫∫
S

(
un
∂un′

∂ν
− ∂un

∂ν
un′

)
dS = 0

∫∫
S

(
un
∂vn′

∂ν
− ∂un

∂ν
vn′

)
dS = δnn′

(4.2)

for any bounded surface S that encloses the origin.

4.2 Planar solutions

Similarly, we introduce solutions to the Laplace equation related to the Fourier
transform. We call this type of solution planar solutions of the Laplace equation,
and we de�ne them as

ϕ±(kt; r) = eikt·ρ∓ktz (4.3)

where we introduced the notion ρ = x̂x + ŷy and kt = x̂kx + ŷky. The modulus
of the two-dimensional vector kt is denoted kt = |kt| = (k2

x + k2
y)

1/2 ≥ 0. The
decreasing exponential behavior in ϕ± implies that the upper (lower) sign is natural
for expanding the potential in the upper (lower) half-space (z ≷ 0).

Due to the completeness of the Fourier transform, the orthogonality conditions
on the plane surfaces are (i = 1, 2)

∫∫
z=zi

ϕ±(kt; r)ϕ∗∓(k′t; r) dS = 4π2δ(kt − k′t)∫∫
z=zi

ϕ±(kt; r)ϕ∗±(k′t; r) dS = 4π2δ(kt − k′t)e∓2ktzi

∫∫
z=zi

ϕ±(kt; r)ϕ±(k′t; r) dS = 4π2δ(kt + k′t)e
∓2ktzi

(4.4)

where a star denotes complex conjugate.

4.3 Green's function expansions

We need two di�erent expansions of the Green function in (3.1) � one employing
the spherical solutions and one the planar solutions.

Green's function has an expansion the spherical solutions vn and un [13]

g(|r − r′|) =
∑
σ,m,l

1

2l + 1

rl<
rl+1
>

Yσml(θ, φ)Yσml(θ
′, φ′) =

∑
n

vn(r<)un(r>) (4.5)
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where r> (r<) denotes the argument having the largest (smallest) modulus of r and
r′.

Moreover, Green's function has expansions in the planar solutions ϕ±, see [22, p.
1256], [3] and (A.1)

g(|r − r′|) =
1

8π2

∫∫
R2

ϕ±(kt; r)ϕ∗∓(kt; r
′)

dkx dky
kt

=
1

8π2

∫∫
R2

ϕ∗±(kt; r)ϕ∓(kt; r
′)

dkx dky
kt

, z ≷ z′
(4.6)

where the sign in the planar solutions depends on whether z > z′ or z < z′.

4.4 Transformation between solutions

To connect the two di�erent types of solutions, spherical and planar solutions in
Sections 4.2 and 4.3, we need the transformation properties between the two sets of
functions.

In this paper we need to express the irregular spherical expansion function un
in terms of the planar solutions ϕ±. This transformation is not so well know or
well used, and to remedy that and to help the reader, two di�erent derivations are
provided in Appendix A. The transformation between the irregular spherical and
planar solutions is, see (A.7)

un(r) =


1

8π2

∫∫
R2

Bn(kt)ϕ+(kt; r)
dkx dky
kt

, z > 0

Πn

8π2

∫∫
R2

Bn(kt)ϕ−(kt; r)
dkx dky
kt

, z < 0

(4.7)

where the transformation function Bn(kt) and the parity factor Πn are de�ned as

Bn(kt) = i−m

√
4πεm

(l +m)!(l −m)!
klt

{
cosmβ
sinmβ

}
, Πn = (−1)l+m (4.8)

For future reference, the lowest order contributions in powers of kt are
Be00(kt) =

√
4π

Be01(kt) =
√

4πkt

Bσ11(kt) = −i
√

4πkt

{
cos β
sin β

}
= −i

√
4π

{
kx
ky

} (4.9)

5 The Null �eld method

We now have all the mathematical tools to represent the solution and to �nd ex-
plicitly the solution of the problem in (2.1).
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The applied potential Φ′app in (3.4) is given (the constant Φ′ is at the moment
unknown) and we assume that it has an expansions in regions 1�3, viz.,

Φ′app(r) =



1

8π2

∫∫
R2

a−(kt)ϕ−(kt; r)
dkx dky
kt

, r in region 1

1

8π2

∫∫
R2

a+(kt)ϕ+(kt; r)
dkx dky
kt

, r in region 2

∑
n

anvn(r), r in region 3

(5.1)

The explicit expansion coe�cients are easily derived from (3.4) and the de�nitions
of the spherical and planar solutions. The result is

a−(kt) = 8π2Φ1kte
−ktzδ(kt) = 8π2Φ1ktδ(kt)

a+(kt) = −8π2Φ1kte
ktzδ(kt) = −8π2Φ1ktδ(kt) = −a−(kt)

an = Φ′
√

4πδσ,eδm,0δl,0

(5.2)

Here, the expansion coe�cients a±(kt) are known, but an is unknown, since it
contains the unknown potential Φ′.

5.1 Elimination of the surface �elds

To obtain the solution of the potential problem, we have to eliminate the unknown
surface �elds in the integrals in (3.3). The appropriate equations to do this are
derived in this section.

The position vector r can take four di�erent principle positions. In three of them
we employ the extinction part of the integral representation, and these relations we
use to �nd di�erent relations between the unknown surface �elds on S3, and on Si,
i = 1, 2. The fourth region, region 4, is used to �nd an expression of the induced
�eld.

To make the derivation transparent, we divide this part of the analysis in four
subsections, restricting the position vector to a speci�c region in each of these sub-
sections.

5.1.1 Relation from region 1

First, we let the position vector r take any position below the lower surface S1 and
at the same time outside the circumscribing sphere of S3. In all integrals we then
have speci�c relation between the position vector r and the integration variable r′,
i.e., on S1 and on S2 we have the relation z < z′, and on S3 we have r > r′. This
means that the same expansion of the Green function in (4.5) and (4.6) can be used
in each of the surface integrals.
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From (3.3), we obtain

− 1

8π2

∫∫
R2

ϕ−(kt; r)

∫∫
S1

ϕ∗+(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

− 1

8π2

∫∫
R2

ϕ−(kt; r)

∫∫
S2

ϕ∗+(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

−
∑
n

un(r)

∫∫
S3

vn(r′)ν̂(r′) · ∇′Φ(r′) dS ′ = Φ1

or using the transformation in (4.7)

− 1

8π2

∫∫
R2

ϕ−(kt; r)

∫∫
S1

ϕ∗+(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

− 1

8π2

∫∫
R2

ϕ−(kt; r)

∫∫
S2

ϕ∗+(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

− 1

8π2

∫∫
R2

ϕ−(kt; r)
∑
n

ΠnBn(kt)

∫∫
S3

vn(r′)ν̂(r′) · ∇′Φ(r′) dS ′
dkx dky
kt

= Φ1

A comparison with the expansion of the potential in (5.1) gives an identity that the
coe�cient a−(kt) has to satisfy, i.e.,

a−(kt) =−
∫∫
S1

ϕ∗+(kt; r)ν̂(r) · ∇Φ(r) dS −
∫∫
S2

ϕ∗+(kt; r)ν̂(r) · ∇Φ(r) dS

−
∑
n

ΠnBn(kt)

∫∫
S3

vn(r)ν̂(r) · ∇Φ(r) dS

This is the �rst relation linking the known expansion coe�cients a−(kt) to the three
unknown surface �elds in the integrands.

5.1.2 Relation from region 2

Now, we let the position vector r take any position above the upper surface S2 and
at the same time outside the circumscribing sphere of S3. Similar to the analysis in
Section 5.1.1, we get using (3.3), (4.5), and (4.6).

a+(kt) =−
∫∫
S1

ϕ∗−(kt; r)ν̂(r) · ∇Φ(r) dS −
∫∫
S2

ϕ∗−(kt; r)ν̂(r) · ∇Φ(r) dS

−
∑
n

Bn(kt)

∫∫
S3

vn(r)ν̂(r) · ∇Φ(r) dS

This is the second relation linking the known expansion coe�cients a+(kt) to the
three unknown surface �elds in the integrands.
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5.1.3 Relation from region 3

Let the position vector r now take any position inside the inscribing sphere of S3.
This position implies that r < r′ on all surfaces S1, S2, and S3. From (3.3), we
obtain

−
∑
n

vn(r)
3∑
i=1

∫∫
Si

un(r′)ν̂(r′) · ∇′Φ(r′) dS ′ = Φ′

A comparison with the expansion of the potential in (5.1) gives an identity that the
coe�cients an have to satisfy, i.e.,

an = −
3∑
i=1

∫∫
Si

un(r′)ν̂(r′) · ∇′Φ(r′) dS ′

Once again, utilize the transformation in (4.7), and we obtain (here we make use of
the fact that z1 < 0 and z2 > 0)

an =−
∫∫
S3

un(r)ν̂(r) · ∇Φ(r) dS

− 1

8π2

∫∫
R2

ΠnBn(kt)

