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Abstract

Extraordinary transmission through sub-wavelength apertures is usually ob-

served in a narrow bandwidth range and the transmission outside this range is

low in agreement with classical results. The analysis presented here is based

on the Babinet's principle and hence scattering by the complementary struc-

ture, where the apertures are replaced by �nite scatterers. It is shown that

the transmission cross section of a set of apertures in an opaque screen satis-

�es a sum rule that relates the transmission cross section integrated over all

wavelengths with the polarizability of the complementary structure as de�ned

by Babinet's principle. The theoretical results are illustrated with numerical

examples.

1 Introduction

Transmission of electromagnetic energy through sub-wavelength apertures in an
opaque screen has recently attracted much interest [1, 3, 9, 12, 13]. It is well known
that the transmission of an electromagnetic wave, with wavelength λ, through a sin-
gle circular aperture with radius a is proportional to (a/λ)4 as a/λ→ 0. The trans-
mission cross section, σt, is hence negligible if λ � a. Extraordinary transmission,
σt � a2 can e.g., occur for periodic arrays of apertures, corrugated surroundings of
an aperture, cavity antennas, and for resonant apertures. This is often associated
with surface plasmon resonances [1, 3, 4, 9, 12, 13] but it also resembles frequency
selective surfaces and aperture antennas [10].

In this letter, it is shown that the transmission cross section, σt, for apertures in
a thin opaque screen satis�es a sum rule. The sum rule relates σt(λ) integrated over
all wavelengths, λ, to the long wavelength (i.e., static) polarizability of the com-
plementary structure as de�ned by the Babinet's principle [11, 17]. This restricts
the extraordinary transmission with large σt for speci�c wavelengths to be narrow
banded, i.e., the enhanced transmission must be compensated by a reduced trans-
mission as the total integral is determined by the polarizability and is hence �xed.
Moreover, variational principles of the polarizability dyadics [7, 15] are used to show
that the integrated transmission is monotonic in the aperture size, i.e., the total
transmission over all wavelengths is not smaller for larger apertures.

The sum rule used here is the integrated extinction [15] that has been extensively
veri�ed and shown to have several intriguing applications in scattering and antenna
theory [5, 6, 16]. It is derived from the holomorphic properties of the forward scat-
tering dyadic that determines the extinction cross section via the optical theorem.
It is solely based on the principles of causality, time translational invariance, and
passivity [14, 15, 18].

2 Sum rules

Consider an in�nite perfectly conducting plate, Se, with an aperture Sm, see Fig. 1.
The �eld satis�es the boundary condition ẑ ×E(r) = 0 for r ∈ Se. The Babinet's
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Figure 1: Illustration of the Babinet's principle where the �eld, Et, transmitted
though the aperture Sm in a) is determined by the scattered �eld, Es, of the com-
plementary structure in b), i.e., Et = −Es.

principle states that the transmission pattern of the apertures in the planar opaque
screen is identical to the scattering pattern of the complementary structure [11, 17],
see Fig. 1. The transmitted �eld, Et, can hence be determined as Et = −Es

where Es is the scattered �eld from the complementary magnetic surface where
ẑ ×H(r) = 0. In conclusion, instead of analyzing the transmitted �eld through
an aperture in Se, the scattered �eld by the complementary magnetic surface Sm is
analyzed [11].

The surface Sm does not absorb power so the absorptions cross section of Sm

is zero and the extinction cross section, σext, equals the scattering cross section.
Moreover, the scattered �eld radiates equally in the positive and negative half spaces.
The transmitted power, Pt, of an incident plane wave is, hence, the incident power
�ux times half the extinction cross section, i.e.,

Pt = −Re
1

2

∫
Sm

ẑ ·Et ×H∗t dS =
1

2η0

σt|Ei|2, (2.1)

where the transmission cross section is σt = σext/2 and η0 denotes the free space
impedance.

Consider an incident plane wave propagating in the k̂-direction with linear po-
larization ê, i.e., Ei = êE0e−ik̂·r/λ, where E0 ∈ R and ê denotes a unit vector
orthogonal to k̂. The sum rule is derived from the forward scattering via the optical
theorem σext = Imh, where h(λ) = 2λê · S(λ, k̂) · ê is a Herglotz function [14] and
S denotes the forward scattering dyadic [15]. The long-wavelength limit of h is

h(λ) =
(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
2π/λ+O(λ−2) (2.2)

as λ→∞, where γe and γm denote the electric and magnetic polarizability dyadics,
respectively [8, 15]. The corresponding short-wavelength limit is 2A, where A is the
geometrical cross section of the object, cf., the extinction paradox [2]. Applying the
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Figure 2: High contrast polarizability dyadics, γ∞, for the a) solid disc and b) split
ring resonator.

