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Abstract

In this paper we consider the classic problem of scattering of waves from per-

fectly conducting cylinders with piecewise smooth boundaries. The scattering

problems are formulated as integral equations and solved using a Nyström

scheme, where the corners of the cylinders are e�ciently handled by a method

referred to as Recursively Compressed Inverse Preconditioning (RCIP). This

method has been very successful in treating static problems in non-smooth do-

mains and the present paper shows that it works equally well for the Helmholtz

equation. In the numerical examples we focus on scattering of E- and H-waves

from a cylinder with one corner. Even at a size kd = 1000, where k is the

wavenumber and d the diameter, the scheme produces at least 13 digits of

accuracy in the electric and magnetic �elds everywhere outside the cylinder.

1 Introduction

The numerical simulation of scattering from cylinders has a long history in compu-
tational electromagnetics. As early as 1881, Lord Rayleigh treated the scattering of
light from a circular dielectric cylinder [24]. He considered an incident plane E-wave,
i.e., the electric �eld is parallel to the cylinder, and a permittivity and permeability
of the cylinder that departed only slightly from those of the surrounding medium.
This approach enabled him to �nd an approximate solution that today is referred to
as the Born approximation and can be viewed as spectral method solution with only
one basis function, c.f. [28, Section 8.3.4]. The theory of scattering from circular
cylinders and spheres, conducting or dielectric, was soon after that fully understood
by using expansions of the incident and scattered waves in partial waves, c.f. [23].
Since then, a large number of papers have been published that solve scattering prob-
lems in electromagnetics, as well as in acoustics and elastodynamics, using di�erent
numerical techniques. All with the common goal of constructing faster and more ac-
curate solvers for ever more detailed and complex geometries in two and three space
dimensions. In particular, integral equation methods have become very important
tools. In electromagnetics such methods were made popular by the contributions
of Harrington, c.f. [10]. The mathematical foundations of the scattering problems
and the integral equation formulations are discussed in the books by Colton and
Kress [5, 6].

The present paper is about scattering from piecewise smooth perfectly conduct-
ing objects. The presence of boundary singularities, such as corners, tends to cause
complicated asymptotics in quantities used to represent the solution. Intense mesh
re�nement might be needed for resolution, but this is costly and can easily lead to
instabilities and the loss of precision in the computed �eld. In the context of integral
equation solvers, regions close to the boundary are the most problematic. On the
application side, scattering from non-smooth metal objects is of great importance in
radar imaging of objects with sharp corners such as airplanes, vessels and vehicles.
Sharp corners that are oriented perpendicular to the line of sight of a monostatic
radar may create re�ections that are large enough to be detected by the radar. The
two-dimensional approximations can be used for elongated objects like wings but
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also in the evaluation of �elds in the near zone of smaller objects. Other important
two-dimensional problems are wave propagation in rectangular waveguides, photonic
band gap structures, and substrate integrated waveguides.

The numerical solver used in this paper takes its starting point in a Fredholm sec-
ond kind integral equation. The integral operators are compact away from boundary
singularities and the unknown quantity is a layer density representing the solution to
the original problem. The integral equation is discretized using a Nyström scheme
and composite Gauss�Legendre quadrature. At the heart of the solver lies a method
called Recursively Compressed Inverse Preconditioning (RCIP). This method modi-
�es the kernels of the integral operators so that the layer density becomes piecewise
smooth and simple to resolve by polynomials. Loosely speaking one can say that
RCIP makes it possible to solve elliptic boundary value problems in piecewise smooth
domains as cheaply and accurately as they can be solved in smooth domains. The
RCIP method originated in 2008 [15] and has been extended and successfully ap-
plied to electrostatic and elastostatic problems which, at �rst glance, might seem
impossible. For example, the e�ective conductivity of a high-contrast conducting
checkerboard with a million randomly placed squares in the unit cell was computed
on a regular workstation with a relative accuracy of 10−9 [13]. In [17], a new record
was established for the three-dimensional problem of determining the capacitance of
the unit cube � 13 digits compared to the seven digits that were previously known.