∫∫
S1

ϕ−(kt; r)ν̂(r) · ∇Φ(r) dS
dkx dky
kt

− 1

8π2

∫∫
R2

Bn(kt)

∫∫
S2

ϕ+(kt; r)ν̂(r) · ∇Φ(r) dS
dkx dky
kt

This is the third and last relation linking the known expansion coe�cients an to
the three unknown surface �elds in the integrands. Before we proceed to extracting
the pertinent relations from the last region, region 4, we collect the results from the
region 1�3.

a−(kt) = −
∫∫
S1

ϕ∗+(kt; r)ν̂(r) · ∇Φ(r) dS −
∫∫
S2

ϕ∗+(kt; r)ν̂(r) · ∇Φ(r) dS

−
∑
n

ΠnBn(kt)

∫∫
S3

vn(r)ν̂(r) · ∇Φ(r) dS

a+(kt) = −
∫∫
S1

ϕ∗−(kt; r)ν̂(r) · ∇Φ(r) dS −
∫∫
S2

ϕ∗−(kt; r)ν̂(r) · ∇Φ(r) dS

−
∑
n

Bn(kt)

∫∫
S3

vn(r)ν̂(r) · ∇Φ(r) dS

an = −
∫∫
S3

un(r)ν̂(r) · ∇Φ(r) dS

− 1

8π2

∫∫
R2

ΠnBn(kt)

∫∫
S1

ϕ−(kt; r)ν̂(r) · ∇Φ(r) dS
dkx dky
kt

− 1

8π2

∫∫
R2

Bn(kt)

∫∫
S2

ϕ+(kt; r)ν̂(r) · ∇Φ(r) dS
dkx dky
kt

(5.3)
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These relations contain the three unknown surface �elds, and in Section 5.2 these
relations are exploited to �nd the unknowns.

5.1.4 Relation from region 4

The �nal choice of location of the position vector r is in region 4. More precisely, let
r be located outside the circumscribing sphere of S3 and between the plane surfaces
S1 and S2. From (3.3), (4.5), and (4.6), we obtain

− 1

8π2

∫∫
R2

ϕ+(kt; r)

∫∫
S1

ϕ∗−(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

− 1

8π2

∫∫
R2

ϕ−(kt; r)

∫∫
S2

ϕ∗+(kt; r
′)ν̂(r′) · ∇′Φ(r′) dS ′

dkx dky
kt

−
∑
n

un(r)

∫∫
S3

vn(r′)ν̂(r′) · ∇′Φ(r′) dS ′ = Φ(r)

This relation gives the desired potential Φ(r) in the capacitor provided the surface
�eld are known. Rewrite the expression as

Φ(r) =
∑
n

fnun(r) +
1

8π2

∫∫
R2

(f+(kt)ϕ+(kt; r) + f−(kt)ϕ−(kt; r))
dkx dky
kt

(5.4)

where 

fn = −
∫∫
S3

vn(r)ν̂(r) · ∇Φ(r) dS

f+(kt) = −
∫∫
S1

ϕ∗−(kt; r)ν̂(r) · ∇Φ(r) dS

f−(kt) = −
∫∫
S2

ϕ∗+(kt; r)ν̂(r) · ∇Φ(r) dS

(5.5)

5.2 Expansion of the surface �elds

In this section, we determine the unknown surface �elds in terms of the known ex-
pansion functions of the exciting �eld, a±(kt) and an (partly unknown still). One
way to proceed is to expand the unknown surface �eld ∂νΦ on the surfaces in reg-
ular spherical and in planar solutions. We assume the following expansions of the
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unknown surface �elds:

−ν̂(r) · ∇Φ(r) =



1

4π2

∫∫
R2

α−(kt)ϕ−(kt; r) dkx dky, r ∈ S1

1

4π2

∫∫
R2

α+(kt)ϕ+(kt; r) dkx dky, r ∈ S2

∑
n

αnψn(r), r ∈ S3

(5.6)

This is an expansion of the unknown surface �eld on the two in�nite, planar surfaces,
S1 and S2, in a Fourier transform expansion. For convenience, we choose ϕ−(kt; r)
on S1 and ϕ+(kt; r) on S2, but the opposite choice is also possible � it leads only to
minor changes in the expressions below. The set of expansion functions {ψn} is any
complete set of expansion functions on the surface S3, where the index n belongs
to an appropriate index set. The only additional condition we require is that the
functions are consistent with (2.2), i.e.,∫∫

S3

ψn(r) dS = 0, for all n (5.7)

An example of such a system is {ν̂(r) · ∇vn(r)}.
To make notation more easy, we introduce the two Q-matrices of the body

Q′nn′ =

∫∫
S3

un(r)ψn′(r) dS, Qnn′ =

∫∫
S3

vn(r)ψn′(r) dS (5.8)

In particular, for the system {ν̂(r) · ∇vn(r)} the matrices are

Q′nn′ =

∫∫
S3

un(r)ν̂ · ∇vn′(r) dS, Qnn′ =

∫∫
S3

vn(r)ν̂ · ∇vn′(r) dS

A more symmetric form of the matrices with this set of basis functions is

Q′nn′ =
δnn′

2
+

∫∫
S3

ν̂ · ∇ (unvn′) dS, Qnn′ =

∫∫
S3

ν̂ · ∇ (vnvn′) dS

These expressions are obtained by an application of the divergence theorem, i.e.,∫∫
S

un
∂vn′

∂ν
− ∂un

∂ν
vn′ dS = δnn′ ,

∫∫
S

vn
∂vn′

∂ν
− ∂vn

∂ν
vn′ dS = 0

and the fact that ∫∫
S

un
∂vn′

∂ν
+
∂un
∂ν

vn′ dS =

∫∫
S

∂ (unvn′)

∂ν
dS
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and ∫∫
S

vn
∂vn′

∂ν
+
∂vn
∂ν

vn′ dS =

∫∫
S

∂ (vnvn′)

∂ν
dS

Note that, due to (5.7) (ve00 is a constant function)

Qe00n′ = 0, for all n′ (5.9)

Insert the expansions in (5.6) into (5.3) use (4.4) to obtain
a−(kt) = α−(kt) + α+(kt)e

−2ktz2 +
∑
n,n′

ΠnBn(kt)Qnn′αn′

a+(kt) = α−(kt)e
2ktz1 + α+(kt) +

∑
nn′

Bn(kt)Qnn′αn′
(5.10)

and

an =
∑
n′

Q′nn′αn′ +
1

8π2

∫∫
R2

Bn(kt)
(
Πnα−(−kt)e2ktz1 + α+(−kt)e−2ktz2

) dkx dky
kt

(5.11)
In a similar manner, we obtain from (5.5)

fn =
∑
n′

Qnn′αn′

f+(kt) = α−(kt)e
2ktz1

f−(kt) = α+(kt)e
−2ktz2

(5.12)

We see that once the expansion coe�cients α±(kt) and αn are known, we can de-
termine the �eld in region 4. How to �nd the expansion coe�cients a±(kt) and αn
in terms of known quantities is the task of the next section.

5.3 Solution of the potential problem

The unknown coe�cients, α±(kt) and αn, are now eliminated. This process starts
with the elimination of αn. Solve for αn in (5.11). We get

αn =
∑
n′

Q′
−1
nn′ (an′ − cn′/C1) (5.13)

where we have adopted the notion (notice that we have made a change of variables
kt → −kt in the Fourier integral)

cn =
C1

8π2

∫∫
R2

Bn(−kt)
(
Πnα−(kt)e

2ktz1 + α+(kt)e
−2ktz2

) dkx dky
kt

(5.14)

and C1 a the normalization constant, which, for reasons of simpli�cations in the
expressions below, is

C1 = −
√

4πd

2Φ1

(5.15)
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From (5.10), solving for α±(kt), we then get using (5.13)
α+(kt) = −a−(kt)e

2ktz1 − a+(kt) + A(kt)

1− e−2ktd

α−(kt) = −a+(kt)e
−2ktz2 − a−(kt) + A′(kt)

1− e−2ktd

(5.16)

where 
A(kt) =

∑
nn′

(
1− Πne2ktz1

)
Bn(kt)Tnn′ (cn′/C1 − an′)

A′(kt) =
∑
n,n′

(
Πn − e−2ktz2

)
Bn(kt)Tnn′ (cn′/C1 − an′)

and where the T -matrix, the transition matrix, of the body is de�ned [32], see (5.8)

Tnn′ = −
∑
n′′

Qnn′′(Q
′)−1
n′′n′ (5.17)

The matrix Tnn′ is symmetric for a perfectly conducting body bounded by S3.
This symmetry is proved in Appendix D. Moreover, the transition matrix charac-
terizes the object bounded by S3 completely.

