
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Convex Optimization-Based Approach to Control of Uncertain Execution Platforms

Lindberg, Mikael

2010

Link to publication

Citation for published version (APA):
Lindberg, M. (2010). A Convex Optimization-Based Approach to Control of Uncertain Execution Platforms. 2322-
2329. Paper presented at 49th IEEE Conference on Decision and Control, Atlanta, Georgia, United States.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 23. Sep. 2024

https://portal.research.lu.se/en/publications/4dd6cf7b-5429-4d7a-9e7e-8754440d6db6


A Convex Optimization-Based Approach to Control

of Uncertain Execution Platforms

Mikael Lindberg

Department of Automatic Control, Lund University

mikael.lindberg@control.lth.se

Abstract— The problem of resource management in a sys-
tem of a-priori unknown software components executing on
nondeterministic hardware is considered. The approach uses
on-line parameter estimation to address uncertainties and
combines this with a convex optimization-based control scheme
able to handle overload situations. An algorithm to solve the
optimization in real-time is presented together with perfor-
mance analysis through simulations. An implementation of the
approach is experimentally compared with a static analysis
scheme using worst case a-priori estimates. It is demonstrated
that the presented approach outperforms the static scheme in
situations with uncertainty and that the advantage increases as
uncertainty grows.

I. INTRODUCTION

The consolidation of telephony, media and general utility

computing into modern smart phones has led to an increased

focus on managing limited resources to make devices flexible

while also robust, powerful and yet efficient. As a con-

sequence, the method for allocating the CPU resource to

competing subsystems becomes central to the performance

of the product. This is complicated by growing performance

uncertainties in emerging CPU technology.

The type of scenario that drives system design is illus-

trated in Figure 1. In a video telephony situation, a set

of components execute concurrently, thereby competing for

the CPU resource. Few assumptions can be made regarding

the amount of resource each component needs in order

to perform at an acceptable level. Two important reasons

for this is the data driven behavior of algorithms such as

Application
CPU

OS
Scheduler

3rd Party
Software

GSM
Stack

Video
Encoder

Audio
Encoder

Fig. 1. Overview of a video telephony scenario with a typical set of
components. Some of these are well known by the phone designer, while
others can be downloaded to the phone by the user.

compressed media encoding and limited knowledge about

3rd party components. Similarly, resource availability is

hard to predict, as power management and other hardware

monitoring mechanisms will enforce temperature constraints

and maximize battery life by throttling CPU performance.

The system is therefore expected to be working on the

resource constraint all all time.

Growing uncertainties makes the problem difficult to

address with static analysis methods, e.g. Rate Monotonic

scheduling [18]. Worst case approaches yield designs that

underutilize the system, which raise unit cost. Several works

propose introducing feedback control in the scheduling

mechanism ([2], [9]) to deal with uncertainty. This paper con-

tinues along these lines, using control and estimation tech-

niques in order to maximize performance in environments

with limited resources using minimum a-priori knowledge.

II. CONTRIBUTIONS AND OUTLINE

The three challenges to resource management for embed-

ded systems this papers aims to solve are

• allocation for systems using CPUs with uncertain execu-

tion speed and software with uncertain execution time,

• allocation strategies in overload situations and

• implementation on limited precision hardware.

Section III presents a survey of related work. A component

model intended for control and estimation is developed in

Section IV and Section V then discusses methods for esti-

mating the model parameters on-line. Section VI poses the

resource allocation problem in terms of the model parameters

and Section VII explains the incremental algorithm used to

solve it in real-time. Details regarding an implementation are

provided in Section VIII. The paper concludes with execution

and simulation results, which are presented in Section IX,

and some thoughts on future work in Section X.

III. RELATED RESEARCH

The ideas presented in this paper rely on the existence

of a reservation based scheduling layer, used to partition

the CPU-resources predictably. Theory for reservations can

be derived from traditional EDF scheduling, resulting in

e.g. the Constant Bandwidth Server (CBS) formulation by

Abeni & Buttazzo in [3]. The concept has been extended

to include constrained resource situations through Elastic

Reservations in [8] and [6]. The work in this paper differs

primarily in that it allows a more general formulation of the



resource tradeoff and puts more focus on online estimation

of unknown parameters.

