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Perturbed Learning Automata in Potential Games

Georgios C. Chasparis Jeff S. Shamma Anders Rantzer

Abstract— This paper presents a reinforcement learning al-
gorithm and provides conditions for global convergence to
Nash equilibria. For several reinforcement learning schemes,
including the ones proposed here, excluding convergence to
action profiles which are not Nash equilibria may not be trivial,
unless the step-size sequence is appropriately tailored tothe
specifics of the game. In this paper, we sidestep these issues
by introducing a new class of reinforcement learning schemes
where the strategy of each agent is perturbed by a state-
dependent perturbation function. Contrary to prior work on
equilibrium selection in games, where perturbation functions
are globally state dependent, the perturbation function here is
assumed to be local, i.e., it only depends on the strategy of each
agent. We provide conditions under which the strategies of the
agents will converge to an arbitrarily small neighborhood of
the set of Nash equilibria almost surely. We further specialize
the results to a class of potential games.

I. I NTRODUCTION

Lately, agent-based modeling has generated significant in-
terest in various settings, such as engineering, social sciences
and economics. In those formulations, agents make decisions
independently and without knowledge of the actions or in-
tentions of the other agents. Usually, the interactions among
agents can be described in terms of a strategic-form game,
and stability notions, such as the Nash equilibrium, can be
utilized to describe desirable outcomes for all agents.

In this paper, we are interested in deriving conditions
under which agentslearn to play Nash equilibria. Assuming
minimum information available to each agent, namely its
ownutilities and actions, we introduce a novel reinforcement
learning scheme and derive conditions under which global
convergence to Nash equilibria can be achieved.

Prior results in reinforcement learning has primarily fo-
cused oncommon-payoffgames [1]. In reference [2], a rein-
forcement learning scheme is introduced and convergence to
the set of Nash equilibria is shown when applied to a class
of potential games. However, although the analysis is based
on weak-convergence arguments (due to a constant step-
size selection), an explicit characterization of the limiting
invariant distribution is not provided, while the issue of
non-convergence to unstable points on the boundary of the
domain has been overlooked. In fact, as pointed out in [3],
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establishing non-convergence to the boundary of the proba-
bility simplex might not be trivial, since standard resultsof
the ODE method for stochastic approximations (e.g., non-
convergence to unstable equilibria [4]) are not applicable.

In this paper, we sidestep these issues by introducing a
variation of reinforcement learning algorithms where the
strategy of each agent is perturbed by a state-dependent
perturbation function. Contrary to prior work on equilibrium
selection, where perturbation functions are also state depen-
dent [5], the perturbation function here is assumed to be
local, i.e., it only depends on the strategy of each agent. Due
to this perturbation function, the ODE method for stochastic
approximations can be applied, since boundary points of the
domain cease to be stationary points of the relevant ODE.
This paper extends prior work [6] of the authors, where
the perturbation function was assumed constant along the
domain. In particular, we provide conditions under which the
strategies of the agents will converge to an arbitrarily small
neighborhood of the set of Nash equilibria almost surely.
We further specialize the results to a class of games which
belong to the family ofpotential games[7].

The remainder of the paper is organized as follows.
Section II introduces the necessary terminology. Section III
introduces the perturbed reinforcement learning scheme with
a state-based perturbation function. Section IV states some
standard results for analyzing stochastic approximations.
Section V characterizes the set of stationary points for both
the unperturbed and the perturbed learning scheme. Sec-
tion VI discusses convergence properties of the unperturbed
reinforcement learning scheme, while Section VII presents
conditions under which the perturbed learning scheme con-
verges to the set of Nash equilibria. Section VIII specializes
the convergence analysis to a class of potential games.
Finally, Section IX presents concluding remarks.

Notation:
− |x| denotes the Euclidean norm of a vectorx ∈ R

n.
− |x|∞ denotes theℓ∞-norm of a vectorx ∈ R

n.
− Bδ(x) denotes theδ-neighborhood of a vectorx ∈ R

n,
i.e., Bδ(x) , {y ∈ R

n : |x− y| < δ}.
− dist(x,A) denotes the distance from a pointx to a set

A, i.e., dist(x,A) , infy∈A |x− y| .
− Bδ(A) denotes theδ-neighborhood of the setA ⊂ R

n,
i.e., Bδ(A) , {x ∈ R

n : dist(x,A) < δ}.
− ∆(m) denotes the probability simplex of dimensionm,

i.e., ∆(m) , {x ∈ R
m : x ≥ 0,1Tx = 1}.

− Π∆ : Rm → ∆(m) is the projection to the probability
simplex, i.e.,Π∆[x] , argminy∈∆(m) |x− y|.

− Ao is the interior ofA ⊂ R
n, and∂A is its boundary.

− col{αi}i∈J is the column vector with entries{αi}i∈J



for some set of indexesJ .

II. T ERMINOLOGY

We consider the standard setup of finite strategic-form
games.

1) Game: A finite strategic-form game involves a finite
set ofagents(or players), I , {1, 2, ..., n}. Each agenti ∈ I
has afinite set of availableactions, Ai. Let αi ∈ Ai be an
action of agenti, andα = (α1, ..., αn) the action profileof
all agents. The setA is the Cartesian product of the action
spaces of all agents, i.e.,A , A1 × ...×An.

