
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Robustness of TAP-based Scan Networks

Ghani Zadegan, Farrokh; Carlsson, Gunnar; Larsson, Erik

Published in:
[Host publication title missing]

DOI:
10.1109/TEST.2014.7035321

2014

Link to publication

Citation for published version (APA):
Ghani Zadegan, F., Carlsson, G., & Larsson, E. (2014). Robustness of TAP-based Scan Networks. In [Host
publication title missing] https://doi.org/10.1109/TEST.2014.7035321

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/TEST.2014.7035321
https://portal.research.lu.se/en/publications/e5c4f719-f7cc-4fc5-8131-152c2040774c
https://doi.org/10.1109/TEST.2014.7035321


Robustness of TAP-Based Scan Networks

Farrokh Ghani Zadegan
Lund University, Lund, Sweden

Gunnar Carlsson
Ericsson AB, Stockholm, Sweden

Erik Larsson
Lund University, Lund, Sweden

Abstract—It is common to embed instruments when developing
integrated circuits (ICs). These instruments are accessed at post-
silicon validation, debugging, wafer sort, package test, burn-in,
printed circuit board bring-up, printed circuit board assembly
manufacturing test, power-on self-test, and operator-driven in-
field test. At any of these scenarios, it is of interest to access
some but not all of the instruments. IEEE 1149.1-2013 and IEEE
1687 propose Test Access Port based (TAP-based) mechanisms
to design flexible scan networks such that any combination of
instruments can be accessed from outside of the IC. Previous
works optimize TAP-based scan networks for one scenario with a
known number of accesses. However, at design time, it is difficult
to foresee all needed scenarios and the exact number of accesses to
instruments. Moreover, the number of accesses might change due
to late design changes, addition/exclusion of tests, and changes
of constraints. In this paper, we analyze and compare seven
IEEE 1687 compatible network design approaches in terms of
instrument access time, hardware overhead, and robustness. Given
the similarities between IEEE 1149.1-2013 and IEEE 1687, the
conclusions are also applicable to IEEE 1149.1-2013 networks.

Keywords—IEEE 1687 (IJTAG), IEEE 1149.1-2013, on-chip instru-
ments, robustness, access time, network design

I. INTRODUCTION

It is increasingly common that integrated circuits (ICs) are
equipped with embedded instruments to enable post-silicon
validation, debugging, wafer sort, package test, burn-in, printed
circuit board (PCB) bring-up, PCB assembly manufacturing
test, power-on self-test, and operator-driven in-field test. For
each of these cases—referred to as usage scenarios hereafter—
it is of interest to access some but not all of the instruments [1].
As an example, a memory built-in-self-test (MBIST) instrument
might be accessed (1) during yield learning for a new process
to choose the most suitable algorithms, (2) during wafer sort
and package test to detect defective devices and perform repair,
(3) in the burn-in process to cause activity in the chip and
to detect infant mortality [2], [3], (4) during PCB bring-
up [4], (5) during PCB assembly manufacturing test [4], and
(6) during power-on self-test and operator-driven in-field tests.
Also, the number of accesses to a given instrument typically
varies between different scenarios. For example, during yield
learning, an embedded memory might be tested several times by
running multiple BIST algorithms. Another example is reading
out the memory contents for diagnostic purposes [5]. In both
examples many accesses might be needed. In contrast, during
manufacturing tests, an embedded memory might be tested only
by accessing the associated MBIST engine a few times to setup
the algorithm, start the BIST, check for its completion, and read
the results.

Furthermore, at design time it is (1) difficult to foresee all
needed scenarios, and (2) how many times an instrument will be
used at each of the scenarios. The number of needed scenarios
and the number of accesses might be affected by late design
changes, adding/excluding tests, or change of constraints, such
as power consumption. Some changes may only be known after
manufacturing.

Instrument 1TDI TDOInstrument 2 Instrument N...