The derivation so far has been under the assumption that the obstacle is a
perfectly conducting object. We see that the only way the obstacle enters in the for-
mulation is through its transition matrix Tnn′ . Any other object, such as a dielectric
body, homogeneous or not, or several objects, enters via its transition matrix just
as in the perfectly conducting case. The derivation, however, is much more complex
in the general case.

Due to (5.9), the �rst row and column in the transition matrix, corresponding
to l = 0, vanish, i.e.,

Te00n = Tne00 = 0, for all n (5.18)

where we also used the symmetry of the transition matrix. Due to (5.2), this prop-
erty implies that

∑
n′ Tnn′an′ = Φ′

√
4πTne00 = 0, and, therefore, it simpli�es the

functions A(kt) and A
′(kt) de�ned above. We have

A(kt) =
1

C1

∑
n,n′

(
1− Πne2ktz1

)
Bn(kt)Tnn′cn′

A′(kt) =
1

C1

∑
n,n′

(
Πn − e−2ktz2

)
Bn(kt)Tnn′cn′

(5.19)

and also

fn =
∑
n′

Qnn′αn′ =
2Φ1√
4πd

∑
n′

Tnn′cn′ (5.20)

The functions α±(kt) in (5.16) look singular at kt = 0 due to the form of the
denominator on the right-hand side. A more detailed analysis shows that this is
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not the case. In fact, the lowest order contributions in A(kt) and A
′(kt) in kt are,

see (4.9) 
A(kt) =

2
√

4πkt
C1

∑
n

Te01ncn +O(k2
t )

A′(kt) = −2
√

4πkt
C1

∑
n

Te01ncn +O(k2
t )

(5.21)

since Te00n = 0, for all n. The functions α±(kt) in (5.16) then become (use (5.2))
α+(kt) = −8π2Φ1

d
δ(kt) (1 +O(kt))−

A(kt)

1− e−2ktd

α−(kt) =
8π2Φ1

d
δ(kt) (1 +O(kt))−

A′(kt)

1− e−2ktd

(5.22)

Notice from (5.21) that there is no algebraic singularity in α±(kt) at kt = 0 (not
counting the delta function).

To summarize the situation right now, we see that the only unknown in α±(kt),
and therefore f±(kt) and fn, right now is the array cn. Once this quantity is deter-
mined, the entire solution is obtained.

The �nal step in the solution, is to �nd the array cn. This array is determined by
a matrix equation, and the solution has a physical interpretation in terms of mirror
image contributions. The matrix equation in cn is obtained by inserting (5.22)
in (5.14). We get

cn = dn +
∑
n′

Ann′cn′ (5.23)

where
dn =

Φ1C1

d

∫∫
R2

Bn(−kt)δ(kt) (Πn − 1)
dkx dky
kt∑

n′

Ann′cn′ = − C1

8π2

∫∫
R2

Bn(−kt)
ΠnA

′(kt)e
2ktz1 + A(kt)e

−2ktz2

1− e−2ktd

dkx dky
kt

or using (5.15) and (5.19)

dn = −2Φ1C1

d

√
4πδn,e01 = 4πδn,e01

Ann′ = − 1

8π2

∑
n′′

∫∫
R2

Bn(−kt)Bn′′(kt)

× e−2ktz2 + ΠnΠn′′e
2ktz1 − (Πn′′ + Πn)e−2ktd

1− e−2ktd

dkx dky
kt

Tn′′n′

(5.24)

The form of the matrix Ann′ is, see Appendix C

Ann′ = −
∑
n′′

Mnn′′Tn′′n′ = −
∑
n′′

Pnn′′Tn′′n′

dl+l′′+1
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where

Mnn′ =Nnn′
(l + l′)!

(2d)l+l′+1

(
ζ(l + l′ + 1, z2/d) + (−1)l+l

′
ζ(l + l′ + 1, 1− z2/d)

− (−1)m((−1)l
′
+ (−1)l)ζ(l + l′ + 1, 1)

)
where ζ(z, α) is the generalized Riemann zeta function [21, p. 22]

ζ(z, α) =
∞∑
n=0

(n+ α)−z , α 6= 0,−1,−2, . . .

and

Nnn′ =
δm,m′δσ,σ′√

(l +m)!(l −m)!(l′ +m)!(l′ −m)!

and where the matrix Pnn′ is independent of the distance d, and given by

Pnn′ =Nnn′
(l + l′)!

2l+l′+1

(
ζ(l + l′ + 1, z2/d) + (−1)l+l

′
ζ(l + l′ + 1, 1− z2/d)

− (−1)m((−1)l
′
+ (−1)l)ζ(l + l′ + 1, 1)

)
Especially, for z2/d = 1/2, we get

Pnn′ = Nnn′
(l + l′)!

2l+l′+1
ζ(l + l′ + 1, 1)

(
1 + (−1)l+l

′
)(

2l+l
′+1 − 1− (−1)l+m

)
(5.25)

where ζ(z) = ζ(z, 1) is the Riemann zeta function.

ζ(z) =
∞∑
n=1

1

nz

We see that only l + l′ even integer gives a non-zero Pnn′ .
Note that every quantity in the system (5.23) is known for a given object char-

acterized by its transition matrix Tnn. We solve this system for cn. Formally, we
write

cn =
∑
n′

(I − A)−1
nn′ dn′

We then have solved for all unknowns. The array cn determines the expansion
coe�cients α±(kt) by (5.19) and (5.16), which then give f±(kt) and fn by the use
of (5.12) and (5.20). Speci�cally, the potential outside the circumscribing sphere
of S3 and between the plane surfaces S1 and S2, region 4, can be written in terms
of known quantities, and the problem of this paper is solved. The result is, see
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Equations (5.4), (5.12), (5.16), (5.17), (5.19), and (5.20)

Φ(r) =
1

C1

∑
nn′

un(r)Tnn′cn′

− 1

8π2

∫∫
R2

a+(kt)e
−2ktd − a−(kt)e

2ktz1

1− e−2ktd
ϕ+(kt; r)

dkx dky
kt

− 1

8π2

∫∫
R2

a−(kt)e
−2ktd − a+(kt)e

−2ktz2

1− e−2ktd
ϕ−(kt; r)

dkx dky
kt

− 1

8π2C1

∑
n,n′

∫∫
R2

(
Πn − e−2ktz2

)
Bn(kt)e

2ktz1

1− e−2ktd
ϕ+(kt; r)

dkx dky
kt

Tnn′cn′

− 1

8π2C1

∑
n,n′

∫∫
R2

(
1− Πne2ktz1

)
Bn(kt)e

−2ktz2

1− e−2ktd
ϕ−(kt; r)

dkx dky
kt

Tnn′cn′

The speci�c values of a±(kt) in (5.2) and the value of C1 in (5.15) imply

Φ(r) = − 2Φ1√
4πd

∑
nn′

un(r)Tnn′cn′ + Φapp(r)

+
2Φ1√
4πd

1

8π2

∑
n,n′

∫∫
R2

(
Πn − e−2ktz2

)
Bn(kt)e

2ktz1

1− e−2ktd
ϕ+(kt; r)

dkx dky
kt

Tnn′cn′

+
2Φ1√
4πd

1

8π2

∑
n,n′

∫∫
R2

(
1− Πne2ktz1

)
Bn(kt)e

−2ktz2

1− e−2ktd
ϕ−(kt; r)

dkx dky
kt

Tnn′cn′

where Φapp(r) = Φ1(z2 + z1 − 2z)/d is given by (3.2).
We have a particular interest in the normal component of the electric �elds on

the plane surfaces S1 and S2, which determine the surface charge densities on these
plates. To this end, we compute the surface �eld ∂νΦ on the surface S1 and S2.
From (5.6) and (5.22), we get on S1

−ν̂(r) · ∇Φ(r) =
1

4π2

∫∫
R2

α−(kt)ϕ−(kt; r) dkx dky

=
2Φ1

d
− 1

4π2

∫∫
R2

A′(kt)

1− e−2ktd
eikt·ρektz1 dkx dky, r ∈ S1

(5.26)

and on S2, we have

−ν̂(r) · ∇Φ(r) =
1

4π2

∫∫
R2

α+(kt)ϕ+(kt; r) dkx dky

= −2Φ1

d
− 1

4π2

∫∫
R2

A(kt)

1− e−2ktd
eikt·ρe−ktz2 dkx dky, r ∈ S2
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6 Evaluation of change in capacitance