The action profileα ∈ A produces apayoff (or utility)
for each agent. The utility of agenti, denoted byRi, is a
function which maps the action profileα to a payoff inR.
DenoteR : A → R

n the combination of payoffs (orpayoff
profile) of all agents, i.e.,R(·) , (R1(·), ..., Rn(·)).

2) Strategy: Let σij ∈ [0, 1] denote the probability that
agenti selects actionαi = j. Then,σi , (σi1, ..., σi|Ai|)
is a probability distribution over the set of actionsAi (or
strategyof agenti), i.e., σi ∈ ∆(|Ai|), where|Ai| denotes
the cardinality of the setAi. We will also use the term
strategy profileto denote the combination of strategies of
all agentsσ = (σ1, σ2, ..., σn) ∈ ∆ where∆ , ∆(|A1|)×
...×∆(|An|) is the set of strategy profiles.

Note that ifσi is a unit vector (or a vertex of∆(|Ai|)),
sayej , then agenti selects an actionj with probability one.
Such a strategy will be calledpure strategy. Likewise, apure
strategy profileis a profile of pure strategies. Denote∆∗ the
set of pure strategy profiles orverticesof ∆. We will use
the termmixed strategyto define a strategy that isnot pure.

3) Expected payoff and Nash equilibrium:Given a strat-
egy profileσ ∈ ∆, the expected payoffvectorof each agent
i, Ui : ∆ → R

|Ai|, can be computed by1

Ui(σ) ,
∑

j∈Ai

ej
∑

α−i∈A−i

(

∏

s∈−i

σsαs

)

Ri(j, α−i). (1)

We may think of the entryj of the expected payoff vector,
denotedUij(σ), as the payoff of agenti who is playing action
j at the strategy profileσ. We denote the profile of expected
payoff vectors asU(σ) = (U1(σ), ..., Un(σ)). Finally, let
ui(σ) be the expected payoff of agenti at strategy profile
σ ∈ ∆, defined asui(σ) , σT

i Ui(σ).
Definition 2.1 (Nash equilibrium): A strategy profile

σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n) ∈ ∆ is a Nash equilibrium if, for

each agenti ∈ I,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) (2)

for all σi ∈ ∆(|Ai|) such thatσi 6= σ∗
i .

In the special case where for alli ∈ I, σ∗
i is a pure

strategy,σ∗ ∈ ∆
∗ is called apure Nash equilibrium. Any

Nash equilibrium which isnot pure is called amixed Nash
equilibrium. Also, in case the inequality in (2) is strict, the
Nash equilibrium is called astrict Nash equilibrium.

1The notation−i denotes the complementary setI\{i}. We will often
split the argument of a function in this way, e.g.,F (α) = F (αi, α−i).

III. PERTURBEDLEARNING AUTOMATA

In this section, we introduce the basic form of the learning
dynamics that we will consider in the remainder of the paper.
They belong to the general class oflearning automata[1].

For the remainder of the paper, we will assume:
Assumption 3.1 (Strictly positive payoffs): For everyi ∈

I, the utility function satisfiesRi(α) > 0 for all α ∈ A.
Even in the case where utilities take on negative values, we
can still analyze the game by considering anequivalentone
with strictly positive payoffs (cf., [8]).

A. Modified Linear Reward-Inaction (̃LR−I ) scheme

We consider a reinforcement scheme which is a small
modification of the originallinear reward-inaction(LR−I )
scheme [9], [10]. This modified scheme, denoted byL̃R−I ,
was introduced in [6]. Contrary toLR−I , Ri(·) may take
values other than{0, 1}, which increases the family of games
this algorithm can be applied to.

Similarly to LR−I , the probability that agenti selects
action j at timek is σij(k) = xij(k), for some probability
vectorxi(k) which is updated according to the recursion:

xi(k+1) = Π∆ [xi(k) + ǫ(k) · Ri(α(k)) · [αi(k)− xi(k)]] .
(3)

Here we identify actionsAi with vertices of the simplex,
{e1, e2, ..., e|Ai|}. For example, if agenti selects actionj at
time k, thenαi(k) = ej. Note that by letting the step-size
sequenceǫ(k) to be sufficiently small and since the payoff
function Ri is uniformly bounded inA, xi(k) ∈ ∆(|Ai|)
and the projection operatorΠ∆ can be omitted.

We consider the following class of step-size sequences:

ǫ(k) =
1

kν + 1
(4)

for someν ∈ (1/2, 1]. For these values ofν, the following
two conditions can easily be verified:

∞
∑

k=0

ǫ(k) = ∞ and
∞
∑

k=0

ǫ(k)2 <∞. (5)

The selection ofν is closely related to the desired rate of
convergence. Compared with prior reinforcement learning
schemes, both [11] and [3] consider comparable step-size
sequences.

B. Pertubed Linear Reward-Inaction Scheme (L̃λ
R−I )

Here we consider a perturbed version of the schemeL̃R−I ,
in the same spirit with [6], where the decision probabilities
of each agent are slightly perturbed. In particular, we assume
that each agenti selects actionj ∈ Ai with probability

σij , (1− ζi(xi, λ))xij + ζi(xi, λ)/ |Ai| , (6)

for some perturbation functionζi : ∆(|Ai|)× [0, 1] → [0, 1],
where the probability vectorxi is updated according to (3).