Fig. 1. Chaining instrument shift-registers into a regular scan-chain

The most straightforward approach to create a network to
access the instruments in an IC is to chain them in a scan-chain
(Fig. 1) which is accessed from the chip boundaries through
the JTAG test access port (TAP) [6]. While such approach
gives low hardware overhead and fixed time for instrument
access, the time overhead for accessing a single instrument (or
a few instruments) is high, as many dummy bits are shifted-
in/shifted-out [7]. To reduce the time overhead, IEEE 1149.1-
2013 [8] and IEEE 1687 (IJTAG) [9] enable flexible access
from the chip boundary by using the JTAG TAP. In this work,
we use terminology from 1687 and focus on 1687 networks.
However, given the similarities between the two standards, the
conclusions are also applicable to an 1149.1-2013 context.

Previous works on network design assume one known
scenario where the number of accesses is fixed [10]. However, a
1687 network optimized for one scenario, might be not efficient
for another one. And, a network optimized for a fixed number
of accesses, might not be optimal if the number of accesses
changes. Therefore, in this work we study the robustness of
seven approaches for designing 1687 networks, and we examine
their efficiency, in respect to overall access time (OAT) and
hardware overhead. The studied network design approaches
are (1) a flat network, (2) a single hierarchical network, and
(3) multiple networks each optimized for a given scenario, as
well as a daisy-chained counterpart for each of these three. In
addition to the six enumerated approaches, we study one more
approach in which two separate JTAG test data registers (TDRs)
are used for the instrument access network: one to configure the
access network, and one to access the instruments. Since there
is a need to OAT calculation methods for performing the com-
parison among the mentioned network design approaches, we
present OAT calculation methods for those studied approaches
for which such methods are not available from prior work. In
the experiments, we compare the considered design approaches
for both a number of known scenarios and for cases when
additional scenarios are added (unknown at design time).

The rest of this paper is organized as follows: In Section II,
the 1687 architecture will be briefly introduced and related
previous work will be reviewed. Section III will present the
problem formulation, and list the contributions of this work.
In Section IV, network design approaches will be presented.
Section V will present the performed experiments, and the paper
will be concluded in Section VI.

II. BACKGROUND AND PRIOR WORK

In this section we first briefly describe non-reconfigurable
and reconfigurable scan networks. We then discuss TAP-based
reconfigurable scan networks as described by IEEE 1687 and
IEEE 1149.1-2013.



Scan-chain 1
TDI

Scan-chain 2 Scan-chain 3
TDO

Control

a b c

Fig. 2. A daisy-chain implementation with bypass registers

Non-reconfigurable Scan Networks: A regular scan-chain
is utilized to access embedded instruments (Fig. 1). The time
for accessing any number of instruments in the scan-chain of
length l is calculated as t = (p+ 1) · l+ p · Ta [11] where p is
the number of times the scan-chain is accessed and Ta is the
time it takes to apply a shifted stimuli and capture its response.
In [11], Ta is equal to one. The hardware overhead is minimal
as all instruments are always on the scan-path. However, if a
single instrument is to be accessed, useless dummy bits that
contribute to additional time are shifted through for all other
instruments.

Reconfigurable Scan Networks: In [11] and [12], it is
shown how the use of dynamic reconfiguration for scan-chains
lowers the test application time at the cost of extra hardware
components. In particular, [11] presents daisy-chaining of scan-
chains (Fig. 2) which makes it possible to include only those
scan-chains in the scan-path which are needed for current
access. To avoid a long combinational path, a bypass register
is used for each excluded scan-chain. The control signals for
the multiplexers are not provided from the same scan-chain they
are reconfiguring, which makes the approaches in [11] and [12]
different from TAP-based reconfigurable scan networks where
multiplexer control signals are generated by scan elements on
the same scan-path. An early example of such a dynamically
reconfigurable TAP-based scan network was presented in [13].
As shown in [14], it is however possible to create a daisy-chain-
like architecture for 1687, which is discussed in Section IV-D
in this work. In [14], the focus is on verification and access
vector generation.