Resource allocation is often posed as an optimization

problem, with a prominent example in Rajkumar’s work

on Q-RAM, which was originally described in [20]. This

has since been extended to include multi-resource cases in

[13]. This paper takes a similar approach, but special care

is taken so that the optimization is solvable in realtime and

also focuses more on parameter estimation.

Resource allocation is often seen as knapsack- or bin-

packing problems (see e.g. [15]), but the difficulty of solving

these types of problems makes the formulation ill suited for

use in embedded systems.

An approach, using convex optimization in realtime, has

been discussed in recent publications by Grant and Boyd[14].

While these algorithms can be used to solve much more

general problems, they rely on code generation to produce

specialized solvers. This imposes restrictions on how prob-

lem structure can vary over time. The proposed framework

in this paper allows the problem to be modified over time by

adding or removing components and makes few assumptions

on the individual utility functions, allowing heterogeneous

problems to be solved.

Using control theory for computer systems is a strong

emerging trend. This has successfully been done by e.g.

Tarek Abdelzaher, who treats it in several publications,

including [1]. This work is relevant for the problem studied

in this paper, but more focused on computer server farms

than the embedded space.

IV. SYSTEM MODEL

Consider a system of software components executing on

the same CPU. The capacity of the CPU is shared between

the components through preemptive scheduling. Through the

use of reservation based scheduling techniques, the CPU

computational capacity can be split among the components.

Each component will experience the execution platform

as a private but slower environment, where the execution

of one component does not influence the timing behavior

of the other components. This property of a scheduling

mechanism is called temporal isolation and makes it possible

to approximate the multiplexed CPU as a divisible, fluid

resource.

The type of components modeled in this paper execute in

a cyclic manner, where the completion of each cycle results

in the output of some form of result. Examples include media

decoders that compute video images, control components

that compute control signals or network communication

components that send and receive messages. Figure 2 shows

how each component is modeled.

Generally speaking, the component accumulates the in-

coming resource, in this case CPU execution, until some

quantity has been achieved. At this point it outputs the result

and commences a new cycle. The details of the model are:

• ui(t) is the share of α(t) assigned to component i and

is a dimensionless number.

ui(t)

vi(t)

α(t)
∫

dt qi()
xi(t) ni(t)

Fig. 2. A cyclic computation software component. ui(t) is the CPU
resource share assigned, vi(t) is the disturbance on the assigned share
caused by the environment, αi(t) is the execution speed of the CPU, xi(t)
is the accumulated execution, qi(t) is a staircase function mapping xi(t)
onto ni(t), which signifies the number of completed cycles.

• vi(t) is a zero-mean disturbance of this share caused by

the scheduler as experienced by component i. The two

major sources for this disturbance is the error in the ap-

proximation that the CPU is really fluidly divisible and

certain system events that interrupt normal execution,

such as hardware interrupts or virtual memory handling.

• α(t) denotes the speed at which the CPU executes

instructions and has the unit of completed instructions

per time unit.

• xi(t) is the accumulated number of executed instruc-

tions for component i.
• qi is a staircase function defined as

qi(x) = max k, s.t.

k
∑

j=1

ρji ≤ xi(t) (1)

for some sequence < ρki > that describes the amount of

execution it takes component i to complete computation

cycle k.

• ni(t) signifies the number of cycles completed by i.

The objective is to control the growth rate of ni(t) through

ui(t).
In a traditional real-time setting, the objective would be

to guarantee an upper bound on the time between two

completed cycles. The key to do this lies in assuming

knowledge of bounds on ρi, α(t) and vi(t) (see e.g. [18]

and [7] for some classic results).

This paper focuses on cases where such bounds are

either unavailable or too conservative and instead make the

following assumptions:

(a) the sequence ρki is unknown and changes slowly over

time,

(b) while α(t) cannot be directly measured, it is possible

to measure xi(t) and thereby
∫ t1

t0

α(t)dt

(c) The completion of a cycle is observable through an

event, defined as the tuple (tki , xi(t
k
i )), where tki is the

time when component i completed cycle k.