When we now apply the RCIP method to the Helmholtz equation we do this
in a two-dimensional setting. We consider scattering of time-harmonic E- and H-
waves from an in�nitely long perfectly conducting cylinder. Scattering problems
are harder to solve than electrostatic problems, all other things held equal. Planar
problems provide a good testing ground prior to a move up to three dimensions [19].
As we shall see, the transition from Laplace's equation to the Helmholtz equation
is surprisingly straightforward and the results, presented in Section 4 below, are as
good as the ones obtained for electrostatics.

Our numerical solver meets �ve important criteria. The �rst criterion is that
it can handle cylinders with general shapes. In practice this means cylinders with
piecewise smooth boundaries and a �nite, but arbitrary, number of corners. The
second criterion is that it can treat frequencies ranging from zero up to large values
of kd, where k is the wavenumber and d the diameter of the object. We have found
that kd = 1000 is easy to reach and for most cylinders this frequency range overlaps
the frequency band where approximate high frequency methods, e.g., uni�ed theory
of di�raction in combination with physical optics, can be applied with reasonable
accuracy. The third criterion is that the method can deliver accurate results for
the scattered �eld everywhere outside the object. Even close to a corner and at
kd = 1000 the scattered �eld is calculated with at least 13 digits of accuracy in
IEEE double precision arithmetic (16 digit precision). The fourth criterion is that
the method enables fast solvers. In the present implementation the solver is fast only
in the sense that the cost for modifying the kernels of the integral operators grows
linearly with the number of corners in the computational domain. The method can
be made fast in toto by incorporating fast multipole techniques [3, 4] or perhaps even
fast direct solvers [1, 7, 22]. The �fth criterion is that the method is automatized and
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�exible and it requires only a minimum of adjustments as operators and geometries
change.

It is beyond the scope of the present paper to review the RCIP method in its
entirety. In Section 3 we give a brief overview and a few details on discretization
issues particular to Hankel kernels. For a more thorough exposition, we refer readers
to the research papers [12, 14�16] and to a newly written tutorial [11].

There are several recent journal papers that focus on speed and accuracy for
two-dimensional scattering problems in complex geometries. In [25] scattering from
two-dimensional smooth strips are treated using integral equations and a Nyström
method. In [26] the approach of [25] is generalized to smooth slotted cylinders. A
similar problem is treated in [27]. The schemes used in these papers give accurate
results but they cannot, in a simple way, be generalized to non-smooth geometries.
In [1] and in [8], on the other hand, very fast and also �exible and accurate numerical
schemes are developed for the solution of integral equations modeling scattering
from general objects with both corners and multi-material junctions. These papers,
however, do not address the problem of accurate near �eld evaluation.

2 Formulation of the problems

We consider in-plane waves scattered by a bounded perfectly conducting cylinder
with a piecewise smooth boundary Γ. The region outside the object is denoted Ωex,
the time dependence is e−iωt and r = (x, y). Both E-waves, often referred to as
TM-waves, and H-waves, often referred to as TE-waves, are treated. We decompose
the electric and magnetic �elds into a sum of the incident �eld, denoted Uinc(r),
generated by a source in Ωex, and the scattered �eld, denoted Usca(r) in both cases.

2.1 E-waves

We let the electric �eld be parallel to the cylinder, E(r) = ẑU(r), and let U(r) =
Uinc(r)+Usca(r). The scattered �eld Usca(r) satis�es the following exterior Dirichlet
problem:

∇2Usca(r) + k2Usca(r) = 0, r ∈ Ωex (2.1)

Usca(r) = −Uinc(r), r ∈ Γ (2.2)

lim
|r|→∞

(
∂

∂r
− ik

)
Usca(r) = 0. (2.3)

We write the solution as the combined integral representation [6, eq. (3.25)].

Usca(r) =

∫
Γ

∂Φk(r, r
′)

∂νr′
ρ(r′)d`′ − i

k

2

∫
Γ

Φk(r, r
′)ρ(r′)d`′, r ∈ Ωex, (2.4)

where Φk(r, r
′) =

i

4
H

(1)
0 (k|r−r′|) is the free space Green function for the Helmholz

equation in two dimensions, H
(1)
0 is the Hankel function of the �rst kind of order
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zero, and d` is an element of arc length. The index k indicates that the quantity
or function depends on the wavenumber k = ω/c. Insertion of (2.4) into (2.2) gives
the integral equation for the layer density ρ(r)

(I +Kk − i
k

2
Sk)ρ(r) = −2Uinc(r), r ∈ Γ, (2.5)

where

Kkρ(r) = 2

∫
Γ

∂Φk(r, r
′)

∂νr′
ρ(r′)d`′ (2.6)

Skρ(r) = 2

∫
Γ

Φk(r, r
′)ρ(r′)d`′. (2.7)

The second term on the right hand side in (2.4) corresponds to the term i
k

2
Sk in (2.5)

and is added in order to ensure a unique solution for all k. The equation (2.5) is
often referred to as an indirect combined �eld integral equation (ICFIE).