IEEE 1687’s Hardware: To enable variable-length (flexi-
ble) scan-path, 1687 introduces two components:

1) a Segment Insertion Bit (SIB), which is used to include
in, or exclude a scan-chain from the active scan-path.
Fig. 3 shows a simplified schematic of a possible
implementation of a SIB, as well as a symbol which
we will use through the rest of this paper. Fig. 3(a)
shows only as few components and terminals as are
needed to explain the operation of a SIB: a one-bit
shift-update register, and a mux. However, a realistic
schematic would contain more components (such as
logic gates for gating control signals, keeper muxes
for the registers, and delay elements to avoid race
condition) and terminals (such as selection and control
signals used to enable shift and update operations).

2) a ScanMux control bit, which is a shift-update register
that can be placed anywhere on the scan-path to
configure one or more scan multiplexers (ScanMux
components). Fig. 4 shows a two-bit ScanMux control
register used to configure a network of two instru-
ments. In this work, we consider one-bit ScanMux
control bits, to control two-input muxes which bypass
instrument shift registers in, e.g., daisy-chained archi-
tectures.

si

fso

0

1

fsi

soS

U

(a) Simplified schematic

SIB

fsi fso

si so

(b) Symbol

Fig. 3. Segment Insertion Bit (SIB)

TDI TDO
Instrument 1 Instrument 2

S
U

S
U

Fig. 4. A network configured by a two-bit ScanMux control register

Both SIBs and ScanMux control bits must be configured
to have the correct value every time the scan-path they are on
is accessed. Such configuration data is considered as overhead
since it is not part of instrument data.

IEEE 1149.1-2013’s Hardware: The flexibility in an
1149.1-2013 TDR is achieved by defining segments of that
TDR as selectable. A selectable segment mux with a one-
bit wide control, is similar to the SIB component specified
by 1687. Moreover, 1149.1-2013 also allows for controlling
a selectable segment mux from another part of the scan-path
or from other TDRs. The selectable segments can be nested to
create a hierarchical network for accessing instruments, similar
to what is achievable by a hierarchical 1687 network.

Although there are differences between 1149.1-2013 and
1687 in implementation details, the corresponding reconfig-
urable networks described under each of the two standards show
the same behavior regarding instrument access time.

The Access: To access the network of instruments from the
chip boundary, 1687 specifies the JTAG TAP as the primary
interface. Interfacing is performed by connecting the first level
(SIBs) of the 1687 network as a custom TDR to the JTAG
circuitry. This TDR is referred to as the Gateway. As an
example, Fig. 5 illustrates a small 1687 network consisting
of three instruments (namely a DFT instrument, a sensor,
and a debugging feature) and four SIBs. The instruments
are interfaced to the scan-path through shift-registers with
parallel I/O. Initially, the SIBs are closed and the scan-path
consists of the two SIBs which form the Gateway TDR. To
access the instruments, SIBs must be programmed to include
corresponding shift-registers into the scan-path. In this paper,
access is defined as (1) shifting input bits into the instrument’s
shift-register (shift phase), (2) latching the contents of the shift-
register to be applied to the internal circuitry of the instrument
(update phase), (3) capturing the output of the instrument into
the shift-register (capture phase), and (4) shifting the captured
values out (shift phase). The shifting out of the instrument
outputs can overlap in time with shifting in the input bits for
the next access. The number of clock cycles it takes to perform
the update and capture phases and go back to the shift phase
is referred to as CUC [7].