We consider the following perturbation function:

ζi(xi, λ) =

{

0 |xi|∞ < β,
λ

(1−β)2 (|xi|∞ − β)2 |xi|∞ ≥ β,
(7)



for someβ ∈ (0, 1) which is close to one. In other words,
an agent perturbs its strategy when the latter is close to a
vertex of the probability simplex. Note that the perturbation
function is continuously differentiable for someβ sufficiently
close to one. Furthermore,limλ↓0 ζi(xi, λ) = 0 uniformly in
x, which establishes equivalence of the perturbed dynamics
with the unperturbed dynamics asλ approaches zero.

The main difference with earlier work by the same authors
[6] is that here we allow for the perturbation function to
also depend on agent’sown strategy. Similar ideas of state
dependent perturbations have been utilized for equilibrium
selection in adaptive learning by [5]. The difference here is
that the perturbation function islocally state dependent, i.e.,
it only depends on the strategy of each agent andnot on the
strategy profile of all agents.

We will denote this scheme bỹLλ
R−I .

IV. BACKGROUND CONVERGENCEANALYSIS

Let Ω , ∆
∞ denote the canonical path space with an

elementω being a sequence{x(0), x(1), ...}, wherex(k) ,
(x1(k), ..., xn(k)) ∈ ∆ is generated by the reinforcement
learning process. An example of a random variable defined
in Ω is the functionψk : Ω → ∆ such thatψk(ω) = x(k).
In several cases, we will abuse notation by simply writing
x(k) or α(k) instead ofψk(ω). Let alsoF be aσ-algebra
of subsets inΩ andP, E be the probability and expectation
operator on(Ω,F), respectively. In the following analysis,
we implicitly assume that theσ-algebraF is generated
appropriately to allow computation of the probabilities or
expectations of interest.

A. Exit of a sample function from a domain

It is important to have conditions under which the process
ψk(ω) = x(k), k ≥ 0, with some initial distribution, will
exit an open domainG in finite time.

Proposition 4.1 (Theorem 5.1 in [12]): Suppose there ex-
ists a nonnegative function,V (k, x) in the domaink ≥ 0,
x ∈ G, such that

∆V (k, x) , E[V (k + 1, x(k + 1))− V (k, x(k))|x(k) = x]

satisfies∆V (k, x) ≤ −a(k) in this domain, wherea(k) is a
sequence such that

a(k) > 0,

∞
∑

k=0

a(k) = ∞. (8)

Then the processx(k) leavesG in a finite time with proba-
bility one.

The following corollary is important in cases we would
like to consider entrance of a stochastic process into the
domain of attraction of an equilibrium. It is a direct con-
sequence of Proposition 4.1. For details, see Exercise 5.1 in
[12].

Corollary 4.1: Let A ⊂ ∆, Bδ(A) its δ-neighborhood,
andDδ(A) = ∆\Bδ(A). Suppose there exists a nonnegative
functionV (k, x) in the domaink ≥ 0, x ∈ ∆ for which

∆V (k, x) ≤ −a(k)ϕ(k, x), k ≥ 0, x ∈ ∆, (9)

where the sequencea(k) satisfies (8) andϕ(k, x) satisfies

inf
k≥T,x∈Dδ(A)

ϕ(k, x) > 0

for all δ > 0 and someT = T (δ). Then

P[lim inf
k→∞

dist(x(k), A) = 0] = 1.

Corollary 4.1 implies thatx(k) enters an arbitrarily small
neighborhood of a setA infinitely often with probability one.

B. Convergence to mean-field dynamics

The convergence properties of the reinforcement learning
schemes can be described via the ODE method for stochastic
approximations. The recursion of̃Lλ

R−I , λ ≥ 0, can be
written in the following form:

xi(k + 1) = xi(k) + ǫ(k) · [gλi (x(k)) + ξλi (k)], (10)

where the observation sequence has been decomposed into a
deterministic sequence,gλi (x(k)), (or mean-field) and a noise
sequenceξλi (k). The mean-field is defined as follows:

gλi (x) , E[Ri(α(k))[αi(k)− xi(k)]|x(k) = x]

such that itss-th entry is

gλis(x) = Uis(x)σis −
∑

q∈Ai

Uiq(x)σiqxis.

whereσiq , q ∈ Ai, is defined in (6). It is straightforward
to verify thatgλi (·) is continuously differentiable. The noise
sequence is defined as

ξλi (k) , Ri(α(k)) · [αi(k)− xi(k)]− gλi (x(k)),

whereE[ξλi (k)|x(k) = x] = 0 for all x ∈ ∆.
Note that forλ = 0, (10) coincides withL̃R−I . We will

denoteg(x) the corresponding vector field forλ = 0.
The more compact form of (10) will also be used:

x(k + 1) = x(k) + ǫ(k) · [gλ(x(k)) + ξλ(k)], (11)

wheregλ(·) , col{gλi (·)}i∈I andξλ(·) , col{ξλi (·)}i∈I .
Proposition 4.2 (Theorem 6.6.1 in [13]): For the rein-

forcement schemẽLλ
R−I , λ ≥ 0, the stochastic iteration

(11) is such that, for almost allω ∈ Ω, {ψk(ω) = x(k)}
converges to some invariant set of the ODE

ẋ = gλ(x). (12)

Also, ifA ⊂ ∆ is a locally asymptotically stable set in the
sense of Lyapunov for (12),2 and x(k) is in some compact
set in the domain of attraction ofA infinitely often with
probability ≥ ρ, thenP[limk→∞ x(k) ∈ A] ≥ ρ.