A. Components with rate-based utility

For media applications, the quality strongly connected to

processing-rate. Higher frame-rates means more fluid video

playback, higher bit-rates means more information in each

frame. Similarly, in a control system, control performance



is related to sample-rate. Using resource management termi-

nology, it can be said that these applications have rate-based

utility. Rate is here taken as the number of completion cycles

over period of time.

It has been demonstrated that feedback control is robust to

jitter in sampling and setting of control signal (see e.g. [10]).

In much the same way, video playback can suffer both jitter

and the occasional frame loss without significant degradation

in quality ([11]). In this paper, applications of this type is

considered timing sensitive rather than hard real-time. Under

this assumption, the requirement that all deadlines must be

met is relaxed and the formal objective becomes to minimize

the rate error

ei = ri − yi(t) = ri −
1

hi
(ni(t)− ni(t− hi)) (2)

where ri is the rate set-point for component i and hi is a time

interval chosen depending on ri. It is assumed from here on

that hi ≫ r−1

i . Using assumption (a), ρki is approximated by

its mean value ρ̄i and yi(t) written as as

yi(t) =
1

hi

xi(t)− xi(t− hi)

ρ̄i
=

ui(t− hi)

ρ̄i

∫ t

t−hi

α(t)dt

hi
= ui(t− hi)

ᾱ

ρ̄i

(3)

assuming ui is constant in the interval [t − hi, t). As ᾱ/ρ̄i
is an unknown quantity it will be treated as one unknown

parameter ki and can be seen as the static gain from ui to

yi, resulting in the simple linear model

yi(t) = kiui(t− hi) (4)

A slight complication arises from the fact that most compo-

nents of this type will limit its execution rate once it reaches

ri. A more complete model would then be

yi(t) =

{

kiui(t− hi) 0 ≤ ui(t− hi) ≤
ri
ki

,

ri ui(t− hi) >
ri
ki

(5)

Figure 3 shows two cases which were produced using

MPEG-4 video streams and the free MPlayer software. The

video streams are encoded at a fixed rate, in this case 30

frames per second (fps). When controlling the CPU share

available to the player below what is required for full rate

playback, it starts to skip frames to keep up.

Estimating the parameters ki in (5) would be straight

forward if the rate yi was a continuous signal that could

be sampled. As it is, there is only new information about

the execution rate when a calculation cycle completes or

when an expected event is missing. There are two main

alternatives to estimate the execution rate from this, sliding

time window event counting and filtering arrival times[4]. It

is worth noting that a benefit from measuring the rate through

the completion events is that this poses a mild requirement on

the software. Since in cellular phone design, it is common

to use 3rd party components, this is highly desirable as it

reduces the cost and complexity of the components. The

methods of event based estimation is discussed further below.

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40

y
 (

fp
s
)

Mean fps for righ-res movie

Piecewise linear approx

Datapoints

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40

y
 (

fp
s
)

Mean fps for low-res movie

Piecewise linear approx

Datapoints

Fig. 3. Experimental results of controlling CPU-share for the MPlayer
decoder using Linux 2.6.27 and Control Groups. The diagrams show how the
frame rate per second (fps) depends on the amount of CPU share allocated
to the decoder. The rate increases linearly with share until the movie can
be played back at encoded rate.

V. EVENT BASED ESTIMATION

This section will discuss two approaches to form an

estimate of the rate yi and the parameter ki from (5).

Important considerations for an estimation scheme are:

• that estimates are calculated in predictable time/space,

• how sensitive the estimate is to noise and

• how fast the scheme can detect a change in rate

The following assumptions will be made on the component

• The rate is constant over the interval of time hi
• ki can in hi be considered to be generated by a weak

stationary stochastic process.

A. Sliding window event counting

Using the definition of rate (events/time period) it is

natural to consider an approach where the number of events

occurring over a predetermined time period is mechanically

counted. Given a suitable window length, the method is

straight forward in implementation, but needs an unknown

amount of memory to keep the events and that the time com-

plexity is proportional to the rate, i.e. unknown beforehand.