Pattern Description Language (PDL): 1149.1-2013 and
1687 use a similar Pattern Description Language (PDL) for
describing the operation of embedded instruments. For example,
assuming that the DFT feature in Fig. 5 is a BIST instrument,
to operate on this BIST instrument there is a need of PDL
commands (read/write) to configure the SIBs such that the



DFT

T
A

P

TCK

TMS

TDI

TDO

Gateway
SIB1 SIB2

SIB3 SIB4

Sensor DebuggingShift register 

with parallel I/O

Fig. 5. A 1687 network with three instruments inside a chip

BIST instrument is placed on the scan-path. While the BIST
instrument is running, there is no need to access the network for
this particular instrument. Hence, the PDL commands can be
divided as commands that configure and access the network,
such as read/write, and as commands that utilize a given
network configuration without requiring any accesses, such as
a command used for waiting for a number of clock cycles.

Access time and test time: As some PDL commands
are used to configure the network (read/write), the time for
accessing instruments is called access time. In access time, the
waiting for an instrument (such as a BIST engine) to finish
its operation is not included. The waiting time is constant
regardless of where in the network the instrument is. The access
time, on the other hand, depends on where in the network
a particular instrument is placed. The test application time
includes both access time and the time each instrument takes to
finish its operation (which is captured by wait cycles in PDL).
In this paper, we focus on network design; hence, we focus on
access time.

Retargeting and Access Schedules: Given the PDL of each
instrument, EDA tools generate scan vectors defining which
instruments should be active at any time. These scan vectors
are applied from the JTAG TAP. The process of generating scan
vectors is called retargeting. These scan vectors form schedules
that determine which instruments should be active at any given
time. In general, schedules have to take resource conflicts and
power limits into account. A flexible network eases the process
of meeting different conflicts and limitations. Interesting to note
is that with a flexibility where each instrument individually can
be included and excluded, any schedule is possible.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

In this work we address the problem of designing 1687
networks for multiple scenarios. We use the following notations:

• a set of scenarios, denoted by S, in which for each
scenario s ∈ S, an access schedule and a weight Ws are
specified. The weight (Ws) is assigned by the designer
as a relative metric for the importance of access time
reduction for that scenario as compared to the other
scenarios, and

• a set I of instruments in which for each instrument
i ∈ I the length of its interface shift-register (Li) and
the number of accesses (Ai,s) at a scenario s are
provided.

The contributions are as follows: First, we compare seven
network design approaches in terms of OAT and hardware
overhead. The considered approaches are flat network, flat
daisy-chained network, a hierarchical network, a hierarchical

daisy-chained network, multiple networks (each network is
optimized for a given-scenario), multiple daisy-chained network
(each network is optimized for a given-scenario), and separate
control and data TDRs.

Second, we present OAT calculation for hierarchical daisy-
chained networks. It should be noted that the test time calcu-
lation formulas presented in [11] cannot be used to calculate
OAT for daisy-chaining in 1687, due to (1) the presence of
ScanMux control bits on the scan-path, (2) that we consider
hierarchical daisy-chaining, as well, and (3) that we consider
both sequential and concurrent access whereas in [11] only
formulas for the concurrent access are considered. Moreover,
the OAT calculation algorithms presented in [7] are for the SIB-
based 1687 networks and cannot be used either. Therefore, in
Section IV-D, necessary OAT calculation algorithms will be
presented for such 1687 daisy-chained architecture.

Third, since it is likely that not all usage scenarios are
known at chip design time, we investigate the robustness of the
studied approaches toward scenarios not known at chip design
time. Intuitively, a robust approach should introduce as little
time overhead as possible into OAT regardless of the scenario.
That is, considering that OAT consists of both instrument data
and overhead (i.e., clock cycles spent on network configuration
and CUC), an approach is said to be robust if the ratio of OAT
to instrument data does not change dramatically between sce-
narios. Therefore, we calculate the ratio of OAT to instrument
data for each scenario that a given approach is used in, and we
consider the standard deviation of the calculated ratios as the
metric for robustness of that approach. The smaller the metric
value is, the more robust the approach will be.