Proof: The proposition follows directly from Theo-
rem 6.6.1 of [13], since the following conditions are satisfied:

− The functiongλ(·) is continuous.

2If {x(t) : t ≥ 0} denotes the solution of the ODE (12), then a set
A ⊂ ∆ is locally asymptotically stable set in the sense of Lyapunov for
the ODE (12) if there existsδ > 0 such thatdist(x(0), A) < δ implies
limt→∞ x(t) ∈ A.



− The sequenceY λ(k) , gλ(x(k)) + ξλ(k) satisfies
supk E[|Y

λ(k)|2] < ∞ since, by Assumption 3.1, the
utility functions are positive and bounded from above.

− The step-size sequence satisfies property (5).

V. STATIONARY POINTS

The stationary points of the mean-field dynamics are
defined as the set of pointsx ∈ ∆ for which gλ(x) = 0. In
this section, we characterize the set of stationary points for
both theunperturbed(λ = 0) and theperturbeddynamics
(λ > 0).

We will make the following distinction among stationary
points of (12) forλ > 0, denotedSλ:

− Sλ
∂∆: stationary points in∂∆;

− Sλ
∆∗ : stationary points which are vertices of∆;

− Sλ
∆o : stationary points in∆o;

− Sλ
NE: stationary points which are Nash equilibria.

We will also use the notationS∂∆, S∆∗ S∆o , andSNE

to denote the corresponding sets whenλ = 0.

A. Stationary points of unperturbed dynamics (λ = 0)

Proposition 5.1 (Stationary points forλ = 0): A strategy
profile x∗ is a stationary point of the ODE (12) if and only
if, for every agenti ∈ I, there exists a constantci > 0, such
that for any actionj ∈ Ai, x∗ij > 0 impliesUij(x

∗) = ci.
Proof: See Proposition 3.3 in [6].

The above result is quite well known for replicator learning
dynamics. In fact, notice that the corresponding mean-field
of the shareof strategys in agenti whenλ = 0 is:

gis(x) =



Uis(x) −
∑

q∈Ai

Uiq(x)xiq



 xis (13)

which coincides with the corresponding shares provided by
the replicator dynamics (e.g., see equation (3.3) in [14]).

Two straightforward implications of Proposition 5.1 are:
Corollary 5.1 (Pure Strategies): Forλ = 0, any pure

strategy profile is a stationary point of the ODE (12).
Proof: According to Proposition 5.1 and forλ = 0, any

strategy profilex∗ = (x∗1, · · · , x
∗
n), such thatx∗i is a vertex of

the probability simplex (pure strategy), is a stationary point
of the ODE (12), since the support of a pure strategy is a
single action.

Corollary 5.2 (Nash Equilibria): Forλ = 0, any Nash
equilibrium is a stationary point of the ODE (12).

Proof: Let σ∗ be a (possibly mixed) Nash equilibrium.
Then, for anyi ∈ I and anyj ∈ Ai such thatσ∗

ij > 0, we
should have

j ∈ argmax
q∈Ai

Uiq(σ
∗).

Therefore, by Proposition 5.1, the conclusion follows.
Note that for some games not all stationary points of

the ODE (12) are Nash equilibria. For example, if you
consider the Typewriter Game of Table I, the pure strategy
profiles which correspond to(A,B) or (B,A) are not Nash
equilibria, although they are stationary points of (12).

A B
A 4, 4 2, 2
B 2, 2 3, 3

TABLE I

THE TYPEWRITERGAME .

On the other hand, any stationary point in the interior of
∆ will necessarily be a Nash equilibrium.

Corollary 5.3 (Mixed Nash equilibria): Forλ = 0, any
stationary pointx∗ of the ODE (12), such thatx∗ ∈ ∆

o, is
a (mixed) Nash equilibrium of the game.

Proof: If x∗ ∈ ∆
o is a stationary point of the mean-

field dynamics then, as Proposition 5.1 showed, for any agent
i and for any pure strategyj ∈ Ai, we haveUij(x

∗) = ci,
for someci > 0. Therefore, all pure strategies are best replies
to the strategyx∗. Thus,x∗ is also a Nash equilibrium.

Note that the above corollaries do not exclude the possi-
bility that there exist stationary points in∂∆ without those
necessarily being pure strategy profiles.For the remainder
of the paper, we will only consider games which satisfy:

Property 5.1: For the unperturbed dynamics, there are no
stationary points in∂∆ other than the ones in∆∗, i.e.,
S∂∆\S∆∗ = ∅. Moreover, there existsδ > 0 such that
Bδ(S∆o) ⊂ ∆

o.
In other words, we only consider games for which, the
stationary points of (12),λ = 0, in the boundary of∆ are
vertices of∆, and the stationary points in∆o are isolated
from the boundary. Property 5.1 is not restrictive and is
satisfied for most but trivial cases.

