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Perturbed Learning Automata in Potential Games

Georgios C. Chasparis Jeff S. Shamma Anders Rantzer

Abstract— This paper presents a reinforcement leamning al-  establishing non-convergence to the boundary of the proba-
gorithm and provides conditions for global convergence to pility simplex might not be trivial, since standard resuifs
Nash equilibria. For several reinforcement learning schenas, the ODE method for stochastic approximations (e.g., non-

including the ones proposed here, excluding convergence to ¢ tabl ilibria [4 i licabl
action profiles which are not Nash equilibria may not be trivial, ~ CONvergence to unstable equilibria [4]) are not applicable

unless the step-size sequence is appropriately tailored tihe In this paper, we sidestep these issues by introducing a
specifics of the game. In this paper, we sidestep these issuesvariation of reinforcement learning algorithms where the

by introducing a new class of reinforcement learning schem®  strategy of each agent is perturbed by a state-dependent
where the strategy of each agent is perturbed by a state- nertyrpation function. Contrary to prior work on equilim

dependent perturbation function. Contrary to prior work on selection, where perturbation functions are also statemte
equilibrium selection in games, where perturbation functons ! P P

are globally state dependent, the perturbation function hee is ~ dent [S], the perturbation function here is assumed to be
assumed to be local, i.e., it only depends on the strategy chieh  local, i.e., it only depends on the strategy of each agent. Due
agent. We provide conditions under which the strategies oftte  to this perturbation function, the ODE method for stochasti
agents will converge to an arbitrarily small neighborhood d  455r0ximations can be applied, since boundary points of the
the set of Nash equilibria almost surely. We further speciake d . to be stati ints of th | t ODE
the results to a class of potential games. omam cease 1o be s ‘_"1 lonary points or the relevan :
This paper extends prior work [6] of the authors, where
. INTRODUCTION the perturbation function was assumed constant along the

Lately, agent-based modeling has generated significant i(rJI](_)maln. In particular, we provide conditions under whicé th

terest in various settings, such as engineering, sociahses Strategies of the agents will converge to an arbitrarily lsma

and economics. In those formulations, agents make desisi neighborhood of the set of Nash equilibria almost surely.
) ) X 29 . 'We further specialize the results to a class of games which
independently and without knowledge of the actions or INE Slona to the famil ofotential games7]
tentions of the other agents. Usually, the interactionsragno 9 y 9 '

agents can be described in terms of a strategic-form ar@The remainder of the paper is organized as follows.
9 - . egic YaM&action 11 introduces the necessary terminology. Sectibn |
and stability notions, such as the Nash equilibrium, can b

-~ ) . troduces the perturbed reinforcement learning schertte wi
utilized to describe desirable outcomes for all agents. : . .
. ) ) - ... a state-based perturbation function. Section IV statesesom
In this paper, we are interested in deriving condition

3tandard Its f lyzing stochasti imati
under which agentiearn to play Nash equilibria. Assuming andarg Tesuits for analyzing stochastic approximations

- : : . .. Section V characterizes the set of stationary points foh bot
minimum information available to each agent, namely it

The unperturbed and the perturbed learning scheme. Sec-

own utilities and actions, we introduce a novel reinforcemerﬁgn VI discusses convergence properties of the unperturbe

learning schetmeNanﬁI de”_\ll_eb _cond|t|([))ns ur;(_jer \(’j\'h'Ch glob? inforcement learning scheme, while Section VII presents
convergence 1o Nash equilibria can be achieved. conditions under which the perturbed learning scheme con-

P“gr results in remforcementlle?rmr}g has pr2|mar|Iy. fO'verges to the set of Nash equilibria. Section VIII specediz
fcuse omtolmmqn—payrc])fgam.es.[t].dn rederendce[ ], arein- the convergence analysis to a class of potential games.
orcement learning scheme is introduced an convergencelgfha“y’ Section IX presents concluding remarks.

the set of Nash equilibria is shown when applied to a class Notation:

of potential games. However, although the analysis is based 2| denotes the Euclidean norm of a vectoe R"
on weak-convergence arguments (due to a constant step-_ 2] denotes the..-norm of a vector € R” '
size selection), an explicit characterization of the lingt _ B ch) denotes théofneighborhood ofavecton'fe Rn
invariant distribution is not provided, while the issue of ig Bs(x) 2 {y e R" : |z — y| < 6} '
non-convergence to unstable points on the boundary of the .. 8\F) =Y Y |

domain has been overlooked. In fact, as pointed out in [3], ilSt.(x’A.) denotesAthe distance from a pointo a set
, e, dist(z, A) £ infyeca |z —yl.
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for some set of indexes'. IIl. PERTURBEDLEARNING AUTOMATA

In this section, we introduce the basic form of the learning
dynamics that we will consider in the remainder of the paper.