In the work, we explore the flexibility features of 1687
networks. To focus on network design, we assume that each
instrument can be included in and excluded from the scan-
path. Making use of such flexibility, which eases the retargeting
process, makes it possible to avoid PDL discussions (discussed
in Section II). For the analysis of instrument access, we assume
sequential and concurrent schedules. In the sequential schedule,
instruments are accessed one at a time and the accesses for
each instrument are completed before accessing any other in-
strument. In the concurrent schedule, accesses to all instruments
start at the same time. For both schedules, when there are no
more accesses to be performed to a particular instrument, the
network is reconfigured to exclude that instrument from the
scan-path. In addition, we have performed experiments where
we limit the the number of instruments that can be active at the
same time.

IV. DESIGN APPROACHES

In this section, we detail the seven network design ap-
proaches, namely the “flat network”, “hierarchical network”,
“multiple networks”, “daisy-chained” counterparts for each of
these three, as well as “separate control and data TDRs”.

For each of the approaches, the network topology is detailed
with an example, how to design the network, and the OAT
analysis. For the OAT analysis, we assume that the instruments
are accessed according to a sequential and a concurrent sched-
ule. For “flat network”, “hierarchical network”, and “multiple
networks” , the algorithms presented in [7] are used. For the
daisy-chained counterparts and the “separate control and data
TDRs” approach we present OAT calculation algorithms.



SIB

Instrument 1

TDI TDOSIB

Instrument 2

SIB

Instrument N

...

Fig. 6. A flat network with dedicated SIBs for instruments

Gateway

TDI
TDOS

U

S
U

S
U

S
U

Sensor Debugging

DFT

SIB1 SIB2

SIB3 SIB4

Fig. 7. A more detailed view of the network shown in Fig. 5

A. Flat Network

To construct a flat network, each instrument’s shift-register
is connected through a SIB (Fig. 6). To access each of the
instruments, the corresponding SIB is programmed to include
that instrument in the scan-path.

As an example, assume we want to access Instrument 1 (in
Fig. 6) A1 number of times, OAT is calculated as

OAT1 = (TCUC +N) + (TCUC +N + L1) · (A1 + 1) (1)

where TCUC is the time it takes to perform a CUC (for CUC
see Section II) and L1 is the length of the shift-register for
Instrument 1. In (1), the term (TCUC+N) represents the initial
configuration of the network (i.e., shifting N bits followed by
performing a CUC), the term (TCUC + N + L1) states that
for each access, L1 bits of instrument data and N bits of SIB
programming data should be shifted followed by a CUC, and
the term A1 + 1 states that an additional access is required to
shift out the final responses.

The hardware overhead is minimal. For time overhead, since
the SIBs are always on the scan-path, they contribute to the
overhead for every access.

B. Hierarchical Network

In a hierarchical network, in addition to the SIBs dedicated
to switching the instruments’ shift-registers on and off the
scan-path, some SIBs are used to switch a network segment
(including other SIBs and shift-registers) on and off the scan-
path. An example of a hierarchical network is shown in Fig. 7
where the DFT feature is placed in the first level, and the sensor
and debugging instruments are placed in the second level. Such
hierarchical approach allows for reduction of OAT by excluding
the SIBs themselves from the scan-path (when the segment they
belong to is not used in the current access). That is, when
the sensor and debugging instruments are not needed, their
corresponding shift-registers and dedicated SIBs are excluded
by programming SIB2 to be closed.

In [10], the hierarchical network design was done with an
algorithm inspired by Huffman trees. It was shown that by
using hierarchical design approaches it is possible to effectively
reduce OAT for both sequential and concurrent schedules.

In this work, we make use of the Huffman tree inspired
network construction algorithm. However, instead of using the

TDR-1

TDO

S
U

En1
En2

En1

En2

From IR 

decoder

TDR-2

En1

En2

TDI

S
U

Sensor

DFT

SIB4

SIB2

Debugging

S
U

SIB3

S
U

SIB1

Fig. 8. The sensor instrument is shared by two networks (TDRs)

number of accesses for each instrument as the base for place-
ment of instruments, we assign an attribute, weighted number
of accesses (Ai,w), to each instrument. This weighted number
of accesses (Ai,w) captures both the number of accesses for an
instrument in each scenario (Ai,s) and the relative weight of the
scenarios (Ws), and is calculated as Ai,w =

∑
s∈S(Ai,s×Ws).