2.2 H-waves

We let the magnetic �eld be parallel to the cylinder,H(r) = ẑU(r), and let U(r) =
Uinc(r)+Usca(r). The scattered �eld Usca(r) satis�es the following exterior Neumann
problem

∇2Usca(r) + k2Usca(r) = 0, r ∈ Ωex (2.8)

∂Usca(r)

∂νr
= −∂Uinc(r)

∂νr
, r ∈ Γ (2.9)

lim
|r|→∞

(
∂

∂r
− ik

)
Usca(r) = 0, (2.10)

where
∂Usca(r)

∂νr
is the normal derivative of Usca. There are several ways to model

this problem as an integral equation. We use a regularized combined �eld integral
equation since it is always uniquely solvable. The scattered �eld is then obtained
from the representation [2]

Usca(r) =

∫
Γ

Φ(r, r′)ρ(r′)d`′ + i

∫
Γ

∂Φ(r, r′)

∂νr′
Sikρ(r′)d`′, r ∈ Ωex, (2.11)

which after insertion into (2.9) gives the integral equation

(I −K ′k − iTkSik)ρ(r) = 2
∂Uinc(r)

∂νr
. (2.12)

Here K ′k is the adjoint to the double layer integral operator Kk in (2.6)

K ′kρ(r) = 2

∫
Γ

∂Φk(r, r
′)

∂νr
ρ(r′)d`′ (2.13)
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and

Tkρ(r) =
∂

∂νr
Kkρ(r). (2.14)

The equation (2.12) is sometimes referred to as ICFIE-R [2].
The hypersingular operator Tk in (2.14) can be expressed as a sum of a simple

operator and an operator that requires di�erentiation with respect to arc length
only [21]

Tkρ(r) = 2k2

∫
Γ

Φk(r, r
′)(νr · νr′)ρ(r′)d`′ + 2

d

d`

∫
Γ

Φk(r, r
′)

dρ(r′)

d`′
d`′.

We may then rewrite (2.12) in a form more amenable to discretization

(I + Ak − iBkSik − iCkCik)ρ(r) = 2
∂Uinc(r)

∂νr
, r ∈ Γ, (2.15)

where Ak = −K ′k and

Bkρ(r) = 2k2

∫
Γ

Φk(r, r
′)(νr · νr′)ρ(r)d`′ (2.16)

Ckρ(r) = 2
d

d`

∫
Γ

Φk(r, r
′)ρ(r′)d`′. (2.17)

3 Numerical scheme

This section brie�y reviews the RCIP method, for obtaining accurate solutions to
integral equations on piecewise smooth surfaces, with a focus on basic concepts and
on some details particular to the Helmholtz equation. A more complete description,
along with demo codes in Matlab, can be found in [11].

3.1 Basics of the RCIP method

Assume that we have an integral representation of a �eld U(r), r ∈ Ωex, in terms of
a layer density ρ(r) on a piecewise smooth boundary Γ, and that this representation
leads to a Fredholm second kind integral equation

(I +K) ρ(r) = g(r) , r ∈ Γ. (3.1)

Here I is the identity, g is a piecewise smooth right hand side, and K is some integral
operator with kernel K(r, r′) on Γ that is compact away from a �nite number of
corners. Let us split the kernel

K(r, r′) = K?(r, r′) +K◦(r, r′) (3.2)

in such a way that K?(r, r′) is zero except for when r and r′ both lie close to
the same corner vertex. In this latter case K◦(r, r′) is zero. The kernel split (3.2)
corresponds to an operator split

K = K? +K◦, (3.3)
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where K◦ is a compact operator. The variable substitution