B. Stationary points of perturbed dynamics (λ > 0)

A straightforward implication of the properties of the
perturbation function is the following:

Lemma 5.1 (Sensitivity ofS∆o ): There existsβ0 ∈ (0, 1)
such thatS∆o ⊆ Sλ

∆o for any β0 < β < 1 and anyλ > 0.
Proof: Due to Property 5.1, there existβ0 ∈ (0, 1)

sufficiently close to one andδ > 0, such that, for anyβ0 <
β < 1, we haveζi(xi, λ) = 0 for all i ∈ I andx ∈ Bδ(S∆o).
Thus, the conclusion follows.

Vertices of ∆ cease to be equilibria forλ > 0. The
following proposition provides the sensitivity ofS∆∗ to
small values ofλ.

Lemma 5.2 (Sensitivity ofS∆∗ ): For any stationary point
x∗ ∈ S∆∗ , which corresponds to a strict Nash equilibrium
and for sufficiently smallλ > 0, there exists a unique
continuously differentiable functionν∗ : R+ → R

|A|, such
that limλ↓0 ν

∗(λ) = ν∗(0) = 0, and

x̃ = x∗ + ν∗(λ) ∈ ∆
o (14)

is a stationary point of the ODE (12). If insteadx∗ ∈ S∆∗ is
not a Nash equilibrium, then for any sufficiently smallδ > 0
and λ > 0, the δ-neighborhood ofx∗ in ∆, Bδ(x

∗), does
not contain any stationary point of the ODE (12).

Proof: The proof follows similar reasoning with the
proof of Proposition 3.5 in [6].



Note that the statements of Lemma 5.2 do not depend on
the selection ofβ. Instead, they requireλ to be sufficiently
small. Also, note that Lemma 5.2 does not discuss the
sensitivity of Nash equilibria which arenotstrict. However, it
is straightforward to show that verticescannotbe stationary
points forλ > 0.

Let also S̃λ
NE denote the set of stationary points in∆o

which are perturbations of the stationary points inS∆∗∩SNE

(strict or non-strict) for someλ > 0.
Proposition 5.2 (Stationary points of perturbed dynamics):

For any β ∈ (0, 1), let δ∗ = δ∗(β) be the smallestδ > 0
such that, for allx ∈ ∆\Bδ(∆

∗), ζi(xi, λ) = 0 for some
i ∈ I. Whenβ is sufficiently close to one andλ > 0
is sufficiently small, then: a)S̃λ

NE ⊂ Bδ∗(∆
∗), and b)

Sλ = S∆o ∪ S̃λ
NE.

In other words, the stationary points of the perturbed dy-
namics are either the interior stationary points of the unper-
turbed dynamics or perturbations of pure Nash equilibria.
Proof: When we takeβ > β0, where β0 is defined in
Lemma 5.1, thenS∆o ⊆ Sλ

∆o ≡ Sλ. The rest of the sta-
tionary points are perturbations of the vertices characterized
by Lemma 5.2. Due to the definition ofδ∗ = δ∗(β), we
haveS̃λ

NE ⊂ Bδ∗(∆
∗), since outsideBδ∗(∆

∗) the dynamics
coincide with the unperturbed dynamics for at least one
agent. When we further takeβ to be sufficiently close to
one (which implies thatδ∗ = δ∗(β) approaches zero) and
λ sufficiently small, then, according to Lemma 5.2,S̃λ

NE

are the only stationary points inBδ∗(∆
∗), and therefore

Sλ = S∆o ∪ S̃λ
NE.

VI. CONVERGENCE TOBOUNDARY POINTS

Recall that, for the unperturbed dynamics, not all station-
ary points in∆∗ are necessarily Nash equilibria. Conver-
gence to non-desirable stationary points, such as the ones
which are not Nash equilibria, cannot be excluded when
agents employ the unperturbed reinforcement schemeL̃R−I .

Proposition 6.1 (Convergence to boundary points):
If agents employ the reinforcement schemẽLR−I , the
probability that the same action profile will be played for
all future times is uniformly bounded away from zero over
all initial conditions if Ri(α) > 1 for eachα ∈ A, i ∈ I.

Proof: Assume that agents play the action profileα =
(α1, α2, ...αn) ∈ A at timek = 0. Thenxiαi

(0) > 0 for all
i ∈ I, since actions are selected according to the probability
distributionσi(0) = xi(0). Define the following event:

Aτ , {ω ∈ Ω : ψk(ω) = α(k) = α for all k ≤ τ} .

Thus,Aτ corresponds to the case where the same action
profile has been performed for all timesk ≤ τ . Note that
the sequence of events{Aτ} is decreasing, since

Aτ ⊇ Aτ+1

for all τ = 1, 2, .... Define also the event

A∞ ,

∞
⋂

τ=1

Aτ ≡ {α(τ) = α, ∀τ > 0}.

From continuity from above, we have:

P[A∞] = lim
τ→∞

P[Aτ ] = lim
τ→∞

τ
∏

k=0

∏

i∈I

xiαi
(k).

The above product is non-zero if and only if
∞
∑

k=0

log(xiαi
(k)) > −∞ for eachi ∈ I. (15)

Let us define the new variable

yi(k) , 1− xiαi
(k),

which corresponds to the probability of agenti selecting any
action other thanαi. Condition (15) is equivalent to

−
∞
∑

k=0

log(1− yi(k)) <∞, for eachi ∈ I. (16)

We also have that

lim
k→∞

− log(1− yi(k))

yi(k)
= lim

k→∞

1

1− yi(k)
> ρ

for some finiteρ > 0, since0 ≤ yi(k) ≤ 1. Thus, from the
limit comparison test, we conclude that condition (16) holds
if and only if

∞
∑

k=0

yi(k) <∞, for eachi ∈ I.