The physical quantity of interest is the change in charge on the plane surfaces due
to the introduction of the object bounded by S3 inside the plates. The planes �
equally but opposite charged � and the body carries no net charge. The change in
charge ∆Q on S1 is

∆Q = −ε0
∫∫
S1

∇ (Φ(r)− Φapp(r)) · ν̂(r) dS

where Φapp(r) is the potential without any object between the plates. The poten-
tial Φ(r) is the potential with the object � the potential we have solved above.
Employing (3.2), we get

−ẑ · ∇Φapp(z = z1) = − ∂

∂z

Φ1(z2 + z1 − 2z)

d
=

2Φ1

d

The use of (5.26) and (5.21) implies

∆Q = − ε0
4π2

∫∫
S1

∫∫
R2

A′(kt)

1− e−2ktd
eikt·ρektz1 dkx dky dS

= −ε0
∫∫
R2

A′(kt)

1− e−2ktd
δ(kt)e

ktz1 dkx dky = −2Φ1ε0
d2

∑
n

Te01ncn

Similarly, the change in charge ∆Q′ on S2 is

∆Q′ = −ε0
∫∫
S2

∇ (Φ(r)− Φapp(r)) · ν̂(r) dS

= −ε0
∫∫
R2

A(kt)

1− e−2ktd
δ(kt)e

−ktz2 dkx dky =
2Φ1ε0
d2

∑
n

Te01ncn

which is equal to and of opposite sign to the change in charge on the lower surface.
The change in capacitance, ∆C, then is

∆C =
∆Q

2Φ1

= − ε0
d2

∑
n

Te01ncn (6.1)

where we have explicitly used the value of the normalization constant C1 in (5.15).
The coe�cients cn are the solution of (5.23)

cn = dn +
∑
n′

Ann′cn′ = dn −
∑
n′n′′

Pnn′′Tn′′n′

dl+l′′+1
cn′

where the matrices Ann′ and Pnn′ and the array dn are given in Section 5.3.
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This is the general solution to the problem and the change in capacitance due
to the presence of the object S3 inside the parallel plates. We are now ready to
summarize the problem. From (6.1) we get

∆Cd2

ε0
= c̃e01 (6.2)

where
c̃e01 = −

∑
n

Te01ncn (6.3)

and the array c̃n de�ned as

c̃n = −
∑
n′

Tnn′cn′

is the solution to

c̃n = −4πTn,e01 −
∑
n′n′′

Tnn′Pn′n′′

dl′+l′′+1
c̃n′′ (6.4)

which is obtained by a matrix multiplication of −T in (5.23).

7 Induced �eld and polarizability dyadic in the ab-

sence of plates

In Section 6 the change in capacitance, ∆C, due to the presence of the object
bounded by S3 was obtained. We now address the question of how this change is
related to the electric polarizability dyadic γe.

In this section, we show that the magnitude of the entries of the electric polariz-
ability dyadic is related to the entries of the transition matrix. To see this, assume
once more that the object bounded by S3 is a perfectly conducting object. We ana-
lyze the problem with the plates separated by a �nite distance d, and let eventually
the plates separate to in�nity, d→∞, and at the same time let the exiting potential
increase, i.e., Φ1 = Φ0d, where Φ0 is a constant potential.

The electric dipole moment p of the object is expressed as an integral of the �rst
moment of the normal derivative of the potential over the bounding surface S3:

p = −ε0
∫∫
S3

r
∂Φ(r)

∂ν
dS

provided the sources are located at in�nity, which corresponds to the case d → ∞.
Insert the surface expansion (5.6), and the electric dipole moment becomes

p = ε0
∑
n

αn

∫∫
S3

rψn(r) dS
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The position vector r can be expressed in terms of the spherical solutions, vn, for
l = 1, cf., the de�nition of vn in (4.1)

x =
√

4πve11(r)

y =
√

4πvo11(r)

z =
√

4πve01(r)

The de�nition of the Q matrix, see (5.8), then implies that the component of the
electric dipole moment has the form

px =
√

4πε0
∑
n

Qe11nαn

py =
√

4πε0
∑
n

Qo11nαn

pz =
√

4πε0
∑
n

Qe01nαn

From (5.20), (5.17), and (6.3) we have in terms of the T -matrix

px =

√
4πε0
C1

∑
n

Te11ncn = −2Φ1ε0
d

∑
n

Te11ncn

py =

√
4πε0
C1

∑
n

To11ncn = −2Φ1ε0
d

∑
n

T011ncn

pz =

√
4πε0
C1

∑
n

Te01ncn = −2Φ1ε0
d

∑
n,n′

Te01n (I − A)−1
nn′ dn′

(7.1)

We let the plates separate, d → ∞, and at the same time let Φ1 = Φ0d. As
Ann′ → 0 as d → ∞, the vertical electric dipole moment, pz, in the limit d → ∞
then becomes

pz = −2Φ1ε0
d

Te01e014π = −2Φ0ε0Te01e014π

The de�nition of the electric polarizability dyadic, γe, in terms of the electric
dipole moment, p, and the exciting electric �eld, E0, is

p = ε0γe ·E0

where the exciting �eldE0 = −∇Φ0(z2+z1−2z) = 2Φ0ẑ. The vertical polarizability
dyadic entry, γzz, then becomes

γzz =
pz

2Φ0ε0
= −4πTe01e01 (7.2)

8 Numerical simulations

In this section, we illustrate the analysis developed in this paper with some numer-
ical computations of the capacitance change, ∆C, due to a perfectly conducting
object inside the plates. We specialize to an axially symmetric body, and we choose
spheroids and cylinders as test objects. The sphere, of course, being the most simple
object, is a special case of the spheroidal geometry.
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8.1 Perfectly conducting axially symmetric body

To calculate the capacitance change, the transition matrix, Tnn′ , of the body has to
be available.

The �rst step in the computations of the transition matrix is to calculate the
Q-matrices of the body. Adopting the system ψn(r) = ν̂(r) · ∇vn(r), we get from
the de�nition of the Q-matrices in (5.8)

Q′nn′ =

∫∫
S3

un(r)
∂vn′(r)

∂ν
dS, Qnn′ =

∫∫
S3

vn(r)
∂vn′(r)

∂ν
dS

We assume the perfectly conducting body has axial symmetry, and that the
surface can be parameterized by r = r(θ) > 0, for all θ ∈ [0, π]. We then have

dS =

√
1 +

(
r′

r

)2

r2 sin θ dθ dφ,

√
1 +

(
r′

r

)2
∂

∂ν
=

∂

∂r
− r′

r2

∂

∂θ

and the matrix Q′ becomes (only l-index is appropriate, no coupling in m or σ)

Q′
m
ll′ = Ñnn′

∫ π

0

r−l−1Pm
l (cos θ)

{(
∂

∂r
− r′

r2

∂

∂θ

)
rl
′
Pm
l′ (cos θ)

}
r2 sin θ dθ

where r is set to r(θ) after the partial derivatives are taken, and where the normal-
ization constant is

Ñnn′ =
δσσ′δmm′

2

√
(l −m)!

(l +m)!

(l′ −m)!

(l′ +m)!

Similarly, the Q matrix is

Qm
ll′ = Ñnn′

∫ π

0

rlPm
l (cos θ)

{(
∂

∂r
− r′

r2

∂

∂θ

)
rl
′
Pm
l′ (cos θ)

}
r2 sin θ dθ

The explicit form is

Q′
m
ll′ = Ñnn′l

′
∫ π

0

rl
′−l(θ)Pm

l (cos θ)Pm
l′ (cos θ) sin θ dθ

− Ñnn′

∫ π

0

rl
′−l−1(θ)r′(θ)Pm

l (cos θ)
∂

∂θ
Pm
l′ (cos θ) sin θ dθ

(8.1)

and

Qm
ll′ = Ñnn′l

′
∫ π

0

rl+l
′+1(θ)Pm

l (cos θ)Pm
l′ (cos θ) sin θ dθ

− Ñnn′

∫ π

0

rl+l
′
(θ)r′(θ)Pm

l (cos θ)
∂

∂θ
Pm
l′ (cos θ) sin θ dθ

(8.2)

The kind of bodies that we are going to analyze has mirror symmetry in the x-y
plane, i.e., r(θ) = r(π − θ), then

Q′
m
ll′ = 0, Qm

ll′ = 0, l + l′ odd



22

a

b

z

Figure 2: The geometry of the spheroid with half axes a and b, respectively.