We consider the standard setup of finite strategic-formihey belong to the general classlefirning automatg1].
games. For the remainder of the paper, we will assume:

1) Game: A finite strategic-form game involves a finite Assumption 3.1 (Strictly positive payoffs): For eveérg
set ofagents(or player9, Z = {1,2,...,n}. Eachagentc Z  Z, the utility function satisfie®;(«) > 0 for all o € A.
has afinite set of availableactions A;. Let o;; € A; be an Even in the case where utilities take on negative values, we
action of agent, anda = (a4, ..., ay,) the action profileof — can still analyze the game by consideringemuivalentone
all agents. The set is the Cartesian product of the actionwith strictly positive payoffs (cf., [8]).
spaces of all agents, i.e4 = A; x ... x A,.

The action profilea € A produces gpayoff (or utility)
for each agent. The utility of agent denoted byR;, is a We consider a reinforcement scheme which is a small
function which maps the action profile to a payoff inR.  modification of the originalinear reward-inaction(£rr)
DenoteR : A — R™ the combination of payoffs (gpayoff ~scheme [9], [10]. This modified scheme, denoteddy.;,
profile) of all agents, i.e.R(-) 2 (Ry(-), ..., Rn(-)). was introduced in [6]. Contrary t€r_;, R;(-) may take

2) Strategy: Let 0;; € [0,1] denote the probability that values other thaif0, 1}, which increases the family of games
agenti selects actiony; = j. Then,o; £ (01, ..., 05 4,)) this algorithm can be applied to.
is a probability distribution over the set of action (or Similarly to Lr-;, the probability that agent selects
strategyof agent;), i.e., o; € A(|A;]), where|.4;| denotes actionj at timek is o;;(k) = x;;(k), for some probability
the cardinality of the setd,. We will also use the term Vectorz;(k) which is updated according to the recursion:
strategy profileto denote the combination of strategies of = _ _ n. Y
all agentso = (01,09, ...,0,) € A where A £ A(|A;]) x zi(k+1) = Ia [2i(k) + (k) - Ri(a(k)) - [(k) Il(k)(]:];j
... Xx A(|Ay]) is the set of strategy profiles.

Note that ifo; is a unit vector (or a vertex ofA(|.A;|)),

II. TERMINOLOGY

A. Modified Linear Reward-InactionC(z_;) scheme

Here we identify actions4; with vertices of the simplex,

, e '\ {e1,e2,...,e4,}. For example, if agent selects actiory at
sayej;, then agent selects an actiopi with probability one. o k, thena; (k) = e;. Note that by letting the step-size

Such a strategy will be calleplire strategyLikewise, apure sequence (k) to be sufficiently small and since the payoff
strategy profiles a profile of pure strategies. Denafe" the ¢, tion R, is uniformly bounded inA, z;(k) € A(|A4;)
set of pure strategy profiles aerticesof A. We will use 54 the projection operatdf, can be omitted.

the termmixed strategyo define a strategy that ot pure. We consider the following class of step-size sequences:
3) Expected payoff and Nash equilibriurGiven a strat- 1
4

egy profilec € A, the expected payoffectorof each agent e(k) =

i, U; : A — RMil, can be computed By kv 41
for somev € (1/2,1]. For these values af, the following

Us(o) & Z e; Z < H gms> Ri(j,a_;). (1) 1two conditions can easily be verified:

JjeEA;  a_;€A_; o0

s€E—1

2
We may think of the entry of the expected payoff vector, Y elk)=co and Y e(k)® < oo. (5)
denoted’;; (o), as the payoff of ageritwho is playing action ’“_:0 _ k=0 _
j at the strategy profile. We denote the profile of expected The selection of is closely related to the desired rate of
payoff vectors ad/ (o) = (Uy(0),...,Un(0)). Finally, let Cconvergence. Compared with prior reinforcement Iearnlpg
u;(c) be the expected payoff of ageniat strategy profile schemes, both [11] and [3] consider comparable step-size
o € A, defined asu; (o) £ o U;(0). sequences.

Definition 2.1 (Nash equilibrium): A strategy profile B. Pertubed Linear Reward-Inaction Schenzfe;\?(r )
o* = (0},0%,..,07) € A is a Nash equilibrium if, for !