Cauchy integral formula to a large semi circle in the upper complex half plane gives
the integrated extinction [15].

Now, the relation σt = σext/2 de�nes a sum rule for the transmission cross
section, i.e.,

2

π2

∫ ∞
0

σt(λ; k̂, ê) dλ = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê). (2.3)

The electric polarizability dyadic in (2.2) has only a ẑẑ-component, i.e., γe = γeẑẑ,
for �at perfectly magnetic conducting plates, cf., [8]. This simpli�es the sum
rule (2.2) to an identity in the magnetic polarizability dyadic, γm, for polarizations
such that ê · ẑ = 0, e.g., an incident wave propagating in the normal direction,
k̂ = ±ẑ, viz.,

2

π2

∫ ∞
0

σt(λ; ẑ, ê) dλ = (ẑ × ê) · γm · (ẑ × ê). (2.4)

Estimate the integral in (2.3) to obtain a bound on the transmission cross section
times the bandwidth, i.e.,

|Λ|min
λ∈Λ

σt(λ; ẑ, ê) ≤ π2

2
(ẑ × ê) · γm · (ẑ × ê), (2.5)

where the bandwidth is |Λ| = λ2 − λ1 and Λ = [λ1, λ2] denotes the wavelength
interval. Note that the wavenumber, k, or the angular frequency can as well be used
to derive sum rules and dispersion relations as k = −1/λ maps the upper half plane
into itself, cf., [5, 15].

3 High contrast polarizability dyadic

The magnetic polarizability dyadic is related to the magnetic dipole moment,m, as
m = γm ·H , where H is the magnetic �eld strength. It equals the high contrast
polarizability dyadic for perfectly magnetic conducting objects, i.e., γm = γ∞, cf.,
the electric case in [15]. The high contrast polarizability dyadic is determined from
the �rst moment of the normalized surface charge density ρ as

γ∞ · ê =

∫
Sm

rρ(r) dS, (3.1)
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Figure 3: Transmission cross sections for circular and split ring apertures in an
opaque screen for an incident plane wave propagating in the normal direction of the
screen. The shaded boxes illustrate the bound (2.4), cf., Fig. 2.

where ρ satis�es the integral equation

r · ê+ C =

∫
Sm

ρ(r′)

4π|r − r′|
dS′ for r ∈ Sm (3.2)

and the constant C is obtained from the requirement that the total normalized
surface charge is zero,

∫
Sm
ρ(r) dS = 0. The polarizability dyadic can also be deter-

mined by solving a partial di�erential equation and there are closed form expressions
for the elliptic disc that reduce to γ∞ = 16a3(x̂x̂ + ŷŷ)/3 for a circular disc with
radius a [8, 15].

Variational results show that γ∞ is monotonic in the surface Sm, i.e., γ∞1 ≤ γ∞2

if Sm1 ⊂ Sm2, where γ∞j, j = 1, 2 denote the high contrast polarizability dyadic of
surface Smj, see [7, 15]. The high-contrast polarizability dyadics for a disc and a split
ring are given in Fig. 2. It is observed that the polarizability dyadic of the disc is
larger than the polarizability dyadic of the split ring. This is in agreement with the
variational principles discussed above [7, 15]. However, it is also observed that the
area can be substantially reduced with only a minor reduction of the polarizability
dyadics, e.g., the area of the circular split ring is 18% and the polarizability in the
ŷ-direction is 84% of the corresponding cases for the circular disc.