Due to the properties of the Q matrices for an axially symmetric body, the T -
matrix in (5.17) is diagonal in the m and the σ-indices. Therefore, since the dn
array has only one non-zero element (l = 1, m = 0, σ = e), only the indices m = 0
and σ = e enter into the calculation. Moreover, the mirror symmetry in the x-y
plane, Pnn′ = 0, if l+ l′ odd, see (5.25), and the speci�c value of dn, imply that only
odd l-values have to be considered. For this reason, the capacitance change in (6.2)
reads (only the index l is pertinent here)

∆Cd2

ε0
= c̃1 (8.3)

where and the array c̃l is the solution to

c̃l = −4πTl,1 −
∑
l′l′′
odd

Tll′Pl′l′′

dl′+l′′+1
c̃l′′

and, see (5.25) (l and l′ odd)

Pll′ =
2(l + l′)!ζ(l + l′ + 1)

l!l′!

8.1.1 Spheroidal geometry

An interesting and important test object is the spheroidal geometry, see Figure 2.
The Q-matrices of the spheroidal geometry is analyzed in Appendix E.1, and the
explicit matrix entries are given by (E.1) and (E.2). The change in capacitance
∆Cd2/ε0 in (8.3) (scaled by the volume of the circumscribing sphere) for a set of
spheroids is depicted in Figure 3.
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Figure 3: The capacitance changed in (8.3) (scaled by the volume of the circum-
scribing sphere) of a perfectly conducting spheroid as a function of the ratio a/d.
The curves have ratios b/a = 0.1, 0.5, 1, 2, depicted as black, red, blue, and green
curves, respectively.

The exact value of the polarizability γzz is [14]

γzz =
4πab2

3L3

where the depolarization factor L3 is

L3 =


1− e2

2e3

(
ln

1 + e

1− e
− 2e

)
(prolate)

1

e2

(
1−
√

1− e2

e
arcsin e

)
(oblate)

(8.4)

and the eccentricity e =
√

1− ξ2, where ξ = min{a/b, b/a} ∈ [0, 1] is the ratio
between the minor and the major semi-axes of the spheroid. For the sphere, e = 0,
we get L3 = 1/3, and γzz = 4πa3.

The lowest order approximation (terms up to l = 1) gives an approximate value
of the capacitance change in (8.3), which, using the exact value of T11 from (E.3), is

∆C(d)d2

ε0
=

4πab2

3L3 − 4ζ(3)ab2/d3

This is a good approximation of the exact solution shown in Figure 3 for small values
of a/d.

The special case of a = b, the sphere, is particularly important, since the T -
matrix has a closed form for this geometry, i.e.,

Tnn′ = −a2l+1δll′δmm′δσσ′
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Figure 4: The geometry of the cylinder with height 2a and diameter 2b, respectively.

which implies, see (7.2)
γzz = 4πa3

and the approximate value

∆C(d)d2

ε0
=

4πa3

1− 4ζ(3)a3/d3

8.1.2 Cylindrical geometry

The second example of test objects is the cylindrical geometry, see Figure 4. The
Q-matrices of the cylindrical geometry is analyzed in Appendix E.2, and the explicit
matrix entries are given by (E.4) and (E.5). The change in capacitance ∆Cd2/ε0
in (8.3) (scaled by the volume of the circumscribing sphere) for a set of cylinders is
depicted in Figure 5.

8.2 Layered perfectly conducting sphere

We �nish the numerical illustrations with the capacitance change of an object that
is not perfectly conducting, but has an exterior dielectric coating. The transition
matrix for a dielectrically coated perfectly coated sphere is calculated in Appendix F.
Figure 6 shows the e�ects of the thickness of the dielectric coating (outer radius b and
relative permittivity ε = 2.3) on a perfectly conducting sphere of radius a. Notice
that the capacitance change is scaled with the volume of the perfectly conducting
sphere (radius a), and not with the volume of the circumscribing sphere (radius b).
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Figure 5: The capacitance changed in (8.3) (scaled by the volume of the circum-
scribing sphere) of a perfectly conducting cylinder as a function of the ratio a/d.
The curves have ratios b/a = 0.1, 0.5, 1, 2, depicted as black, red, blue, and green
curves, respectively.

9 Conclusions

Recent advances in the characterization of the dynamic performance of a scatterer,
material, or antenna, have proved depend on the static behavior of the object [7�
10, 12, 24�28]. In particular, the polarizability properties are instrumental in this
characterization. To meet this request, we, in this paper, present a method for the
computation of the capacitance change in a parallel capacitor due to the presence
of an arbitrary object of �nite volume. This change in capacitance is related to
the polarizability of the object, and the extraction of the polarizability from the
capacitance change will be addressed in a future paper.

Appendix A Transformation between irregular

spherical and planar solutions

The transformation between the irregular spherical function un(r) and the planar
solutions φ±(kt; r) plays a fundamental role in the construction of the solution of
the problem in this paper. The transformation is basically a Fourier representation
of the function un(r). We suspect that this relation between the two solutions are
not particularly well known, and we, therefore, in this appendix, give two alternative
presentations of the transformation.
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Figure 6: The capacitance changed in (8.3) (scaled with the volume of the PEC
sphere) of a perfectly conducting sphere of radius a coated with a dielectric layer
(outer radius b and relative permittivity ε = 2.3), as a function of the ratio a/d.
The curves have ratios a/b = 0.8, 0.9, 1.0, depicted as green, red, and blue curves,
respectively.

A.1 Transformation, l = 0

We start with the special case of l = 0. The spherical solution for l = 0 is related
to the Green function of the Laplace equation. We have

ue00(r) =

√
1

4π

1

r

The Fourier transform of the Green function is3

g(|r − r′|) =
1

4π |r − r′|
=

1

8π2

∫∫
R2

eikt·(ρ−ρ′)−kt|z−z′|dkx dky
kt

(A.1)

In particular, we have

ue00(r) =
√

4πg(r) =

√
π

4π2

∫∫
R2

eikt·ρ−kt|z|dkx dky
kt

(A.2)

To proceed, we introduce the following notion (ρ = r sin θ):
w = x+ iy = ρ(cosφ+ i sinφ) = ρeiφ

∂

∂w
=

1

2

(
∂

∂x
− i

∂

∂y

) 
w∗ = x− iy = ρe−iφ

∂

∂w∗
=

1

2

(
∂

∂x
+ i

∂

∂y

)
3Most easily obtained by taking the Fourier transform in x and y of

∇2g(|r − r′|) = −δ(r − r′) ⇒ ĝ(kt, z, z
′) =

e−kt|z−z′|

2kt
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and {
k = kx + iky = kt(cos β + i sin β) = kte

iβ

k∗ = kx − iky = kte
−iβ

We write the scalar product as

kt · ρ = kxx+ kyy = Re (k∗w) =
1

2
(k∗w + kw∗)

and from (A.2), we get

1

r
=

1

2π

∫∫
R2

ei 1
2

(k∗w+kw∗)−kt|z|dkx dky
kt

(A.3)

A.2 General transformation, l ≥ 0

With the result of Section A.1, we now address the case of l ≥ 0 by a ladder process.
We aim at evaluating the following identity in two di�erent ways:(

∂

∂x
+ i

∂

∂y

)m
∂l−m

∂zl−m

(
1

r

)
= 2m

∂m

∂w∗m
∂l−m

∂zl−m

(
1

r

)
(A.4)

The �rst way utilizes (A.3). We get for z > 0(
∂

∂x
+ i

∂

∂y

)m
∂l−m

∂zl−m

(
1

r

)
=

1

2π

∫∫
R2

(ikt)
meimβ(−kt)l−meikt·ρ−kt|z|dkx dky

kt

=
(−1)l

2πim

∫∫
R2

klte
imβeikt·ρ−kt|z|dkx dky

kt

(A.5)

The second way of evaluating (A.4) uses the integral representation [21, p. 188]
or [22, p. 1270]

1

rl+1
Pm
l (cos θ)eimφ =

iml!

2π(l −m)!

∫ 2π

0

(X(u))−l−1 eimu du, θ ∈ [0, π/2) (A.6)

where (x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ)

X(u) = z+i(x cosu+y sinu) = r (cos θ + i sin θ cos(u− φ)) = z+
i

2

(
we−iu + w∗eiu

)
For completeness, this integral representation is proved in Appendix B.

We now restrict the variable z to z > 0, i.e., θ ∈ [0, π/2), and evaluate (A.4) a
second way using (A.6) for l = 0. We get(

∂

∂x
+ i

∂

∂y

)m
∂l−m

∂zl−m

(
1

r

)
= 2m

∂m

∂w∗m
∂l−m

∂zl−m
1

2π

∫ 2π

0

(X(u))−1 du

= 2m(−1)l−m(l −m)!
1

2π

∂m

∂w∗m

∫ 2π

0

(X(u))−(l−m+1) du

= (−1)liml!
1

2π

∫ 2π

0

(X(u))−(l+1) eimu du = (−1)l(l −m)!
1

rl+1
Pm
l (cos θ)eimφ
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where we in the last equality have used (A.6) again. Comparing this expression with
the one obtained in (A.5) we obtain

1

rl+1
Pm
l (cos θ)eimφ =

1

2πim(l −m)!