ρ(r) = (I +K?)−1 ρ̃(r) (3.4)

allows us to rewrite (3.1) as a right preconditioned integral equation

ρ̃(r) +K◦(I +K?)−1ρ̃(r) = g(r) , r ∈ Γ, (3.5)

where the composition K◦(I +K?)−1 is compact.
Let us discretize (3.5) using a Nyström scheme with composite 16-point Gauss�

Legendre quadrature. The quantities ρ̃, K◦, and g should be simple to discretize and
resolve accurately on a coarse mesh made of quadrature panels Γp of approximately
equal length. Only the inverse (I + K?)−1 needs �ne local meshes for its accurate
resolution. We arrive at

(Icoa + K◦coaR) ρ̃coa = gcoa, (3.6)

where the block-diagonal compressed weighted inverse matrix R is given by

R = PT
W (Ifin + K?

fin)−1 P. (3.7)

In (3.6) and (3.7) subscript �coa� indicates a grid on the coarse mesh, subscript ��n�
indicates grids on �ne local meshes, the prolongation matrix P performs polynomial
interpolation from the coarse grid to �ne grids and PT

W is the transpose of a weighted
prolongation matrix. See [11, Section 4 and 5] for details. Once (3.6) is solved for
ρ̃coa, a discrete weight-corrected version of the original layer density can be obtained
from

ρ̂coa = Rρ̃coa. (3.8)

The solution U(r) can then be recovered in most of the computational domain using
ρ̂coa in a discretized version of the integral representation for U(r).

Note that in (3.6), the need for resolution in corners is not visible. The trans-
formed layer density ρ̃coa on a non-smooth Γ should be as easy to solve for as the
original layer density ρcoa in a discretization of (3.1) on a smooth Γ. All computa-
tional di�culties are concentrated in the matrix R. Let there be n discretization
points on the local �ne grid close to a particular corner on Γ. Judging from the
de�nition (3.7), it seems as if computing R should be a prohibitively expensive and
also unstable undertaking for large n. Fortunately, R can be computed via a fast
and stable recursion which relies on a hierarchy of small nested meshes. This fast
recursion enables the computation of the diagonal block of R, that corresponds to
a particular corner, at a cost only proportional to n. Actually, when very large n
are needed for resolution the cost can be further reduced with the use of Newton's
method, see [11, Section 6 and 12] for details.

The fast recursion for R can also be run backwards for the purpose of recon-
structing ρfin from ρ̃coa. A partial reconstruction of ρfin is needed when U(r) is to
be evaluated at points in Ωex that lie close to corner vertices, see [11, Section 9] for
details.
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We remark that the integral equations (2.5) and (2.15), which are to be solved
in this paper, have a more complicated appearance than the model equation (3.1).
In practice this poses no problems for RCIP � just some extra work. The two
integral operators in (2.5) can, for programming purposes, be combined into a single
operator. The composition of integral operators in (2.15) can be treated with an
expansion technique. With the help of two new temporary layer densities, one can
arrive at a recursion for an expanded compressed inverse matrix R with the same
structure as (3.7). Once R is computed one can extract separate blocks from it and
use them in a more involved version of (3.6) that still uses only a single transformed
global density ρ̃coa. See [11, Section 14 and 17] for details.

3.2 The discretization of Hankel kernels

High-order accurate Nyström discretization of boundary integral equations asso-
ciated with the Helmholtz equation is a topic that has received much attention
recently. See [9] for a comparison of various 2D schemes. We now present our pre-
ferred scheme by showing how to discretize the operator Kk of (2.6) and the �rst
operator on the right hand side of (2.4). The other integral operators of Section 2
are discretized in similar ways.