-0

each agent € Z, _ Here we cons_ider a perturbed version of_tr_\e schémglej_,_ _
in the same spirit with [6], where the decision probabititie
ui(o7,0%;) > ui(os, 07 ;) (2)  of each agent are slightly perturbed. In particular, we mesu
for all o; € A(|A;]) such thato; # o7 that each agent selects actiory € .A; with probability
In the special case where for alle Z, o is a pure oij 2 (1= G, N)wij + Gilai, N/ AL (6)

strategy,c* € A* is called apure Nash equilibriumAny ] ]

Nash equilibrium which isiot pure is called anixed Nash for some perturbation functiogy : A(|.Aif) x [0, 1] — [0, 1],
equilibrium Also, in case the inequality in (2) is strict, the Where the probability vectar; is updated according to (3).
Nash equilibrium is called atrict Nash equilibrium We consider the following perturbation function:

7
el 82 il =8 O

1The notation—i denotes the complementary s&t{i}. We will often Ci(zi, \) =
split the argument of a function in this way, e.g(a) = F(a;, a—;).



for somes € (0, 1) which is close to one. In other words, where the sequencgk) satisfies (8) andv(k, ) satisfies

an agent perturbs its strategy when the latter is close to a i

vertex of the probability simplex. Note that the perturbati ,CZT,;I;E)B(A) p(k,z) >0

function is continuously differentiable for songesufficiently

close to one. FurthermorBmy o ¢;(z;, A) = 0 uniformly in for all 6 > 0 and somel” = T'(4). Then

x, which establishes equivalence of the perturbed dynamics P[lim inf dist(z(k), A) = 0] = 1.

with the unperturbed dynamics asapproaches zero. k00
The main difference with earlier work by the same authorﬁ

[6] is that here we allow for the perturbation function to

also depend on agent®wn strategy. Similar ideas of state ] ]

dependent perturbations have been utilized for equilibriu B- Convergence to mean-field dynamics

selection in adaptive learning by [5]. The difference h&re i The convergence properties of the reinforcement learning

that the perturbation function Iscally state dependent, i.e., gchemes can be described via the ODE method for stochastic
it only depends on the strategy of each agent mmicbn the approximations. The recursion dfﬁ_p A > 0, can be

strategy profile of all agents. written in the following form:
We will denote this scheme hg?_ ;. R R
zi(k +1) = z;(k) + e(k) - [g7 (x(k)) + & (K)],  (10)

Let Q £ A> denote the canonical path space with ar¥vhere t.h? Qbservatlon iequence has beep decomposgd into a
deterministic sequencg; (x(k)), (ormean-field and a noise

i Y
elementy being a sequencr(0), z(1), ..}, wherea (k) = sequence? (k). The mean-field is defined as follows:

(x1(k),...,zn(k)) € A is generated by the reinforcement
learning process. An example of a random variable defined  g}(z) £ E[R;(a(k))[vi (k) — 2i(k)]|x(k) = ]
in Q is the functionyy : © — A such thatyy (w) = x(k).

In several cases, we will abuse notation by simply writin
z(k) or a(k) instead ofyy(w). Let alsoF be ac-algebra g\ (2) = Uss(x) 04 — Z Usqg(2) 05 215

of subsets i2 andP, E be the probability and expectation gEA;

operator on(f2, F), respectively. In the following analysis, where oy, q € A, is defined in (6). It is straightforward

we |mp!|C|tIy assume that ther—_algebra}' 1S gen(_e_rgted to verify thatg)(-) is continuously differentiable. The noise
appropriately to allow computation of the probabilities or ¢

. . sequence is defined as
expectations of interest.
A1) A D T (k) — s —g
A. Exit of a sample function from a domain &' (k) = Ri(a(k) - [ (k) — 2i(k)] = 77 (2(k)),

It is important to have conditions under which the proces‘é’hereE{f{\(ka(k) =z]=0 fqr ?" z < _A-~ _
Yr(w) = z(k), k > 0, with some initial distribution, will ~ Note that forA = 0, (10) coincides withLr_;. We will
exit an open domaid in finite time. denoteg(z) the corresponding vector field for= 0.

Proposition 4.1 (Theorem 5.1 in [12]): Suppose there ex- The more compact form of (10) will also be used:
ists a nonnegative functiory/ (k, z) in the domaink > 0, _
g (k,2) 2k +1) = 2(k) + (k) - [P () + E W], QD)

x € G, such that
a _ _ whereg*(-) £ col{g; (-)}iez and&*(-) £ col{&} (-) }iez.
AV(k,z) SB[V (k+1,2(k +1)) = V(k, 2(k))|2(k) = 2] Proposition 4.2 (Theorem 6.6.1 in [13]): For the rein-

satisfiesAV (k,z) < —a(k) in this domain, where(k) isa forcement schem&}, ;, A > 0, the stochastic iteration

Corollary 4.1 implies that:(k) enters an arbitrarily small
eighborhood of a sed infinitely often with probability one.