∫∫
R2

klte
imβeikt·ρ−ktz dkx dky

kt

or, see (4.1)

un(r) = i−m
√

εm
16π3(l +m)!(l −m)!

∫∫
R2

klt

{
cosmβ
sinmβ

}
eikt·ρ−ktz dkx dky

kt
, z > 0

We write this transformation as

un(r) =


1

8π2

∫∫
R2

Bn(kt)ϕ+(kt; r)
dkx dky
kt

, z > 0

Πn

8π2

∫∫
R2

Bn(kt)ϕ−(kt; r)
dkx dky
kt

, z < 0

(A.7)

where Bn(kt) = i−m

√
4πεm

(l +m)!(l −m)!
klt

{
cosmβ
sinmβ

}
Πn = (−1)l+m

(A.8)

and (4.3)
ϕ±(kt; r) = eikt·ρ∓ktz

A.3 Alternative derivation

An alternative derivation of the transformation relation between the spherical and
the planar solutions to the Laplace equation is to start from the relation in the
dynamic case (Helmholtz equation), i.e., [3, p. 180] (notice that k is here a real-
valued parameter and should not be confused with k = kx + iky used above)

h
(1)
l (kr)Ylm(r̂) =

i−l

2π

∫∫
R2

Ylm(k̂)eikt·ρ+iz(k2−k2t )1/2 dkx dky
k(k2 − k2

t )
1/2
, z > 0

where the branch of the square root has non-negative imaginary part, k is the wave
number, k = kt + kzẑ, and k̂ = k/k.

Multiply with kl+1 and take the limit as k → 0. The left hand side has the limit

lim
k→0

kl+1h
(1)
l (kr)Ylm(r̂) = −i

(2l)!

2ll!
r−l−1Ylm(r̂)
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The right hand side has the limit

lim
k→0

kl+1 i−l

2π

∫∫
R2

Ylm(k̂)eikt·ρ+iz(k2−k2t )1/2 dkx dky
k(k2 − k2

t )
1/2

=
i−l

2π

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!

∫∫
R2

klt
(2l)!

2ll!(l −m)!
il−m

{
cosmβ
sinmβ

}
eikt·ρ−ktz dkx dky

ikt

=
(2l)!

2ll!

i−m−1

2π

√
εm
2π

√
2l + 1

2(l +m)!(l −m)!

∫∫
R2

klt

{
cosmβ
sinmβ

}
eikt·ρ−ktz dkx dky

kt

since

lim
k→0

klPm
l ((k2 − k2

t )
1/2/k) = lim

k→0
kl
(

1− k2 − k2
t

k2

)m/2
dm

dzm
Pl(z)

∣∣∣∣
z=(k2−k2t )1/2/k

=kmt lim
k→0

kl−m
dm

dzm
Pl(z)

∣∣∣∣
z=(k2−k2t )1/2/k

=kmt
(2l)!

2ll!(l −m)!
(ikt)

l−m

where we used that

Pl(z) =
(2l)!

2l(l!)2
zl + . . . =⇒ dm

dzm
Pl(z) =

(2l)!

2ll!(l −m)!
zl−m + . . .

The transformation then is

un(r) = i−m
√

εm
16π3(l +m)!(l −m)!

∫∫
R2

klt

{
cosmβ
sinmβ

}
eikt·ρ−ktz dkx dky

kt
, z > 0

which is identical to the result in Section A.2.

Appendix B Derivation of Equation (A.6)

In this appendix we give a derivation of

1

rl+1
Pm
l (cos θ)eimφ =

iml!

2π(l −m)!

∫ 2π

0

(X(u))−l−1 eimu du, θ ∈ [0, π/2)

which is used in Section A.2. Here l = 0, 1, 2, . . ., m = −l, . . . ,−1, 0, 1, . . . , l, the
angle θ ∈ [0, π/2), and

X(u) = z + i(x cosu+ y sinu) = r (cos θ + i sin θ cos(u− φ))

and z > 0.
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To prove this, we start with (θ ∈ (0, π/2))∫ 2π

0

(X(u))−l−1 eimu du = r−l−1

∫ 2π

0

(cos θ + i sin θ cos(u− φ))−l−1 eimu du

= r−l−1eimφ

∫ 2π

0

(cos θ + i sin θ cosu)−l−1 eimu du

We introduce a new variable of integration

t = cos θ + ie−iu sin θ ⇒ dt

du
= e−iu sin θ = −i (t− cos θ)

and

t2 − 1 = 2ie−iu sin θ cos θ − sin2 θ
(
1 + e−2iu

)
= 2ie−iu sin θ (cos θ + i sin θ cosu)

This implies that (note the positive orientation of the contour Γ)∫ 2π

0

(X(u))−l−1 eimu du = r−l−1eimφ (2i sin θ)l+1

∫ 2π

0

(
t2 − 1

)−l−1
e−i(l+1−m)u du

= r−l−1eimφ (2i sin θ)l+1

i (i sin θ)l+1−m

∮
Γ

(
t2 − 1

)−l−1
(t− cos θ)l−m dt

= −im+12l+1r−l−1eimφ sinm θ

∮
Γ

(t− cos θ)l−m

(t2 − 1)l+1
dt

The contour Γ is shown in Figure 7, and the contour encloses t = 1 but not t = −1,
since for θ ∈ (0, π/2)

1− cos θ < (1 + cos θ)(1− cos θ) = 1− cos2 θ = sin2 θ < sin θ ⇒ cos θ+ sin θ > 1

and, similarly
1 + cos θ > 1 > sin θ ⇒ cos θ − sin θ > −1

Notice that the radius of the circle can assume any value (not necessarily sin θ) as
long as it encloses the singularity at t = 1, but not the one at t = −1.

To proceed, we now use the Schlä�i integral for the Legendre polynomialsPl(x),
see e.g., [19, p. 110]

Pl(x) =
2l+1

2iπ

∮
Γ

(t− x)l

(t2 − 1)l+1
dt, x ∈ (−1, 1)

From this integral, we can derive the following expression for the derivatives of the
Legendre polynomials

dm

dxm
Pl(x) =

2l+1

2iπ

(−1)ml!

(l −m)!

∮
Γ

(t− x)l−m

(t2 − 1)l+1
dt, x ∈ (−1, 1)
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Figure 7: The contour Γ in the complex t-plane.

We �nally get∫ 2π

0

(X(u))−l−1 eimu du = −im+12l+1r−l−1eimφ sinm θ

∮
Γ

(t− cos θ)l−m

(t2 − 1)l+1
dt

= 2πi−mr−l−1eimφ (l −m)!

l!
sinm θ

dm

d cosm θ
Pl(cos θ)

= 2πi−mr−l−1eimφ (l −m)!

l!
Pm
l (cos θ)

and we conclude

r−l−1eimφPm
l (cos θ) =

iml!

2π(l −m)!

∫ 2π

0

(X(u))−l−1 eimu du

and the integral representation (A.6) is proved. The limit case, θ → 0, follows by
continuity.

Appendix C Evaluation of integral

In this section we explicitly evaluate the entries in the Ann′ matrix, given by

Ann′ = −
∑
n′′

Mnn′′Tn′′n′

where

Mnn′ =
1

8π2

∫∫
R2

Bn(−kt)Bn′(kt)
e−2ktz2 + ΠnΠn′e

2ktz1 − (Πn′ + Πn)e−2ktd

1− e−2ktd

dkx dky
kt

where, see (A.8) Bn(kt) = i−m

√
4πεm

(l +m)!(l −m)!
klt

{
cosmβ
sinmβ

}
Πn = (−1)l+m
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Evaluation in polar coordinates implies

Mnn′ = Nnn′

∫ ∞
0

kl+l
′

t

e−2ktz2 + (−1)l+l
′
e2ktz1 − (−1)m((−1)l

′
+ (−1)l)e−2ktd

1− e−2ktd
dkt

where

Nnn′ =
δm,m′δσ,σ′√

(l +m)!(l −m)!(l′ +m)!(l′ −m)!

The remaining integral can be expressed in the generalized Riemann zeta func-
tion [21, p. 22]

ζ(z, α) =
∞∑
n=0

(n+ α)−z , α 6= 0,−1,−2, . . .