B. Event based filtering

An alternative approach is to view the estimation of yi as

a prediction problem, where the objective is to predict the

time until the next event arrives. If ∆(n) denotes the time

between event n and n − 1, using the assumed stationarity

stochastic properties of n, a predictor can be written on the

discrete time shift operator form

∆̂(n+ 1) =
B(q−1)

A(q−1)
∆(n) (6)

ŷi(n) =
1

∆(n+ 1)
(7)

The selection of the polynomials B and A makes it possible

to filter out specific noise components of the sequence and as

long as the filter has unit stationary gain (B(1)/A(1) = 1)
the proper mean will be obtained. There is one caveat how-

ever when dealing with a decreasing rate. If the prediction

states that an event should occur but there is none, the



estimate must be updated to reflect this. In this work the

update is done through noting that if t time has passed

since the last event occurred and t > ∆̂(n + 1), then the

highest possible current rate would be sustained if an event

would arrive at the time t+ ǫ. A way to check for this is to

tentatively update the prediction as if an event had occurred

at the time t and check if the estimated rate would be lower.

If tn denotes the arrival time of event n and ∆e(n) denotes

the extended sequence {...,∆(n − 1),∆(n), (t − tn)}, the

resulting estimator for y(t) would then be

∆̂(n+ 1) =
B(q−1)

A(q−1)
∆(n)

∆̂e(n+ 1) =
B(q−1)

A(q−1)
∆e(n)

ŷi(t) =
1

max(∆̂(n+ 1), ∆̂e(n+ 1))

(8)

Advantages with this approach is that the filter is fixed in

time and space complexity. There is also the added degree of

freedom in selecting the filter polynomials, but the downside

is that badly chosen polynomials can yield a noisy estimate.

C. k-parameter estimation

Given an estimate of the current execution rate ŷi(t),
falling back on (5) results in the following estimate:

k̂i(t) =
ŷi(t)

ui(t− hi)
(9)

Unfortunately, this estimate does not take the disturbance wi

into account. As it is possible to measure xi(t) directly, a

better estimator would be

k̂i(t) =
ŷi(t)

xi(t1)− xi(t0)
(10)

if t and t0 and t1 are such that the events used to form ŷi(t)
occur in the interval (t0, t1).

VI. CONSTRAINED ALLOCATION

Allocating resources under constrained conditions requires

a compromise in performance for the component set. To

evaluate such a compromise, a global performance metric

is needed. If each component is associated with a utility

function [5, pp 130], a natural choice would be an aggregate

of these. Finding an aggregate that well represents the user

perceived system performance will be situation dependent

and the task of the system designer. In this paper, some

restrictions are posed on the selection of aggregate in order

to fit the target platform.

The primary restriction is on the component utility func-

tion is that it should fit the convex framework presented in

Section VI-A. This allows for simplified solver algorithm

design without putting too severe limits on the choices

available to the designer. A secondary restriction is numer-

ical simplicity. Computing the value of the function and

its derivative must be relatively inexpensive on a limited

precision platform. For evaluation purposes, one such choice

will be suggested in the next section.

A. A Convex Formulation

The proposed problem structure in this paper is

min J(u) =

N
∑

i=1

wiJi(ui)

u ≥0

1Tu ≤utot

(11)

under the restriction that Ji(ui) is a convex differentiable

function. In the examples presented in this paper, Ji(ui) =
e2i , a common quadratic programming (QP) structure. Note,

however, that this is only an example. The solver algorithm

presented below allows for heterogenous mixes of convex

differentiable utility functions. This can be exploited by

system designers to design policies which distinguishes

between different classes of software, e.g. system services

or 3rd party add-ons. Even if the quadratic form is used,

general QP solvers are difficult to implement using fixed

point arithmetics. Code generation [14] and automatic tools

[16] can remove some of these issues, but are not suitable

when the problem structure is not known beforehand.

Let ȳi(ui) = kiui denote the steady state rate as a function

of assigned resource. The cost function then becomes

J =

N
∑

i=1

wie
2
i =

N
∑

i=1

wi(ri − ȳi(ui))
2 (12)

This formulation is much like the water filling problem (see

[5, pp 245]) used for power allocation in communications

theory, with the difference that the set of utility functions

can here be heterogenous.

As previously stated, an important property of the problem

is that the parameters are expected to change over time. It

is therefore not possible to solve for the optimal allocation

once and leave it at that. Changes to the setup can come in

many different ways, including

• a new component becomes active,

• a component changes its internal structure thereby

changing its utility function,

• the total amount of resources decreases due to e.g. CPU

becoming too hot and needs to be throttled,

• properties of the data processed lead to changes in

utility function parameters.