IV. BACKGROUND CONVERGENCEANALYSIS

5uch that itss-th entry is

sequence such that (11) is such that, for almost alb € Q, {Yx(w) = z(k)}
0o converges to some invariant set of the ODE
a(k) > 0, ];)a(k) = 0. (8) P =) (12)
Then the process(k) leavesG in a finite time with proba- Also, if A C A is a locally asymptotically stable set in the
bility one. sense of Lyapunov for (12)and z(k) is in some compact

The following corollary is important in cases we wouldSet in the domain of attraction ofl infinitely often with
like to consider entrance of a stochastic process into tHgobability > p, thenP(limy o x(k) € A] > p.

domain of attraction of an equilibrium. It is a direct con- ~ Proof: The proposition follows directly from Theo-
sequence of Proposition 4.1. For details, see Exercisen5.1/Em 6.6.1 of [13], since the following conditions are satidfi
[12]. — The functiong?(-) is continuous.

Corollary 4.1: Let A C A, B;s(A) its é-neighborhood,

a”dpé(A) = A\B5(A)' SUDPose there exists a no_nnegatlve 2If {z(t) : t > 0} denotes the solution of the ODE (12), then a set
functionV (k, z) in the domaink > 0, z € A for which A C A is locally asymptotically stable set in the sense of Lyapufary

the ODE (12) if there exist§ > 0 such thatdist(z(0), A) < ¢ implies
AV (k,z) < —a(k)p(k,z), k>0,z€ A, (9)  limsooz(t) € A



— The sequenc& (k) £ g*(xz(k)) + &\(k) satisfies A B

sup, E[]Y*(k)|?] < oo since, by Assumption 3.1, the A |44 | 22
utility functions are positive and bounded from above. B [22 |33
— The step-size sequence satisfies property (5). TABLE |
] THE TYPEWRITERGAME.

V. STATIONARY POINTS

The stationary points of the mean-field dynamics are
defined as the set of pointsc A for which g*(x) = 0. In
this section, we characterize the set of stationary pomts f
both theunperturbed(A = 0) and theperturbeddynamics

On the other hand, any stationary point in the interior of
A will necessarily be a Nash equilibrium.

Corollary 5.3 (Mixed Nash equilibria): ForA = 0, any
stationary pointz* of the ODE (12), such that* € A°, is

(A > 0). ixed) Nash equilibrium of th
We will make the following distinction among stationary?® (mixe )_ as *eqw |0r|_um o' the game.
points of (12) forA > 0, denotedsS™: Proof: If z* € A° is a stationary point of the mean-

field dynamics then, as Proposition 5.1 showed, for any agent

i and for any pure strategy € A;, we haveU;;(z*) = ¢;,

for somec; > 0. Therefore, all pure strategies are best replies

to the strategyc*. Thus,z* is also a Nash equilibrium.m

I ] Note that the above corollaries do not exclude the possi-
We will also use the notatioSya, Sa+ Sas, andSxe  pility that there exist stationary points A without those

to denote the corresponding sets whee: 0. necessarily being pure strategy profil€sr the remainder

A. Stationary points of unperturbed dynamics= 0) of the paper, we will only consider games WhiCh satisfy:
Property 5.1: For the unperturbed dynamics, there are no

stationary points in0A other than the ones iA*, i.e.,

Soa\Sa+ = @. Moreover, there existé > 0 such that

Bg(SAo) C A°.

— S)A: stationary points irDA;

— S).: stationary points which are vertices &;

— S).: stationary points inA°;

— S{g: stationary points which are Nash equilibria.

Proposition 5.1 (Stationary points for = 0): A strategy
profile z* is a stationary point of the ODE (12) if and only
if, for every agent € Z, there exists a constant > 0, such

that for any actionj € A;, «7; > 0 impliesUy; (%) = ci. In other words, we only consider games for which, the

Proof: See Proposition 3.3 in [6]. . . T
The above result is quite well known for replicator Iearnin(‘:isltatlonary points of (12) = 0, in the boundary ofA are

) k ) . Vertices of A, and the stationary points iA° are isolated
dynamics. In fact, notice that the corresponding mean-fie . - :
: , . fom the boundary. Property 5.1 is not restrictive and is
of the shareof strategys in agenti when\ =0 is:

satisfied for most but trivial cases.