The kernel of Kk is twice that of the �rst operator in (2.4) and can, modulo a
constant of i/2, be expressed as

Kk(r, r
′) = k|r − r′|H(1)

1 (k|r − r′|)(r − r′) · νr′
|r − r′|2

, (3.9)

where H
(1)
1 is the Hankel function of the �rst kind of order one. When r ∈ Γ, it is

instructive to write (3.9) in the form

Kk(r, r
′) = f(r, r′) +

2i

π
log |r − r′|Re {Kk(r, r

′)} . (3.10)

For a �xed r ∈ Γ, we see from (3.9) and a series representation of H
(1)
1 that f(r, r′)

and Re {Kk(r, r
′)} are smooth functions of r′ ∈ Γ and that

lim
r′→r

log |r − r′|Re {Kk(r, r
′)} = 0. (3.11)

Consider now the integral Ip(r) over a quadrature panel Γp

Ip(r) =

∫
Γp

Kk(r, r
′)ρ(r′) d`′. (3.12)

Let r(t) be a parameterization of Γ. Discretizing Kk means being able to evalu-
ate (3.12) for all r of interest, given a set of values ρ(r(tj)) on each Γp.

If r is a point away from Γp, then Kk(r, r
′) is a smooth function of r′ ∈ Γp and

Ip(r) can be evaluated to high accuracy using 16-point Gauss�Legendre quadrature

Ip(r) ≈
∑
j

Kk(r, rj)ρjsjwj, (3.13)
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where rj = r(tj), ρj = ρ(r(tj)), sj = |dr(tj)/dt|, and tj and wj are nodes and
weights on Γp.

If ri is a discretization point close to Γp or on Γp, then Kk(ri, r
′) is not a

(su�ciently) smooth function of r′ ∈ Γp and we use (3.10) to arrive at

Ip(ri) ≈
∑
j

f(ri, rj)ρjsjwj +
2i

π

∑
j

Re {Kk(ri, rj)} ρjwijL, (3.14)

where wijL are high-order product integration weights for the logarithmic opera-
tor which can be constructed using the analytic method in [12, Section 2.3]. The
formula (3.14) can be rearranged into a particularly convenient form

Ip(ri) ≈
∑
j

Kk(ri, rj)ρjsjwj +
2i

π

∑
j

Re {Kk(ri, rj)} ρjsjwjwcorr
ijL , (3.15)

where the weight corrections,

wcorr
ijL =

(
wijL
sjwj

− log |ri − rj|
)
, (3.16)

are cheap to compute and depend only on the relative length (in parameter) of
neighboring quadrature panels and on nodes and weights on a canonical panel. The
formula (3.13) with r = ri and (3.15) summarize our Nyström discretization of Kk

on Γ.
If r is a point not on Γ but in Ωex close to Γp, we write (3.9) in the form

Kk(r, r
′) = g(r, r′) +

2i

π
log |r − r′|Re {Kk(r, r

′)}+
2i

π

(r′ − r) · νr′
|r′ − r|2

. (3.17)

We see from (3.9) and a series representation of H
(1)
1 that g(r, r′) and Re {Kk(r, r

′)}
are smooth functions of r′. In analogy with (3.15) one can write

Ip(r) ≈
∑
j

Kk(r, rj)ρ(rj)sjwj +
2i

π

∑
j

Re {Kk(r, rj)} ρ(rj)sjwjw
corr
jL (r)

+
2i

π

∑
j

ρ(rj)

(
wjC(r)−

(rj − r) · νrj
|rj − r|2

sjwj

)
, (3.18)

where wcorr
jL (r) are weight corrections as in (3.16), but with ri replaced by r, and

wjC(r) are high-order product integration weights for the Cauchy singular operator
which can be constructed using the analytic method in [12, Section 2.1]. The formu-
las (3.13) and (3.18) are used to discretize the �rst operator in (2.4) when producing
�eld plots.

3.3 Convergence and error estimates

Our solver shows a stable behavior. The solution converges rapidly with coarse mesh
re�nement up until a point beyond which no further improvement occurs. Actually,
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beyond this optimal point there will be a slow decay in the quality of the solution,
due to accumulated roundo� error. The precise location of the optimal point is hard
to determine a priori. It depends on the geometry, on the boundary conditions,
and on the wave number. The optimal point is determined experimentally in the
numerical examples of Section 4.