The solver thus needs to run continuously, making it desir-

able that it

1) takes minimal system resources,

2) quickly accounts for changing parameters,

3) produces at least partial results in predictable time and

memory, and

4) can improve upon a previous allocation even if aborted

before optimum was computed.

VII. INCREMENTAL OPTIMIZATION

In response to the properties 1 – 4, it seems that an

incremental approach is suitable, meaning that the algorithm

computes the answer as a sequence of relatively simple

operations, where each operation improves the solution a bit.



As parameters can change at any time, it makes sense to try

to use small increments so that as little work as possible is

wasted if parameters change in mid increment. A guiding

principle behind the proposed solution is that computers are

generally good at doing simple things over and over again.

This has implications on cache usage, compiler optimizations

and stack memory requirements.

Assume that two components Ci, Cj are picked from the

set during the k:th step of the algorithm. Let Jk be the cost

at the beginning of the step and Jk
i,j denote the contribution

by Ci, Cj to Jk. Consider now what happens if an amount of

resource δ is transferred from Ci to Cj so that their combined

contribution to Jk+1 is minimized, i.e. by solving

min
δ

Jk+1

i,j =wiJi(u
k
i + δ) + wjJj(u

k
j − δ)

s.t.− uki ≤ δ ≤ ukj
(13)

This ensures that

Jk+1 ≤ Jk (14)

In other words, by in each step solving a subproblem, perfor-

mance will improve incrementally. Solving this minimization

problem for general convex functions Ji(ui) can be done

by modifications to unconstrained methods such as Newton-

Rhapson or even bisection. In the case of components mod-

eled by (5), near closed form expressions can be obtained

for some common cost function, see [17] for examples.

Selecting the pair Ci, Cj for each step is the last element

of the algorithm. The proposed strategy is derived from the

Karush-Kuhn-Tucker (KKT) conditions (see e.g. [5]). Posing

(11) on standard form, the Lagrangian becomes

L(u, λ, ν) =

N
∑

i=1

wiJi(ui)− λTu+ ν(1Tu− utot) (15)

The KKT-conditions state that ∇L(u, λ, ν) = 0 in an optimal

point. By studying the expression

∂L(ui, λ, ν)

∂ui
= wi

∂Ji(ui)

∂ui
− λi + ν = 0 (16)

it can be seen that in an optimal point, either ui = 0 or

−wi∂Ji(ui)/∂ui = ν. Let ψi(ui) = −wi∂Ji(ui)/∂ui. Go-

ing back to the water filling analogy, ψi(ui) would represent

the water level in container i. If ui = 0 and therefore λi > 0,

then ψi(ui) must be less than ν. In other words, a point

where ψi(ui) > ψj(uj) and uj > 0 does not minimize (13).

• If the algorithm tries to select Ci, Cj so that ψi(ui) >
ψj(uj) and uj > 0, solving (13) results in Jk+1 < Jk.

• If there is no such pair to select, then that point

satisfies the KKT-conditions of (11) and the allocation

is optimal.

It follows that such a strategy will make the algorithm

converge to the optimum. The convergence speed will ob-

viously depend on the specific transfer sequence. As the

intended domain is real-time allocations, an efficient strategy

is needed. It is desirable that each step reduces J(k) as much

as possible and from (13) it is evident that the size of the

gain depends on

• the difference in ψ(u) between the two tasks and

• the amount of resource available to redistribute.

The two criteria can be in conflict, there are large variations

in ki. It will in this paper be assumed that the components

require resources of the same magnitude.

An intuitive strategy would be to sort the components ac-

cording to ψi(ui) and select the two furthest apart, skipping

the ones with zero resources on the lower end. If ψi(ui)
is taken as the water level, it makes sense to equalize the

two extremes. The proposed implementation uses a red-

black tree that makes finding the pair an O(1) operation and

inserting them back after the transfer an O(log n) operation

(see e.g. [12] for complexity analysis of red-black trees). As

the algorithm uses an iterative loop and the persistent data

allocated scales linearly with the problem size, memory need

for a system with a known max size can easily be calculated.