7., (2) = | Uis(2) — Z Usqg(2)zig | is (13) B. Stationary points of perturbed dynamicst 0)
qEA; A straightforward implication of the properties of the

which coincides with the corresponding shares provided dyerturbation function is the following:
the replicator dynamics (e.g., see equation (3.3) in [14]). Lémma 5.1 (Se?smwty @ a.): There existsdy € (0,1)
Two straightforward implications of Proposition 5.1 are: SUch thatSa. € S, forany fo < § <1 and anyA > 0.
Corollary 5.1 (Pure Strategies): For\ = 0, any pure _Proof: Due to Property 5.1, there exigy € (0,1)
strategy profile is a stationary point of the ODE (12). sufficiently close to one andl > 0, ?UCh that, for anys, <
Proof: According to Proposition 5.1 and for= 0, any 5 < 1, We have(;(z;, A) = 0 foralli € T andz € Bs(Sa-).
strategy profiles* = (2%, -+ ,27), such that:* is a vertex of 11US, the conclusion follows. s u
the probability simplex (pure strategy), is a stationarjnpo  vertices of A cease to be equilibria foA > 0. The
of the ODE (12), since the support of a pure strategy is following proposition provides the sensitivity afa- to

single action. m small values of\.
Corollary 5.2 (Nash Equilibria): ForA = 0, any Nash Lemma 5.2_(Sensitivity &fa-): For any stationary_point
equilibrium is a stationary point of the ODE (12). x* € Sa-, which corresponds to a strict Nash equilibrium

Proof: Let o™ be a (possibly mixed) Nash equilibrium.a”d for sufficiently small\ > 0, there exists a unique

Then, for anyi € T and any;j € A; such thats*, > 0, we continuously differentiable function™ : R, — R, such
should have ’ that limy o v*(A) = »*(0) = 0, and

j € arg max Uiq(c™). T=z"+v"(\) e A° (14)

Therefore, by Proposition 5.1, the conclusion follows.m is a stationary point of the ODE (12). If instead € Sa- is
Note that for some games not all stationary points ofiot a Nash equilibrium, then for any sufficiently smalt 0

the ODE (12) are Nash equilibria. For example, if youand A > 0, the §-neighborhood ofx* in A, Bs(z*), does

consider the Typewriter Game of Table |, the pure strategyot contain any stationary point of the ODE (12).

profiles which correspond toA, B) or (B, A) are not Nash Proof: The proof follows similar reasoning with the

equilibria, although they are stationary points of (12). proof of Proposition 3.5 in [6]. [ ]



Note that the statements of Lemma 5.2 do not depend émom continuity from above, we have:
the selection ofs. Instead, they requira to be sufficiently -
small. Also, note that Lemma 5.2 does not discuss the P[As] = lim P[A,;] = lim HH%’%(M'
sensitivity of Nash equilibria which arot strict. However, it o T et
is _straightforward to show that verticeannotbe stationary The above product is non-zero if and only if
points for A > 0.

Let also S}y, denote the set of stationary points i&°
which are perturbations of the stationary pointSin- NSng
(strict or non-stric) for somel > 0. ] .

Proposition 5.2 (Stationary points of perturbed dynamicg')et us define the new variable
For any 3 € (0,1), let * = 6*(3) be the smallest > 0 yi(k) £ 1 — 240, (k),
such that, for allz € A\Bs(A*), (;(z;,\) = 0 for some ) - )

i € I. When g is sufficiently close to one and > 0 whl_ch corresponds to the_probabnlty of age;melectlng any
is sufficiently small, then: 3)5:15115 C Bs-(A*), and b) action other thany;. Condition (15) is equivalent to

S = Sao U SI%TE e

In other words, the stationary points of the perturbed dy- — 2 1og(1 —yi(k)) < oo, foreachieZ.  (16)
namics are either the interior stationary points of the unpe k=0

turbed dynamics or perturbations of pure Nash equilibride also have that

Proof: When we takes > [y, where 3y is defined in _ —log(1 — yi(k)) ) 1

Lemma 5.1, therSa. C SA, = S*. The rest of the sta- Jim ——— = = lim s > p

- . \ . . 0o yi(k) k—oo 1 — y;(k)

tionary points are perturbations of the vertices charaxdr . )

by Lemma 5.2. Due to the definition @ = §*(3), we for_some f|n|_tep > 0, since0 < y;(k) < 1. ThL_Jg, from the
haveS), C Bs-(A*), since outsideSs. (A*) the dynamics !Imlt comparison test, we conclude that condition (16) Isold
coincide with the unperturbed dynamics for at least oné and only if

agent. When we further takg to be sufficiently close to 0

one (which implies that* = §*(3) approaches zero) and > wi(k) < oo, for eachi € T.