Sinceǫ(k) = 1/(kν + 1), for 1/2 < ν ≤ 1, we also have:

yi(k + 1)

yi(k)
= 1−

Ri(α)

kν + 1
≤ 1−

Ri(α)

k + 1
.

By Raabe’s criterion, the series
∑∞

k=0 yi(k) is convergent if

lim
k→∞

k

(

yi(k)

yi(k + 1)
− 1

)

> 1.

Since

k

(

yi(k)

yi(k + 1)
− 1

)

≥ k

(

1

1− Ri(α)
k+1

− 1

)

=
Ri(α)

1 + 1−Ri(α)
k

we conclude that the series
∑∞

k=0 yi(k) is convergent if
Ri(α) > 1 for each i ∈ I. In other words, the action
profileα will be performed for all future times with positive
probability if Ri(α) > 1 for all i ∈ I. Furthermore, if
Ri(α) > 1 for all i ∈ I and for all α ∈ A, then the
probability that the same action profile will be played for
all future times is uniformly bounded away from zero over
all initial conditions.

Proposition 6.1 reveals the main issue of applying re-
inforcement learning schemes, which is convergence with
positive probability to boundary points which are not Nash
equilibrium profiles.

Figure 1 shows a typical response ofL̃R−I in the Type-
writer Game of Table I. We observe that it is possible for the
process to converge to a non-Nash equilibrium profile since
Ri(α) > 1 for all α ∈ A and i ∈ I.
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Fig. 1. Typical response of̃LR−I on the Typewriter Game of Table I
whenν = 0.78.

These issues, which are also pointed out in [15], [3], will
be resolved here due to the introduction of the perturbation
function in L̃λ

R−I .

VII. C ONVERGENCE OFPERTURBEDDYNAMICS (L̃λ
R−I )

The convergence analysis of the perturbed dynamicsL̃λ
R−I

will be subject to the following assumption:
Assumption 7.1: For the unperturbed dynamics,L̃R−I ,

there exists a twice continuously differentiable and nonneg-
ative functionV : ∆ → R+ such that a)∇xV (x)Tg(x) ≤ 0
for all x ∈ ∆, and b) ∇xV (x)Tg(x) = 0 if and only if
g(x) = 0.

For someδ > 0, consider theδ-neighborhood of the set
of stationary pointsSλ, Bδ(S

λ). Define also the closed set:
Dδ(S

λ) , ∆\Bδ(S
λ).

Lemma 7.1: Under Assumption 7.1, forβ ∈ (0, 1) suffi-
ciently close to one andλ > 0 sufficiently small, there exists
δ = δ(β, λ) > 0 such that

sup
x∈Dδ(Sλ)

∇xV (x)Tgλ(x) < 0.

Proof: Pick δ∗ = δ∗(β) according to Proposition 5.2,
such that, for allx ∈ ∆\Bδ∗(∆

∗), ζi(xi, λ) = 0 for at least
one i. Then, according to Proposition 5.2, when we takeβ
sufficiently close to one (which implies thatδ∗ approaches
zero) andλ sufficiently small, then a)̃Sλ

NE ⊂ Bδ∗(∆
∗), and

b) Sλ = S∆o ∪ S̃λ
NE. Due to Assumption 7.1, there exists

δ = δ(β, λ) > δ∗ such thatBδ∗(∆
∗) ⊂ Bδ(S

λ) and

sup
x∈Dδ(Sλ)

∇xV (x)Tgλ(x) < 0.

Lemma 7.2 (LAS -̃Lλ
R−I ): For any λ > 0 sufficiently

small, any stationary point̃x ∈ S̃λ
NE, which is a perturbation

of a strict Nash equilibrium according to (14), is a locally
asymptotically stable point of the ODE (12).

Proof: The proof follows similar reasoning with the
proof of Proposition 3.6 in [6].

Theorem 7.1 (Convergence to Nash equilibria): Under
Assumption 7.1, if agents employ thẽLλ

R−I reinforcement
scheme for someβ ∈ (0, 1) sufficiently close to one and

λ > 0 sufficiently small, then there existsδ = δ(β, λ) such
that,

P[lim inf
k→∞

dist(x(k),Bδ(S
λ)) = 0] = 1.

Also, for almost allω, the process{ψk(ω) = x(k)} con-
verges to some invariant set inBδ(S

λ).
Proof: Consider the nonnegative functionV (x) of

Assumption 7.1. We can approximate the expected incre-
mental gain ofV (x) by applying a Taylor series expansion
as follows:

∆V (k, x) =
∇xV (x)TE[x(k + 1)− x(k)|x(k) = x] + O(ǫ(k)2),

whereO(ǫ(k)2) denotes terms of orderǫ(k)2. Note that such
an expansion is possible due to the fact that the second-order
derivatives ofV (·) are continuous in∆. Equivalently,

∆V (k, x) = ǫ(k)∇xV (x)Tgλ(x) +O(ǫ(k)2). (17)

Due to Lemma 7.1, there existsδ = δ(β, λ) > 0 such that
−ρ̄ , supx∈Dδ(Sλ) ∇xV (x)Tgλ(x) < 0. Thus,

∆V (k, x) ≤ −ǫ(k)ρ̄+O(ǫ(k)2),

uniformly in x ∈ Dδ(S
λ). The right hand side of the

above inequality is strictly negative and can be formulated
in the form of condition (9). Therefore, the conditions of
Proposition 4.1 are satisfied and

P[lim inf
k→∞

dist(x(k),Bδ(S
λ)) = 0] = 1.