To illustrate the workings of the algorithm, consider a

case with three components. Let component Ci be repre-

sented by the tuple (ri, ki, ui, ∂Ji/∂ui), unit weights are

assumed for all components. In the example, the components

C0 = (25, 30, 1, 300), C1 = (25, 40, 0,−2000), C2 =
(15, 20, 0,−600) will be used.

Step 1, J = 875.0. The algorithm finds that the highest

ψ component is C0 (with ψ0 = 300) and the lowest ψ
component is C1 (with ψ1 = −2000). The subproblem to

solve then becomes

min J0,1 =(25− 40(1− δ))2 + (15− 20δ)2 (17)

1 ≥ δ ≥ 0 (18)

which gives the new allocation C0 = (25, 30, 0.540,−528),
C1 = (25, 30, 0.460,−528), C2 = (15, 20, 0,−600).

Step 2, J = 346.0. C2 is now the worst of component

while ψ0 = ψ1. The implementation used for this paper

uses the component index as secondary sorting criteria,

so C0 is selected. After solving the new subproblem, the

allocation becomes C0 = (25, 30, 0.512,−578), C1 =
(25, 30, 0.460,−528), C2 = (15, 20, 0.0277,−578).

Subsequent steps are done in the same way, resulting in

the sequence
J (u0, ψ0) (u1, ψ1) (u2, ψ2)

345.0 (0.512,−578) (0.448,−568) (0.0401,−568)
344.7 (0.514,−574) (0.445,−574) (0.0401,−568)
344.7 (0.514,−574) (0.447,−569) (0.0390,−569)

Note that while J seems to have converged, the real

criteria for termination must be the difference in ψ:s, as

derived from the KKT-conditions.

VIII. IMPLEMENTATION ASPECTS

For experimental purposes, an implementation of the

framework has been done for Linux 2.6 using the CFS

scheduler and control groups [19] for resource allocation.

The execution platform was a 2.40 Ghz Intel Pentium(R) 4

D based computer with 512Mb of memory and all software

was compiled with gcc 4.3.2 using the -O3 compiler flag.

The resulting experiment platform can be said to consist of

three major parts.



TASKSETALLOCATOR

PARAMETER

ESTIMATOR

r u

y

k

Fig. 4. Proposed control structure.

A. Component Set

The components are Linux processes running code to

emulate the behavior of periodic tasks that can adapt to

varying resource availability by reducing execution rate.

They communicate the completion of a calculation cycle by

sending a unix datagram packet with the current time stamp

and accumulated resource usage. The reason the sampling of

resource usage is done by the process and not some other part

of the system is to better synchronize the two measurements.

Each packet is annotated with the sending process id, so

that the estimator can distinguish the data. By means of the

/proc file system, other process parameters are discovered,

such as control group membership. The processes are multi-

threaded in order to support command signals for changing

parameters, but the cost of receiving commands is negligible.

B. Parameter Estimator

The estimator is an application with a data collection

socket that receive the incoming completion events. Upon

collecting an event, the event based estimation algorithm

updates the relevant parameter estimate.

C. Allocator

The allocation algorithm executes as a thread in the same

process as the estimator application. Periodically, it uses the

current estimates to calculate an updated allocation by means

of the algorithm described in VII.

IX. SIMULATION AND EXECUTION RESULTS

A. Event based estimation

In order to validate the parameter estimation scheme an

experiment was run where the objective was to control the

rate of a single component. A comparison between a sliding

time window approach and an FIR-structure event filter

approach can be seen in Figure 5 and Figure 6. The sliding

time window is less noisy for high rates, which is to be

expected as it is using a larger number of events to form the

estimate. However, the quantization noise can be troublesome

when running on low rates. The FIR-estimator on the other

hand is more noisy on high rates, but at a rate where the

two use the same amount of events to form the estimate (the

middle section where the rate is around 15 events/second),

it seems a lot more stable. (8) suggests that the filter could

have other structures, but that would require a model of the

process noise and sensor dynamics to exploit.

0 2 4 6 8 10 12 14 16
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using sliding time window (1s)

estimated rate

bw / set point

Fig. 5. Event based estimation using a sliding time window. The estimated
parameter k is used in feedforward control to show that the model can be
used to accurately control the process.