A sufficiently small, then, according to Lemma 583 k=0

are the only stationary points if8;-(A*), and therefore

> log(ia, (k) > —oo for eachi € Z. (15)
k=0

S = Spo U S - Sincee(k) = 1/(k” + 1), for 1/2 < v < 1, we also have:
- ¢ NE*
yz(k-i- 1) _1_ Ri(a) <1_ Rl(a)
VI. CONVERGENCE TOBOUNDARY POINTS vi(k) kv +1 7~ E+1°
Recall that, for the unperturbed dynamics, not all statiorBy Raabe’s criterion, the serigs -, v:(k) is convergent if
ary points in A* are necessarily Nash equilibria. Conver- yi (k)
gence to non-desirable stationary points, such as the ones lim k| ———— 1) > 1.

which are not Nash equilibria, cannot be excluded when
agents employ the unperturbed reinforcement schépme,.  Since
Proposition 6.1 (Convergence to boundary points): yi (k) 1 Ri(q)
If agents employ the reinforcement schermig_;, the K (T - 1) >k TR = TR
. ; i yilk+1) 1 14 1R
probability that the same action profile will be played for k

all future times is uniformly bounded away from zero ove{ye conclude that the series v, vi(k) is convergent if
all initial conditions if RZ(Oé) > 1 foreacha e A, i e 7. Rz(a) > 1 for eachi € Z. In other words, the action
Proof: Assume that agents play the action profile=  profile o will be performed for all future times with positive
(o1, az,...a,) € A at timek = 0. Thenz;,, (0) > 0 for all  probability if R;(o) > 1 for all i € Z. Furthermore, if
i € Z, since actions are selected according to the probabilig;(«) > 1 for all i € Z and for all « € A, then the

k+1

distributiono;(0) = ;(0). Define the following event: probability that the same action profile will be played for
N : _ _ <1 all future times is uniformly bounded away from zero over
Ar = {w e Qiypw) = alk) = aforal k < 7} all initial conditions. [ |

Thus, A, corresponds to the case where the same action
profile has been performed for all timés< r. Note that
the sequence of even{si,} is decreasing, since

Proposition 6.1 reveals the main issue of applying re-
inforcement learning schemes, which is convergence with
positive probability to boundary points which are not Nash
A DA equilibrium profiles.

for all 7 = 1,2, .... Define also the event Figure 1 shows a typical response £f,_; in the Type-
writer Game of Table I. We observe that it is possible for the

A A m A, = {a(r) = a,¥r > 0}. process to converge to a non-Nash equilibrium profile since
1 Ri(a) > 1 forall « € Aandi e Z.



1// ‘ ‘ ‘ A > 0 sufficiently small, then there exisis= §(3,\) such
that,

P[lim inf dist(z(k), Bs(S*)) = 0] = 1.
1 Also, for almost allw, the process{vy(w) = x(k)} con-
N T R verges to some invariant set 5 (S*).

Proof: Consider the nonnegative functiovi(z) of
‘ ‘ Assumption 7.1. We can approximate the expected incre-
i mental gain oflV/(x) by applying a Taylor series expansion
.l ‘ | as follows:

\R ] AV (k,z) =

E U W B ViV (@) Elz(k + 1) — a(k)|z(k) = ] + O(e(k)?),

Time step k

. , . , whereO(e(k)?) denotes terms of ordetk)?. Note that such
Fig. 1. Typical response of p_; on the Typewriter Game of Table | . . .
wheny — 0.78. an expansion is possible due to the fact that the second-orde
derivatives ofV/(-) are continuous imA. Equivalently,

_ T\ 2
These issues, which are also pointed out in [15], [3], will AV(k,x) = e(k)VaV(2) g7 (@) + O(e(k)7). (A7)
be resolved here due to the introduction of the perturbatidbue to Lemma 7.1, there exisfis= 5(B,A) > 0 such that

function in £}, ;. —p £ sup,ep, (s VoV (2)T5(2) < 0. Thus,
VIl. CONVERGENCE OFPERTURBEDDYNAMICS (£}, ;) AV (k,z) < —e(k)p + O(e(k)?),

‘The convergence analysis of the perturbed dynaies;  uniformly in & € Ds(S). The right hand side of the
will be subject to the following assumption: above inequality is strictly negative and can be formulated

Assumption 7.1: For the unperturbed dynami@:_;, in the form of condition (9). Therefore, the conditions of
there exists a twice continuously differentiable and ngrne proposition 4.1 are satisfied and

ative functionV : A — R, such that a)v,.V (z)Tg(z) <0 \
for all z € A, and b) V,V(z)Tg(z) = 0 if and only if Pllim inf dist(z(k), Bs(5%)) = 0] = 1.
g(z) = 0.

For somed > 0, consider they-neighborhood of the set
of stationary pointsS*, Bs(S*). Define also the closed set:
D5(SY) 2 A\Bs(SH).