This function is meromorphic everywhere in the complex z-plane except for a pole
at z = 1 with residue 1, and reduces to the Riemann zeta function for α = 1, i.e.,

ζ(z, 1) = ζ(z), ζ(z, 1/2) = ζ(z) (2z − 1)

The remaining integral then becomes [6, p. 325]∫ ∞
0

xz−1 e−αx

1− e−x
dx = Γ(z)ζ(z, α), Re z > 1,Reα > 0

where Γ(z) is the Gamma function. Thus∫ ∞
0

klt
e−2kta

1− e−2ktd
dkt =

l!ζ(l + 1, a/d)

(2d)l+1

and

Mnn′ =
Pnn′

dl+l′+1

where the matrix Pnn′ is independent of the distance d, and given by

Pnn′ =Nnn′
(l + l′)!

2l+l′+1

(
ζ(l + l′ + 1, z2/d) + (−1)l+l

′
ζ(l + l′ + 1, 1− z2/d)

− (−1)m((−1)l
′
+ (−1)l)ζ(l + l′ + 1, 1)

)
The �rst entries are

Pe01,e01 =
1

4
{ζ(3, z2/d) + ζ(3, 1− z2/d) + 2ζ(3, 1)}

Pe01,e02 =
3

16
{ζ(4, z2/d)− ζ(4, 1− z2/d)}

Especially, for z2/d = 1/2

Pnn′ = Nnn′
(l + l′)!

2l+l′+1
ζ(l + l′ + 1, 1)

(
1 + (−1)l+l

′
)((

2l+l
′+1 − 1

)
− (−1)l+m

)
with explicit entries {

Pe01,e01 = 4ζ(3)

Pe01,e02 = 0
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Figure 8: The geometry of the single body, bounded by S. Here a is the radius
of the smallest circumscribing sphere of the body, and R > a is the radius of a
spherical surface not enclosing the domain of excitation Vapp.

Appendix D Symmetry of the transition matrix

The transition matrix, Tnn′ , is symmetric for a perfectly conducting body. In the
dynamic case (Helmholtz equation) this is well known, provided the material of the
body is reciprocal, see e.g., [30]. The arguments do not apply to the static case,
and we, therefore, give the proof here for the Laplace equation.

The notion in this section is independent of the one in the rest of the paper. Let
S be the bounding surface of a bounded, perfectly conducting body. Exterior to S,
in the volume Ve, we assume space is vacuous except for a volume, Vapp, containing
the sources of the problem, i.e., no parallel plates are present in the geometry in
this section, see Figure 8. The unit normal ν̂ on S is directed into the volume Ve.

Let Φ1 and Φ2 be two di�erent solutions to the Laplace equation in the volume
Ve \ V app with equipotential surface S, due to two di�erent excitations in Vapp, i.e.,{

∇2Φi(r) = 0, r ∈ Ve \ V app

Φi(r) = Φ′i, r ∈ S
i = 1, 2

where Φ′i, i = 1, 2, are unknown constants.
Consider the integral

I =

∫∫
S

(
Φ1
∂Φ2

∂ν
− Φ2

∂Φ1

∂ν

)
dS
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This integral is identically zero for an uncharged body, since the potential is constant
on S, and the remaining integral

Qi = −ε0
∫∫
S

∂Φi

∂ν
dS, i = 1, 2

determines the charge Qi, i = 1, 2, on the body. Even if the charge on the body, Qi,
i = 1, 2, is not zero, the integral is zero still, since the integral is proportional to

Φ1Q2 − Φ2Q1 = Φ1CΦ2 − Φ2CΦ1 = 0

where C denotes the capacitance of the body w.r.t. in�nity. Due to linearity of the
problem, the capacitance of the body is independent of the excitation,.

Outside the circumscribing sphere of S, but inside the inscribed sphere of the
excitation, i.e., on a spherical surface with radius R, see Figure 8, the potential Φi,
i = 1, 2, has an expansion in terms of regular and irregular solutions of the Laplace
equation, see Section 4.1. This expansion reads

Φi(r) =
∑
n

(ainvn(r) + f inun(r)), i = 1, 2

The sum is uniformly convergent in this region, and, therefore, can be di�erentiated
term by term. The coe�cients an are determined by the excitation in Vapp, and are
therefore considered known. The coe�cients fn are unknown and determined by the
transition matrix, i.e.,

f in =
∑
n′

Tnn′a
i
n′ , i = 1, 2

The transition matrix is independent of the excitation, and determines the solution
in the region outside the circumscribing sphere of the body.

Now, apply the divergence theorem, and rewrite the integral I as an integral over
the spherical surface SR of radius R. Since the region is source-free, the integral
then becomes

0 = I =

∫∫
SR

(
Φ1
∂Φ2

∂R
− Φ2

∂Φ1

∂R

)
dS

=

∫∫
SR

{∑
n

(a1
nvn(r) + f 1

nun(r))
∑
n′

(
a2
n′
∂vn′(r)

∂R
+ f 2

n′
∂un′(r)

∂R

)

−
∑
n′

(a2
n′vn′(r) + f 2

n′un′(r))
∑
n

(
a1
n

∂vn(r)

∂R
+ f 1

n

∂un(r)

∂R

)}
dS

Utilize the orthogonality relations in (4.2). We get

0 =
∑
n

(a2
nf

1
n − a1

nf
2
n) =

∑
nn′

(a2
nTnn′a

1
n′ − a1

nTnn′a
2
n′) =

∑
nn′

a2
n(Tnn′ − Tn′n)a1

n′

since f in =
∑

n′ Tnn′a
i
n′ , i = 1, 2. This relation must hold for every ain, i = 1, 2.

Therefore, T = T t, and the transition matrix is symmetric under the assumptions
made in this appendix.
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Appendix E The Q-matrices � examples

The Q matrices for a general axially symmetric, perfectly conducting object are
given in (8.1) and (8.2). In this appendix, we specialize to two speci�c geometries.

E.1 Spheroids

We specialize to a spheroid (half axis a along the z axis, and half axis b in the x-y
plane, see Figure 2), i.e.,

1

r2(θ)
=

cos2 θ

a2
+

sin2 θ

b2

and

r′(θ) = r3 cos θ sin θ

(
1

a2
− 1

b2

)
The Q′ matrix in (8.1) becomes

Q′
m
ll′ = 2l′Ñnn′

∫ 1

0

(
x2

a2
+

1− x2

b2

)(l−l′)/2

Pm
l (x)Pm

l′ (x) dx

+ 2Ñnn′

(
1

a2
− 1

b2

)∫ 1

0

(
x2

a2
+

1− x2

b2

)(l−l′−2)/2

x(1− x2)Pm
l (x)Pm

l′
′(x) dx

(E.1)

where

Ñnn′ =
δσσ′δmm′

2

√
(l −m)!

(l +m)!

(l′ −m)!

(l′ +m)!

Similarly, for the Q matrix in (8.2), we have

Qm
ll′ = 2l′Ñnn′

∫ 1

0

(
x2

a2
+

1− x2

b2

)−(l+l′+1)/2

Pm
l (x)Pm

l′ (x) dx

+ 2Ñnn′

(
1

a2
− 1

b2

)∫ 1

0

(
x2

a2
+

1− x2

b2

)−(l+l′+3)/2

x(1− x2)Pm
l (x)Pm

l′
′(x) dx

(E.2)

The �rst matrix entries are obtained by elementary integrals, i.e.,Q′
0
11 = L3

Q0
11 =

ab2

3

where the factor L3 is de�ned in (8.4).
The Q′ matrix has an interesting property valid for a spheroidal geometry.4 It

is an upper triangular matrix in the l and l′ indices, i.e.,

Q′
m
ll′ = 0, l > l′

4In fact, it is also valid for the more general ellipsoidal geometry, see e.g., [18, 31].
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To prove this statement, use the recursion relation [21](
1− x2

)
Pm
l′
′(x) = (l′ +m)Pm

l′−1(x)− l′xPm
l′ (x)

to rewrite the following expression (we assume that l ≥ l′)

l′
(
x2

a2
+

1− x2

b2

)
Pm
l (x)Pm

l′ (x) +

(
1

a2
− 1

b2

)
x(1− x2)Pm

l (x)Pm
l′
′(x)

= l′
(
x2

a2
+

1− x2

b2

)
Pm
l (x)Pm

l′ (x)

+

(
1

a2
− 1

b2

)
xPm

l (x)
(
(l′ +m)Pm

l′−1(x)− l′xPm
l′ (x)

)
=
l′

b2
Pm
l (x)Pm

l′ (x) + (l′ +m)

(
1

a2
− 1

b2

)
xPm

l (x)Pm
l′−1(x)

= Pm
l (x)

l′∑
l′′=l′−2

al′′(l
′,m)Pm

l′′ (x)

for some coe�cients an(l′,m), since [21]

xPm
l′ (x) =

l′ −m+ 1

2l′ + 1
Pm
l′+1(x) +

l′ +m

2l′ + 1
Pm
l′−1(x)