We have estimated the accuracy in our solutions U(r) rather thoroughly. The
tutorial [11, Section 18] contains error plots for exterior problems in non-smooth
domains produced in a direct way. These are achieved by generating the boundary
conditions on Γ via line sources inside Γ so that the exact solution is known. In the
plane-wave scattering examples of Section 4.1, below, no exact results are known.
Therefore we proceed as follows; we �rst compute a solution U(r) using a number
of coarse panels on Γ deemed su�cient for resolution. We then increase the number
of panels with 50 % and solve again. The di�erence between the resolved value
of U(r) and the overresolved value of U(r) is used as an indirect pointwise error
estimate. When kd = 1000 we found that 900 panels on Γ, corresponding to 37.4
points per wavelength, gave the best possible resolution. Yet an indirect method to
estimate the (overall) precision in the computations is by comparing the scattering
cross section computed from its de�nition (close to Γ) with its value obtained via
the optical theorem (at in�nity). See, further, Section 4.2. As it turns out, the
various error estimates seem to agree well.

4 Numerical examples

We shall now solve (2.5) and (2.15) for the unknown density ρ(r), using the method
of Section 3, and then evaluate the scattered �elds of (2.4) and (2.11). We restrict the
numerical examples to scattering from an in�nite straight cylinder with boundary
Γ described by

r(t) = sin(πt) (cos((t− 0.5)π/2), sin((t− 0.5)π/2)) , t ∈ [0, 1] , (4.1)

and to the incident plane wave Uinc(r) = eiky for both E-waves and H-waves. The
object parameterized in (4.1) has a corner with opening angle θ = π/2 at r = 0 and
a diameter d = 1, in arbitrary length units, so that kd = k. The examples cover
sizes from kd = 1 up to kd = 1000. We have seen that at kd = 1000 the frequency
is high enough such that the uniform theory of di�raction theory can be applied.
All numerical examples are executed in MATLAB on a workstation equipped with
an IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory.

4.1 Near �eld

In many applications it is required that the numerical method can calculate the
electric and magnetic �elds everywhere in Ωex. Figures 1 and 2 show the total
electric �eld for the E-wave and total magnetic �eld for the H-wave in the vicinity
of the scattering object and the corresponding errors. The scattering object itself
appears in green color in the left images and in white color in the right images. The
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Figure 1: Left: a), c), e) show Re {U(r)} for a plane E-wave Uinc(r) = eiky incident
on the perfectly conducting cylinder with boundary Γ given by (4.1). Right: b), d),
f) show absolute errors.



11

x

y

H−wave with k=10

 

 

a)

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

log
10

 of error in U for H−wave with k=10

 

 

b)

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−15.6

−15.4

−15.2

−15

−14.8

−14.6

x

y

H−wave with k=100

 

 

c)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

0.15

0.2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

log
10

 of error in U for H−wave with k=100

 

 

d)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

0.15

0.2

−15.6

−15.4

−15.2

−15

−14.8

−14.6

−14.4

−14.2

−14

−13.8

x

y

H−wave with k=1000

 

 

e)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.01

−0.005

0

0.005

0.01

0.015

0.02

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

log
10

 of error in U for H−wave with k=1000

 

 

f)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.01

−0.005

0

0.005

0.01

0.015

0.02

−15.5

−15

−14.5

−14

−13.5

−13

−12.5

Figure 2: Left: a), c), e) show Re {U(r)} for a plane H-wave Uinc(r) = eiky incident
on the perfectly conducting cylinder with boundary Γ given by (4.1). Right: b), d),
f) show absolute errors.
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Figure 3: The scattering cross sections σsca for the E-wave, a), and H-wave, c),
calculated by the optical theorem (4.3) and the relative error, b) and d), compared
to the values from equation (4.2)

number of spatial points in each image is 106. It is encouraging to see, in the right
images of Figures 1 and 2, that the accuracy is high even close to the boundary
and, in particular, close to the corner. The integrals in (2.4) and (2.11) are often
thought of as di�cult to evaluate close to the boundary due to the singularities in
the Hankel functions when r′ = r. However, the present method circumvents these
problems using the high-order analytic quadrature outlined in Section 3.2.

In Figures 1 a), c), and e) the real part of the total electric �eld U(r) for the
E-wave case is plotted for kd = 10, 100, and 1000. To capture the di�raction pattern
in the vicinity of the corner, the �eld is plotted in a rectangular region with side
length proportional to 1/k and center at the tip of the corner. At kd = 10 the error
is very small, as seen from Figure 1 b). The errors increase slightly with kd but even
at kd = 1000 we get 14 digits or better almost everywhere, as depicted in Figure
1 f). For H-waves the accuracy is almost as good as for the E-waves, as seen from
Figure 2.