Lemma 7.1: Under Assumption 7.1, fére (0,1) suffi- VIIl. SPECIALIZATION TO POTENTIAL GAMES
ciently close to one and > 0 sufficiently small, there exists
d =0(8,A) > 0 such that

From Proposition 4.2, we also have that the process
{¢r(w) = z(k)} will converge to some invariant set of the
ODE in Bs(S*) almost surely. [

A. Potential games

s In this section, we will specialize the convergence analysi
sup ViV (z) g*(z) <O0. to a class of games which belongs to the general family

z€Ds(SH) . . . .
Proof: Pick 8" — 6*(8) according to Proposition 5.2, of potential games (cf., [7]). In particular, we will coneid

N hich satisfy the following property:
such that, for all: € A\Bs- (A*), ¢i(z;,A) = 0 for at least 987 W : . 0 ) _
onei. Then, according to Proposition 5.2, when we take Property 8.1: There exists@" functionf : A — R such

sufficiently close to one (which implies that approaches that Vo, (o) - Ui(o) forall o € A andi € T.
zero) and) sufficiently small, then afgy, C Bs-(A*), and Examp!e _1.(Common-payc_)ff gampene class of games
b) S = Sae USYy. Due to Assumpl\'ii%n 7.1, there existsWh'Ch satisfies Property 8.1 jommon-payoff gamewhere

_ « X A the payoff function is the same for all players. An example of
0= 0(8,A) > &% such thaBs- (A") C B;(S") and a common-payoff game is the Typewriter Game of Table I.
sup  V,V(z)Tg x) < 0. It is straightforward to show that for this game the function

2€D5(S)

- flo) = 4011091 + 2011022 + 2012021 + 3012022

Lemma 7.2 (LAS /f?%,): For any A > 0 sufficiently  satisfies Property 8.1.
small, any stationary point € S, which is a perturbation Example 2: (Congestion gamésA typical congestion
of a strict Nash equilibrium according to (14), is a locallygame consists of a sét of n players and a seP of m

asymptotically stable point of the ODE (12). paths. For each player let the set of pure strategie$; be
Proof: The proof follows similar reasoning with the the set ofm paths. The cost to each playeof selecting
proof of Proposition 3.6 in [6]. B the pathp depends on the number of players that are using

Theorem 7.1 (Convergence to Nash equilibria): Under the same path. The expected number of players usingppath
Assumption 7.1, if agents employ g, ; reinforcement is x,(c) £ 3", 7 0ip. Definec, = ¢,(x,) to be the cost of
scheme for somg € (0,1) sufficiently close to one and using pathp wheny,, players are using pafhand letc,(x,)



be linear ony,. The expected utility of playei is defined to multivariable functions, we have:
. . :
as:u; (o) > pep cp(Xp(0)). Note that the function AV (E, 2) = —V, f(2)E[52(k)|o(k) = 2]—
Xp (o) E[6z_; (k)" D_;dx;(k)|x(k) = x]—
flo)2 =" /0 cp(2)dz E[oz; (k)T Dioz_i(k)|x(k) = 2], (19)

pEP
- wheredz(k) £ z(k + 1) — (k).
satisfies Property 8.1. A direct consequence of the above formulation and Propo-
B. Convergence to Nash equilibria sition 4.1 is the following:
The following proposition establishes convergence to Nash Proposition 8.2 (Non-convergence &x-): If agents em-
equilibria for this class of potential games. ploy theLr_; reinforcement scheme and € Sa. satisfies

Proposition 8.1 (Convergence to Nash equilibria): In the 1) E[0z_;(k)TD_;éx;(k)|z(k) = x] > 0,
class of games satisfying Property 8.1, thg ; reinforce- 2) E[dz;(k)"D;dx_;(k)|z(k) =] >0
ment scheme satisfies the conclusions of Theorem 7.1. uniformly inx € Bs(«*), for somes > 0 sufficiently small,
Proof: It suffices to show that the conditions of As-thenP[limy_, z(k) = 2*] = 0.
sumption 7.1 are satisfied. In particular, define the nonnega  Proof: We consider the nonnegative functidn(z)

tive function defined above. Note that the expected incremental gain of
V() 2 fome— f(2) >0, 3 €A, (18) V(x) (19) can take the following form:
k,x) = —e(k)o(k
where fiax £ sup,ca f(z). Note thatV,,V(z) = —U;(z), Vik,z) c(k)o(k, )
and whereinf,cp;(,-) ¢(k,z) > 0 for someé > 0 sufficiently
Al A small and for allk. This is due to the fact that for any ¢
Uie)'52) = S . wiem(Ui) — Uy(@)? Bala),
i ~Vof (@) E[dz(k)|z(k) = 2] <0
_ ThH. _
= ; Di(2)zi/2 (due to Property 8.1), and the second-order terms of the
where[D;(z)]ss = 0 and [D;(x)]s; = (Uis(x) — Uy;(x))?.  incremental gain are strictly negative by assumption. Then
Thus, from Proposition 4.1, we conclude that the process will exit
B _ 3 Bs(x*) in finite time with probability one. Therefore, the
V.V(2)'g(x) = —U(2)"g(x) = =Y Ui(2)"G:(z) <0 conclusion follows. ]
= For several games testing the conditions of Proposition 8.2
for all x € A. may be difficult. For example, for two players and two