For a spheroidal surface, the integrals in (E.1) for l = l′ + 2s, s = 1, 2, . . ., are
integrals over three associated Legendre functions, i.e.,

Q′
m
l′+2s,l′ = Ñnn′

l′∑
l′′=l′−2

al′′(l
′,m)

∫ 1

−1

(
x2

a2
+

1− x2

b2

)s−1

Pm
l′+2s(x)Pm

l′′ (x) dx

= Ñnn′

∑
0≤l′′′≤2(s−1)

bl′′′(s)
l′∑

l′′=l′−2

al′′(l
′,m)

∫ 1

−1

Pm
l′′ (x)Pm

l′+2s(x)Pl′′′(x) dx

since, for a spheroidal surface, we have

1

r2(s−1)(θ)
=

(
x2

a2
+

1− x2

b2

)s−1

=
∑

0≤l′′′≤2(s−1)

bl′′′(s)Pl′′′(cos θ)

for some coe�cients bl′′′(s).
An integral over a product of three associated Legendre functions is zero unless

the l-indices satisfy the triangular relation [5, Appendix on p. 192], i.e.,∫ 1

−1

Pm
l (x)Pm

l′ Pl′′(x) = 0, unless |l′ − l′′| ≤ l ≤ l′ + l′′

As a consequence, the integrals in (E.1) then are

Q′
m
l,l′ = 0, l = l′ + 2s, s = 1, 2, . . .
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and the upper triangular property of Q′ is proved.
Due to this triangular property of the Q′ matrix, the �rst row and column of the

transition matrix can be computed explicitly. We have

Tml1 = − Q
m
l1

Q′m11

, l = 1, 3, 5, . . .

The �rst entry is

Tm11 = −Q
m
11

Q′m11

In particular

T 0
11 = − ab

2

3L3

(E.3)

E.2 Cylinder

Let the body be a cylinder (length 2a along the z axis, and diameter 2b in the x-y
plane, see Figure 4), i.e.,

1

r(θ)
=



cos θ

a
, 0 ≤ θ ≤ θ0

sin θ

b
, θ0 ≤ θ ≤ π − θ0

− cos θ

a
, π − θ0 ≤ θ ≤ π

where x0 = cos θ0 = a/
√
a2 + b2 ∈ [0, 1], and

r′(θ) = r2(θ)



sin θ

a
, 0 ≤ θ ≤ θ0

− cos θ

b
, θ0 ≤ θ ≤ π − θ0

− sin θ

a
, π − θ0 ≤ θ ≤ π

The Q′ matrix is

Q′
m
ll′ = 2l′Ñnn′

{∫ x0

0

(1− x2)
(l−l′)/2

bl−l′
Pm
l (x)Pm

l′ (x) dx+

∫ 1

x0

xl−l
′

al−l′
Pm
l (x)Pm

l′ (x) dx

}

− 2Ñnn′

{∫ x0

0

x (1− x2)
(l−l′)/2

bl−l′
Pm
l (x)Pm

l′
′(x) dx

−
∫ 1

x0

xl−l
′−1(1− x2)

al−l′
Pm
l (x)Pm

l′
′(x) dx

}
(E.4)
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and similarly for the Q matrix

Qm
ll′ = 2l′Ñnn′

{∫ x0

0

bl+l
′+1

(1− x2)(l+l′+1)/2
Pm
l (x)Pm

l′ (x) dx

+

∫ 1

x0

al+l
′+1

xl+l′+1
Pm
l (x)Pm

l′ (x) dx

}

− 2Ñnn′

{∫ x0

0

xbl+l
′+1

(1− x2)(l+l′+1)/2
Pm
l (x)Pm

l′
′(x) dx

−
∫ 1

x0

(1− x2)al+l
′+1

xl+l′+2
Pm
l (x)Pm

l′
′(x) dx

}
(E.5)

In particular, the diagonal elements of Q′ matrix are

Q′
m
ll = l

∫ 1

0

(Pm
l (x))2 dx−

∫ 1

0

xPm
l (x)Pm

l
′(x) dx+

∫ 1

x0

Pm
l (x)Pm

l
′(x)

x
dx

=
1

2

(l +m)!

(l −m)!
− δm,0

2
+

∫ 1

x0

Pm
l (x)Pm

l
′(x)

x
dx

The �rst elements are

Q′
0
11 = 1− x0

Q0
11 = a3

∫ 1

x0

2

x
− 1

x3
dx = a3

(
1

2
− 1

2x2
0

− 2 lnx0

)
Q′

0
33 =

∫ 1

x0

5x2 − 3

2

15x2 − 3

2
dx = 1− 15x5

0 − 20x3
0 + 9x0

4

Appendix F T-matrix � layered dielectric sphere

The T-matrix for a layered dielectric body can be obtained by the technique devel-
oped by Peterson and Ström [23]. If the object is a layered sphere, this technique can
be employed, but for a layered sphere a more straightforward and simpler approach
is to make an Ansatz of the potential in the di�erent regions. Consider a spherical
geometry with one layer as depicted in Figure 9. The inner and outer radii are a and
b, respectively. The permittivities, relative the exterior permittivity, are denoted ε1
and ε2, respectively. The pertinent expansions of the potential are:

Φ(r) =



∑
n

anvn(r) +
∑
n

fnun(r), r > b∑
n

αnvn(r) +
∑
n

βnun(r), a < r < b∑
n

γnvn(r), 0 < r < a
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z

µ

a

²1 b

r

²2

Figure 9: A layered sphere with inner radius a and outer radius b.

The boundary conditions, continuous Φ and εν̂ · ∇Φ, and orthogonality of the
spherical harmonics imply (suppress all indices except l = 0, 1, 2, . . .)

alb
l + flb

−l−1 = αlb
l + βlb

−l−1

αla
l + βla

−l−1 = γla
l

lalb
l−1 − (l + 1)flb

−l−2 = ε2
(
lαlb

l−1 − (l + 1)βlb
−l−2

)
ε2
(
lαla

l−1 − (l + 1)βla
−l−2

)
= ε1lγla

l−1

or a matrix system in the unknowns
b2l+1 1 0 −1
a2l+1 1 −a2l+1 0
ε2lb

2l+1 −ε2(l + 1) 0 l + 1
ε2la

2l+1 −ε2(l + 1) −ε1la2l+1 0



αl
βl
γl
fl

 =


b2l+1al

0
lb2l+1al

0


The transition matrix, de�ned as fl = Tlal then is (ξ = a/b ∈ [0, 1])

Tl = −b2l+1l
ξ2l+1(ε1 − ε2)(l + (l + 1)ε2) + (ε2 − 1)(ε2 + l(ε1 + ε2))

l(1 + l)ξ2l+1(ε1 − ε2)(ε2 − 1) + (1 + l(1 + ε2))(ε2 + l(ε1 + ε2))

In particular, for l = 1, we have

T1 = −b3 ξ
3(ε1 − ε2)(1 + 2ε2) + (ε2 − 1)(ε2 + (ε1 + ε2))

2ξ3(ε1 − ε2)(ε2 − 1) + (2 + ε2)(ε2 + (ε1 + ε2))

The polarizability γzz then is

γzz = −4πT1 = 4πb3 ξ
3(ε1 − ε2)(1 + 2ε2) + (ε2 − 1)(ε2 + (ε1 + ε2))

2ξ3(ε1 − ε2)(ε2 − 1) + (2 + ε2)(ε2 + (ε1 + ε2))
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Special cases are:

1. Dielectric sphere of radius a and permittivity ε

Tl = −a2l+1l
ε− 1

1 + l(1 + ε)

The polarizability γzz then is

γzz = −4πT1 = 4πa3 ε− 1

2 + ε

2. Coated PEC sphere of radius a with a dielectric coating of permittivity ε and
thickness b− a

Tl = −b2l+1 ξ2l+1(l + (l + 1)ε) + l(ε− 1)

(1 + l)ξ2l+1(ε− 1) + 1 + l(1 + ε)

The polarizability γzz then is

γzz = −4πT1 = 4πb3 ξ
3(1 + 2ε) + ε− 1

2ξ3(ε− 1) + 2 + ε

3. Dielectric shell with permittivity ε of thickness b− a and inner radius a

Tl = −b2l+1l
(1− ξ2l+1)(ε− 1)(ε+ l(1 + ε))

l(1 + l)ξ2l+1(1− ε)(ε− 1) + (1 + l(1 + ε))(ε+ l(1 + ε))

The polarizability γzz then is

γzz = −4πT1 = 4πb3 (1− ξ3)(ε− 1)(1 + 2ε)

2ξ3(1− ε)(ε− 1) + (2 + ε)(1 + 2ε)
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