For kd = 100 and 1000 we can interpret the �eld plots in Figures 1 c), e) and 2
c), e) through the theory of di�raction. Thus, the outer region Ωex is divided into
three subregions separated by the re�ection boundary and the shadow boundary.
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4.2 Scattering cross section and optical theorem

In two dimensions the scattering cross section reads

σsca =
Psca

Sinc · ŷ
= Re

{
i

ω

∫
Γcirc

Usca(r
′)
∂U∗

sca
(r′)

∂νr′
d`′
}
, (4.2)

where Psca is the scattered power per unit length, Sinc · ŷ is the y−component
of the Poynting vector of the incident �eld, i.e. the incident power density, the
boundary Γcirc is a closed curve that circumscribes the boundary Γ, and the star
denotes complex conjugation. The expression holds for both E- and H-waves. In a
numerical experiment with the cylinder of (4.1) we let Γcirc be a circle of radius 0.55
and with center at r = (0.5, 0). Since the diameter of the scatterer is d = 1, the
smallest distance between the Γ and Γcirc is 0.05 and it occurs at the corner vertex
and at a point opposite to the corner vertex. For evaluation points r′ so close to the
boundary, the �eld Usca(r

′) and its normal derivative are in general hard to evaluate.
But, as we have already seen in Section 4.1, the RCIP method and the high-order
analytic quadrature outlined in Section 3.2 should allow for high accuracy.

By utilizing the optical theorem we get an alternative expression for the scatter-
ing cross section

σsca = − lim
y→∞

Re

{
4

ω
Usca(0, y)

√
πωy

2
e−i(ωy−π/4)

}
(4.3)

which should be even simpler to evaluate than (4.2) since it only involves the far
�eld. The mismatch between the scattering cross sections computed via (4.2) and
via (4.3) can be used as an error estimate for both expressions. The cross sections
for the E-waves along with such error estimates are given in Figure 3 a) and b)
and the corresponding data for the H-waves are given in Figures 3 c) and d). The
mismatch error is on the order of 10−15. The cross sections in Figures 3 a) and c)
show the well known behaviors for large and small values of k.

5 Conclusions

We have shown how the basic problems of scattering of E- and H-waves from per-
fectly conducting cylinders with corners can be solved numerically to high accuracy
on a mesh that on a global level is not re�ned close to corner vertices. We give
examples where the scattered electric and magnetic �elds from a cylinder with one
corner and with a diameter of up to 160 wavelengths is obtained with 14 digits of
accuracy almost everywhere outside the cylinder. This success is achieved by

1. choosing a suitable integral representation of the scattered �eld in terms of an
unknown layer density

2. formulating the scattering problem as a Fredholm second kind integral equa-
tion with operators that are compact away from the corners
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3. discretizing with a Nyström scheme and a mix of composite Gauss�Legendre
quadrature and high-order analytic product rules

4. modifying the discretized integral equation so that the new unknown, a trans-
formed layer density, is piecewise smooth

5. solving the resulting well-conditioned linear system iteratively for the trans-
formed layer density

6. partially reconstructing the original layer density from the transformed layer
density

7. evaluating the scattered �eld from a discretization of its integral representation
which, again, relies on a mix of composite Gauss�Legendre quadrature and
high-order analytic product rules

While some steps in this scheme are standard, step 4, 6, and 7 are unique to the
recently developed RCIP method. Conceptually, step 4 and 5 correspond to apply-
ing a fast direct solver [20] locally to regions with troublesome geometry and then
applying a global iterative method. This gives us many of the advantages of fast di-
rect methods, for example the ability to deal with certain classes of operators whose
spectra make them unsuitable for iterative methods. In addition, this approach is
typically much faster than using only a fast direct solver.

Our numerical scheme can be extended to related problems of importance in
e.g. band-gap structures, axially symmetric cavities for accelerators, and remote
sensing of underground objects. Thus we can extend the method to scattering from
homogeneous dielectric cylinders, scattering from multiple cylinders, scattering from
cylinders in layered structures (c.f. [18]), scattering of plane waves at oblique angles
from cylinders, and scattering from axially symmetric three-dimensional geometries.
Some of these problems will be addressed in forthcoming papers.
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