0 2 4 6 8 10 12 14 16
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using FIR-estimator (m=15)

estimated rate

bw / set point

Fig. 6. Event based estimation using an event filter with FIR structure.
The estimated parameter k is used in feedforward control to show that the
model can be used to accurately control the process.

B. Optimization solver performance

The optimization problem solver was implemented in

ANSI C using an off the shelf implementation of a red-black

binary tree. The correctness of the solver has been verified

against the QP-solver available in MATLAB (quadprog). A

simulated simple case with 3 components can be seen in

Figure 7 The algorithm has been benchmarked using large

sets of random components. The algorithm was run 10 times

for each set. The fluctuations in completion times is most

likely due to sorting artifacts and cache misses. Figure 8

shows how the iteration time increases as the number of

components in the problem grows, while Figure 9 displays

how long it takes to complete the optimization. Even for a

fairly large tasks sets, the time is reasonable and running it

as part of a periodic controller is deemed reasonable.



0 2 4 6 8
0

5

10

15

20

Iterations

su
m

(e
2
)/

e q
p

Normalized Cost J = sum(e
2
)/e

qp
 over time

 

 
QP Inc

QP Baseline

Fair

Fig. 7. Solver running over a set of 3 random components with the
quadprog baseline solution computed with MATLAB as a baseline and the
fair allocation provided for comparison.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
Iteration time

Nbr of tasks

ti
m

e 
(µ

s)

Fig. 8. Iteration time as a function of components in problem.

0 50 100 150 200 250 300
0

5

10

15

20
Termination time

Nbr of tasks

ti
m

e 
(m

s)

Fig. 9. Optimization time as a function of components in problem.

0 2 4 6 8 10 12 14
time (s)

0

5

10

15

20

25

30

ra
te

 (
e
v
e
n
ts

 /
 s

)

12738

12733

12735

Fig. 10. 3 random components running in a constrained resource environ-
ment. Each component changes its dynamics every 3 seconds after which
it takes about 1 second for the estimator to converge and a new allocation
is calculated.

C. Online allocation

Figure 10 displays the results of an experiment running

three components with the same reference rate but with

time varying k. Every 3 seconds, the components randomly

changes their resource demands, resulting in a new allocation

to maximize total system utility. The new k parameters are

drawn from a uniform random interval, where kmax/kmin =
2. The setup is not unlike that from Figure 1. The quadratic

cost function displays good robustness properties in that a

small change in the parameter set only changes the optimum

by a small amount. Figure 11 displays the cost function over

time for the same experiment. It compares the cost using

the dynamic convex programming based allocation (DCA)

compared with a theoretical static worst case allocation

(SWA) baseline. The DCA setup can provide a substantial

improvement over SWA as long as the actual execution time

is less than the worst case. As can be expected, the advantage

decreases in the last portion of the experiment where the

actual execution time is closer to the worst case.

As a final comparison between the DCA and SWA,

Figure 12 shows the average cost for a number of setups

corresponding to different ratios between kmax and kmin.

For deterministic cases (kmax = kmin) the DCA actually

underperforms the SWA. This is because the DCA algorithm

relies on k̂, which is initially unknown and will vary over

time due to noise. The resulting allocation will therefore

likely be suboptimal, even if there was enough resources to

satisfy all components. 50 experiments were run for each

ratio and the plot shows the average of the results. This

demonstrates that it is possible to do the allocation based on

no a-priori knowledge about the execution time and with a

substantial performance gain compared to the SWA solution.



0 2 4 6 8 10 12 14 16
time (s)

2000

3000

4000

5000

6000

7000

8000
C

o
s
t 
J

DCA

SWA

Fig. 11. The performance cost function over time for Dynamic Convex
Allocation (DCA) compared with the Static Worst-case Allocation (SWA)
baseline.

1 2 3 4 5 6 7 8 9
k_max / k_min

0

5000

10000

15000

20000

25000

n
o
rm

(J
)

SWA

DCA

Fig. 12. A comparison between DCA and SWA for different variability of
execution time.