4 Numerical example

The sum rule (2.3) is illustrated for apertures in the form of a circular disc a split
ring resonator, see Fig 3. The magnetic polarizability dyadics of the complementary
perfectly magnetic conducting circular disc and split ring resonator are given in
Fig. 2 and they determine the right-hand sides of the sum rule (2.3). Numerical
integration of (2.3) over the considered wavelength interval gives 96%, 99% and 99%
of the corresponding polarizabilities in the right hand side. The bound (2.4) is
illustrated by the shaded boxes in Fig. 3. It is observed that the bound (2.4) o�ers



5

0

20

-100

0

100

¸=12.1a

^

¸=5.6a

-Re z¢E£H
jE  j /´i

2

0

^-Re z¢E£H
jE  j /´i

2
0
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Figure 4: Illustrations of the normalized power-�ux density though the split ring
aperture at a) λ = 5.6a and b) λ = 12.1a, cf., Fig. 3.

a good estimate of the bandwidth amplitude product as σt is small outside the
resonance wavelength for the split ring aperture.

The sum rule determines the area under the curves and it provides an estimate of
the bandwidth times the amplitude of the corresponding resonances. It gives no in-
formation about the location of the resonances or if the resonance is wide with small
amplitude or narrow with large amplitude. Although, the precise location and shape
of a resonance require the solution of the Maxwell equations it is sometimes possible
to estimate the resonance wavelength from simple physical arguments. Many ob-
jects are resonant when their length is approximately half a wavelength. This partly
explains the increased transmission around λ/a = 4 for the circular disc. This reso-
nance is also very broad due to the many length scales in the disc. However, as the
area is limited by the sum rule (2.3), the broad resonance also limits the amplitude
of the transmission. The resonances of the split rings are sharper and approximately
located at λ/a ≈ 4π and λ/a ≈ 2π. These resonances are also narrow and can hence
provide a large transmission as seen in Fig. 3.

The enhanced transmission is also seen in Fig. 4, where the normalized power-
�ux density −Re ẑ · E ×H∗η0/|Ei|2 is depicted for the split ring aperture at the
resonances wavelengths λ = 5.6a and λ = 12.1a. It is observed that the maximal
power-�ux density is increased more than 100 times at λ = 12.1a compared to the
short wavelength limit of 1. This ability to concentrate energy into sub-wavelength
regions has potential applications in near �eld optics, enhancement of emission from
molecules, non-linear optics, and optical switching [12].

5 Conclusions

The sum rule introduced in this letter shows that the transmission cross section inte-
grated over all wavelengths is related to the polarizability of the aperture. Moreover,
variational principles show that this total transmission is monotonic in the size of the
aperture. This is, e.g., illustrated by the split rings where extraordinary transmis-
sion is observed over a narrow bandwidth, however the total transmission is slightly
lower than for the circular disc. These results are valid for a large class of apertures
and they o�er new understanding about the underlying principles of extraordinary
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transmission through sub-wavelength apertures in thin opaque screens.
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Appendix A Babinet's principle

The Babinet's principle states that the transmission pattern of apertures in a pla-
nar opaque screen is identical to the scattering pattern of the complementary struc-
ture [11, 17]. Here, an alternative derivation that is based on scattering by disjoint
electric and magnetic surfaces in the same plane is presented. Consider two disjoint
surfaces Se ⊂ R2 and Sm ⊂ R2 located in the plane de�ned by z = 0, see Fig. 1.
The surfaces are supposed to satisfy the boundary conditions ẑ ×E(r) = 0 for the
electric surface r ∈ Se and ẑ ×H(r) = 0 for the magnetic surface r ∈ Sm. Now
the magnetic �eld induced by arbitrary electric currents on Se satisfy the related
boundary condition on Sm and contrary for the electric �eld induced by magnetic
currents on Sm. Hence, the scattered �eld by the surfaces is the sum of the scat-
tered �elds of Se and Sm, where the electric and magnetic surfaces can be considered
independently of each other, see Fig. 5.

The Babinet's principle follows by letting the union of Se and Sm be the in�nite
plane de�ned by z = 0 and assuming z < 0 to be source free. As the incident �eld,
Ei, cannot penetrate through the screen, the total �eld, E = Ei + Es, is zero in
z < 0 and hence Es = −Ei for z < 0. Using that the scattered �eld is additive from
the electric and magnetic surfaces, Es = E(e)

s +E(m)
s , gives the scattered �eld from

the electric surface, Se, as E
(e)
s = Es − E(m)

s = −Ei − E(m)
s . The total, i.e., the

transmitted, �eld in z < 0 with only Se present is hence determined by the scattered
�eld from the magnetic surface, i.e., E(e)

s +Ei = −E(m)
s .
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