From Proposition 4.2, we also have that the process
{ψk(ω) = x(k)} will converge to some invariant set of the
ODE in Bδ(S

λ) almost surely.

VIII. S PECIALIZATION TO POTENTIAL GAMES

A. Potential games

In this section, we will specialize the convergence analysis
to a class of games which belongs to the general family
of potential games (cf., [7]). In particular, we will consider
games which satisfy the following property:

Property 8.1: There exists aC2 functionf : ∆ → R such
that ∇σi

f(σ) = Ui(σ) for all σ ∈ ∆ and i ∈ I.
Example 1:(Common-payoff games) One class of games

which satisfies Property 8.1 iscommon-payoff games, where
the payoff function is the same for all players. An example of
a common-payoff game is the Typewriter Game of Table I.
It is straightforward to show that for this game the function

f(σ) = 4σ11σ21 + 2σ11σ22 + 2σ12σ21 + 3σ12σ22

satisfies Property 8.1.
Example 2: (Congestion games) A typical congestion

game consists of a setI of n players and a setP of m
paths. For each playeri, let the set of pure strategiesAi be
the set ofm paths. The cost to each playeri of selecting
the pathp depends on the number of players that are using
the same path. The expected number of players using pathp
is χp(σ) ,

∑

i∈I σip. Definecp = cp(χp) to be the cost of
using pathp whenχp players are using pathp and letcp(χp)



be linear onχp. The expected utility of playeri is defined
as:ui(σ) , −

∑

p∈P cp(χp(σ)). Note that the function

f(σ) , −
∑

p∈P

∫ χp(σ)

0

cp(z)dz

satisfies Property 8.1.

B. Convergence to Nash equilibria

The following proposition establishes convergence to Nash
equilibria for this class of potential games.

Proposition 8.1 (Convergence to Nash equilibria): In the
class of games satisfying Property 8.1, theL̃λ

R−I reinforce-
ment scheme satisfies the conclusions of Theorem 7.1.

Proof: It suffices to show that the conditions of As-
sumption 7.1 are satisfied. In particular, define the nonnega-
tive function

V (x) , fmax − f(x) ≥ 0, x ∈ ∆, (18)

wherefmax , supx∈∆ f(x). Note that∇xi
V (x) = −Ui(x),

and

Ui(x)
Tgi(x) =

|Ai|
∑

s=1

|Ai|
∑

j=1,j>s

xisxij(Uis(x)− Uij(x))
2

= xTi D̃i(x)xi/2

where [D̃i(x)]ss = 0 and [D̃i(x)]sj = (Uis(x) − Uij(x))
2.

Thus,

∇xV (x)Tg(x) = −U(x)Tg(x) = −
∑

i∈I

Ui(x)
Tgi(x) ≤ 0

for all x ∈ ∆.
We also observe that∇xV (x)Tg(x) = 0 if and only

if Uis(x) = Uij(x) for any i ∈ I and anys, j ∈ Ai,
s 6= j such thatxis, xij > 0. By Proposition 5.1, these
points correspond to the stationary points ofg(x). Therefore,
the conditions of Assumption 7.1 are satisfied. Thus, the
conclusions of Theorem 7.1 hold for the class of games
satisfying Property 8.1.

C. Convergence to pure Nash equilibria

In several games, convergence to mixed Nash equilibria
of the unperturbed dynamicsS∆o can be excluded. In this
case, convergence to stationary points inS̃λ

NE which are
perturbations of pure Nash equilibria can be established.

Let x−i denote the distribution over action profiles of the
group of agents−i. Let Di be the matrix of payoffs of
agenti andD−i be the matrix of payoffs of−i. The vector
of expected payoffs of agenti and−i can be expressed as
Ui(x) = Dix−i andU−i(x) = D−ixi, respectively.

To analyze the behavior around stationary points in∆
o,

we consider the nonnegative functionV (x) , fmax−f(x) ≥
0, x ∈ ∆, wherefmax , supx∈∆ f(x). It is straightforward
to verify that the Jacobian matrix off(x) is:

∇2
xf(x) =

(

O Di
D−i O

)

.

Higher-order derivatives off(x) will be zero, therefore from
the extension of Taylor’s Theorem (cf., Theorem 5.15 in [16])

to multivariable functions, we have:

∆V (k, x) = −∇xf(x)
T
E[δx(k)|x(k) = x]−

E[δx−i(k)
TD−iδxi(k)|x(k) = x]−

E[δxi(k)
TDiδx−i(k)|x(k) = x], (19)

whereδx(k) , x(k + 1)− x(k).
A direct consequence of the above formulation and Propo-

sition 4.1 is the following:
Proposition 8.2 (Non-convergence toS∆o ): If agents em-

ploy theL̃R−I reinforcement scheme andx∗ ∈ S∆o satisfies
1) E[δx−i(k)

TD−iδxi(k)|x(k) = x] > 0,
2) E[δxi(k)