We also observe that,V(z)Tg(z) = 0 if and only actions, it is straightforward to show that:
if Uss(z) = Uij(x) for anyi € 7 and anys,j € A;, T B B _
s # j such thatz,,z;; > 0. By Proposition 5.1, these E[o: kDg‘Sx—iW’” - xi’x—gl'i(k) _dix—i]; 7
points correspond to the stationary pointgjo). Therefore, e( 2 5621'1“71'2“;(—1'2)117(—2)2(2 1~ G = 4o + diy)-
the conditions of Assumption 7.1 are satisfied. Thus, the ((d11)” = (d12)” = (d21)” + (d2)"), (20)

conclusions of Theorem 7.1 hold for the class of gameghered!, denotes thés, ¢) entry of D;, i = 1,2. Consider,
satisfying Property 8.1. B for example, the Typewriter Game of Table I. Since the game
C. Convergence to pure Nash equilibria is symmetric, and, > diy, dy, > dyy, @ = 1,2, the second-
Prder terms of the incremental gain will be positive. The
Zhove computation can be extended in a similar manner to
the case of larger number of actions or players.

Proposition 8.3 (Convergence to pure Nash equilibria):
In the framework of Proposition 8.1, let the conditions of

roposition 8.2 also hold. If the game exhibits pure Nash
equilibria which are all strict, then, for somg € (0,1)
sufficiently close to one and > 0 sufficiently small, the
process {1x(w) = z(k)} converges to the sefy for
almost allw, i.e., P[limy_, o z(k) € S{g] = 1.

Proof: Since the game exhibits pure Nash equilibria
which are all strict, the sefléIE in non-empty for any\ > 0
sufficiently small.

Let 2* denote an action profile which is a strict pure Nash
V2f(z) = ( DO‘ % ) . equilibrium, i.e., for every € 7 there existg* = j*(7) suph
—i thatz;;- = 1 and U5 (a*) — Uy« (z*) < 0 for any s # j*.
Higher-order derivatives of (z) will be zero, therefore from Let alsoz € SQE be the perturbed stationary point according
the extension of Taylor's Theorem (cf., Theorem 5.15 inJ16]to (14). Pick alsad* = 6*(8) > 0 similarly to the proof of

In several games, convergence to mixed Nash equilibr
of the unperturbed dynamicSa. can be excluded. In this
case, convergence to stationary pointsSQE which are
perturbations of pure Nash equilibria can be established.

Let x_; denote the distribution over action profiles of th
group of agents—i. Let D; be the matrix of payoffs of
agenti and D_; be the matrix of payoffs of-i. The vector
of expected payoffs of agentand —i can be expressed as
Ui(z) = D;x_; andU_;(xz) = D_;z;, respectively.

To analyze the behavior around stationary pointAif,
we consider the nonnegative functiviiz) = foax—f(z) >
0, x € A, Where fi.x = sup,ca f(z). Itis straightforward
to verify that the Jacobian matrix ¢f(x) is:



Lemma 7.1. Then, for any € B;s- (), ;s is of order of6*  behavior of the algorithm close to vertices of the simplex. |
and particular, we derived conditions under which the pertdrbe

TN (@) ~ [Uis (") = Uije (27)] s (21) reinforcement learning scheme converges to an arbitrarily
small neighborhood of the set of Nash equilibria almost
surely. We further specialized the results to a class of game
which belong to potential games.

plus higher order terms of* and \, for all s # j*. Since

Uis(z*) — U= (z*) < 0 for all s # j*, we conclude

that the vector-field points towards the interior Bf«(Z)
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Fig. 2. ODE solution forﬁgd and for the Typewriter Game of Table |
when 8 = 0.995, A = 0.001 and initial condition(B, A).

to the strict Nash equilibrium{B, B). Note that escaping
from (B, A) would not be possible i = 0.

IX. CONCLUSIONS

This paper presented a new reinforcement learning scheme
for distributed convergence to Nash equilibria. The main
difference from prior schemes lies in the introduction of
a perturbation function in the decision rule of each agent
which depends only on its own strategy. The introduction of
this perturbation function sidestepped issues regardieg t