X. FUTURE WORK

This paper treats systems of software components, but

in order to do systemwide resource management, hardware

aspects need to be brought into the model. One important

direction therefore must be to see how to model a system

with components that consume hardware resources (typically

power) and generate the computational resources needed for

the software components. It then directly follows that the

model must also be extended to include cases where the

components depend on resources from other components.

Mixing software and hardware components will make it

hard to maintain global state knowledge and it is therefore

reasonable to pursue distributed formulations.

For estimation performance, in the general case little can

be said about event to event dynamics but under some

assumptions on the resource consumption on the components

and process noise, better performance in parameter estimates

should be possible.

Finally, how to bootstrap new components onto a running

system must be investigated. A newly arriving component

will have unknown parameters and the utility function is

therefore unknown except perhaps in structure. One possi-

bility would be to include the uncertainty of the estimates

in the cost function so that unknown components would be

allowed to run in order to collect information about them in

a structured way.

REFERENCES

[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu. Intro-
duction to control theory and its application to computing systems. In
Z. Liu and C. H. Xia, editors, Performance Modeling and Engineering.
Springer US, 2008.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees
for web server end-systems: A control-theoretical approach. IEEE

Trans. Parallel Distrib. Syst., 13(1):80–96, 2002.
[3] L. Abeni and G. C. Buttazzo. Integrating multimedia applications in

hard real-time systems. In Proceedings of the 19th IEEE Real-Time
Systems Symposium (RTSS ’98), pages 4 – 13, Madrid, Spain, 1998.

[4] D. R. Barr, A. G. Glen, and H. F. Graf. The ”straightforward” nature
of arrival rate estimation? The American Statistician, 52(4):346–350,
1998.

[5] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, Cambridge, 2004.

[6] G. Buttazzo and L. Abeni. Adaptive workload management through
elastic scheduling. Real-Time Systems, 23(1):7–24, 2002.

[7] G. C. Buttazzo. Hard real-time computing systems: predictable

scheduling algorithms and applications. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1997.

[8] G. C. Buttazzo and L. Abeni. Elastic task model for adaptive
rate control. In Proceedings of the 19th IEEE Real-Time Systems

Symposium (RTSS ’98), pages 286–295, Madrid, Spain, 1998.
[9] A. Cervin, J. Eker, B. Bernhardsson, and K. Årzén. Feedback–

feedforward scheduling of control tasks. Real-Time Systems, 23:23–53,
2002.

[10] A. Cervin, B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo. The jitter
margin and its application in the design of real-time control systems.
In Proceedings of the 10th International Conference on Real-Time

and Embedded Computing Systems and Applications (RTCSA 2004),
Göteborg, Sweden, 2004. Best paper award.

[11] M. Claypool and J. Tanner. The effects of jitter on the peceptual
quality of video. In Proceedings of the seventh ACM international
conference on Multimedia (Part 2), pages 115–118, 1999.

[12] T. H. Cormen. Introduction to algorithms. MIT Press, Cambridge,
MA, USA, 2001.

[13] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Integrated
resource management and scheduling with multi-resource constraints.
In Proceedings of the 25th IEEE International Real-Time Systems

Symposium (RTSS 2004), pages 12 – 22, Lisbon, Portugal, 2004.
[14] M. Grant and S. P. Boyd. CVX: Matlab software for disciplined convex

programming, version 1.21. http://cvxr.com/cvx, 2010.
[15] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems.

Springer-Verlag Berlin, Heidelberg, Germany, 2004.
[16] S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for

c and c based digital signal processing programs. IEEE Transactions

on Circuits and Systems, 45(11):1455 – 1464, 1998.
[17] M. Lindberg. Constrained online resource control using convex

programming based allocation. In Proceedings of the 4th Interna-

tional Workshop on Feedback Control Implementation and Design in

Computing Systems and Networks (FeBID 2009), San Francisco, CA,
USA, 2009.

[18] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2000.

[19] P. Menage. Linux kernel documentation :: cgroups. http://www.
mjmwired.net/kernel/Documentation/cgroups, Dec
2009.

[20] R. Rajkumar, C. Lee, and D. Siewiorek. A resource allocation model
for QoS management. In Proceedings of the 18th IEEE Real-Time

Systems Symposium (RTSS ’97), pages 298 – 307, San Francisco, CA,
USA, 1997.