TDiδx−i(k)|x(k) = x] > 0

uniformly in x ∈ Bδ(x
∗), for someδ > 0 sufficiently small,

thenP[limk→∞ x(k) = x∗] = 0.
Proof: We consider the nonnegative functionV (x)

defined above. Note that the expected incremental gain of
V (x) (19) can take the following form:

V (k, x) = −ǫ(k)φ(k, x)

where infx∈Bδ(x∗) φ(k, x) > 0 for someδ > 0 sufficiently
small and for allk. This is due to the fact that for anyx ∈
Bδ(x

∗),
−∇xf(x)

T
E[δx(k)|x(k) = x] ≤ 0

(due to Property 8.1), and the second-order terms of the
incremental gain are strictly negative by assumption. Then,
from Proposition 4.1, we conclude that the process will exit
Bδ(x

∗) in finite time with probability one. Therefore, the
conclusion follows.

For several games testing the conditions of Proposition 8.2
may be difficult. For example, for two players and two
actions, it is straightforward to show that:

E[δxi
TDiδx−i|xi(k) = xi, x−i(k) = x−i] =
ǫ(k)2xi1xi2x(−i)1x(−i)2(d

i
11 − di12 − di21 + di22)·

((di11)
2 − (di12)

2 − (di21)
2 + (di22)

2), (20)

wheredisℓ denotes the(s, ℓ) entry ofDi, i = 1, 2. Consider,
for example, the Typewriter Game of Table I. Since the game
is symmetric, anddi11 > di12, di22 > di21, i = 1, 2, the second-
order terms of the incremental gain will be positive. The
above computation can be extended in a similar manner to
the case of larger number of actions or players.

Proposition 8.3 (Convergence to pure Nash equilibria):
In the framework of Proposition 8.1, let the conditions of
Proposition 8.2 also hold. If the game exhibits pure Nash
equilibria which are all strict, then, for someβ ∈ (0, 1)
sufficiently close to one andλ > 0 sufficiently small, the
process{ψk(ω) = x(k)} converges to the set̃Sλ

NE for
almost allω, i.e.,P[limk→∞ x(k) ∈ S̃λ

NE] = 1.
Proof: Since the game exhibits pure Nash equilibria

which are all strict, the set̃Sλ
NE in non-empty for anyλ > 0

sufficiently small.
Let x∗ denote an action profile which is a strict pure Nash

equilibrium, i.e., for everyi ∈ I there existsj∗ = j∗(i) such
that xij∗ = 1 andUis(x

∗) − Uij∗(x
∗) < 0 for any s 6= j∗.

Let alsox̃ ∈ S̃λ
NE be the perturbed stationary point according

to (14). Pick alsoδ∗ = δ∗(β) > 0 similarly to the proof of



Lemma 7.1. Then, for anyx ∈ Bδ∗(x̃), xis is of order ofδ∗

and
gλis(x) ≈ [Uis(x

∗)− Uij∗(x
∗)]xis (21)

plus higher order terms ofδ∗ andλ, for all s 6= j∗. Since
Uis(x

∗) − Uij∗(x
∗) < 0 for all s 6= j∗, we conclude

that the vector-field points towards the interior ofBδ∗(x̃)
when evaluated at the boundary ofBδ∗(x̃). Thus,Bδ∗(x̃)
is an invariant set of the ODE (12). Therefore, due to
Proposition 8.2 and Theorem 7.1, if we takeβ ∈ (0, 1)
sufficiently close to one andλ > 0 sufficiently small, then
there existsδ = δ(β, λ) > δ∗ such that the process{x(k)}
converges almost surely to some invariant set inBδ(S̃

λ
NE).

Furthermore, due to Lemma 7.2, we know that the points
in S̃λ

NE are locally asymptotically stable, and therefore by
(21), the setBδ(S̃

λ
NE) belongs to its region of attraction.

Since the process visitsBδ(S̃
λ
NE) infinitely often, by Propo-

sition 4.2, we conclude that the process converges toS̃λ
NE

with probability one.

D. Example

Consider the Typewriter Game of Table I. This game
exhibits two pure Nash equilibria which are strict,(A,A)
and(B,B). There is also a mixed Nash equilibrium, which
satisfies the conditions of Proposition 8.2 as it can be
verified from (20). Thus, the conditions of Proposition 8.3
are satisfied, and the process will converge to the stationary
points in S̃λ

NE almost surely. Figure 2 shows the solution of
the ODE (12) for an initial condition which corresponds to
the non-Nash action profile(B,A). The solution converges
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Fig. 2. ODE solution forL̃λ

R−I
and for the Typewriter Game of Table I

whenβ = 0.995, λ = 0.001 and initial condition(B,A).

to the strict Nash equilibrium(B,B). Note that escaping
from (B,A) would not be possible ifλ = 0.

IX. CONCLUSIONS

This paper presented a new reinforcement learning scheme
for distributed convergence to Nash equilibria. The main
difference from prior schemes lies in the introduction of
a perturbation function in the decision rule of each agent
which depends only on its own strategy. The introduction of
this perturbation function sidestepped issues regarding the

behavior of the algorithm close to vertices of the simplex. In
particular, we derived conditions under which the perturbed
reinforcement learning scheme converges to an arbitrarily
small neighborhood of the set of Nash equilibria almost
surely. We further specialized the results to a class of games
which belong to potential games.
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