The reason for this assignment is that in the scenario-based
design problem, unlike the study in [10], each instrument is
associated with more than one number of accesses (one per
scenario). The idea is to design a network which performs
reasonably well for all the given scenarios, by considering the
relative weight assigned to each scenario.

C. Multiple Networks

In this approach, a dedicated network is designed and
optimized for each scenario. Each network is then connected
to the JTAG TAP through a dedicated TDR. The instruments
whose interface shift-register is to be accessed through mul-
tiple scenarios (i.e., multiple TDRs) can be shared among
the corresponding networks by using, for example, a scheme
similar to the one shown in Fig. 8. In the presented scheme,
tristate buffers are used to control to which network the shared
instrument shift-register is connected. The enable signals in
this scheme (i.e., En1 and En2) are applied from the TAP
circuitry. That is, given that no two such TDRs are active at
the same time, the same enable signals that are applied to the
TDRs, are used to connect the shared instrument shift-registers
to the scan-path which belongs to the active TDR. The two
networks in Fig. 8 are designed for two scenarios where the
Sensor instrument is used in both scenarios, while the DFT
and the Debugging instruments are each accessed only in one
of the scenarios (hence each accessible only through one of
the TDRs). Although the Sensor instrument is shared by both
networks, each network dedicates a SIB to it.

For the design of each network for its given scenario, the
algorithms in [10] can be used. For each network and its given
scenario, access time is calculated by using the algorithms
proposed in [7].



Gateway

TDI

TDO
U
S

U
S

U
S

U
S

U
S

U
S

DFT

Sensor Debugging

C1

C2

Fig. 9. An example of the use of hierarchy in daisy-chaining

accesses = A1

length = L1

state = 0/1

accesses = A2

length = L2

state = 0/1

accesses = A3

length = L3

state = 0/1

accesses = max(A1,A2,A3)

state = 0/1

accesses = max(A2,A3)

state = 0/1

C1

C2Inst1

Inst2 Inst3

Fig. 10. The tree corresponding to the network in Fig. 9

D. Daisy-chained

The daisy-chaining approach for 1687 is illustrated in Fig. 9.
To switch the instrument shift-registers on and off the scan-
path, multiplexers are used. These multiplexers are controlled
by ScanMux control bits placed on a separate branch of the
scan-path. To select between the two branches, other ScanMux
control bits denoted by C1 and C2 are used which are them-
selves on the scan-path. To avoid long combinational paths,
bypass registers are used in place of an excluded shift-register.
In Fig. 9, the sensor and the debugging instruments are placed in
a deeper hierarchical level, which allows saving access time by
removing their associated bypass registers and ScanMux control
bits from the scan-path, when these instruments are not being
accessed.

The hierarchical daisy-chained network in Fig. 9 can be
seen as a counterpart for the hierarchical SIB-based network in
Fig. 7, in the sense that one instrument is placed at the first level
of hierarchy while the other two are placed at the second level.
This way, it is possible to create a daisy-chained counterpart for
each of the SIB-based flat and hierarchical networks discussed
in previous sections. In the same way, for the multiple networks
approach, a daisy-chained counterpart can be constructed for
each of the networks.

In the following, OAT calculation algorithms are presented
for the concurrent and sequential schedules. To use these
algorithms, we model the given daisy-chained network as a
tree in which each internal node corresponds to a C ScanMux
control bit (see Fig. 9), and each leaf node corresponds to an
instrument. We clarify this with the help of the example tree
shown in Fig. 10 which models the network in Fig. 9. Each node
in the tree is associated with a state attribute which when set
to 0, signifies that the node’s corresponding instrument/segment
is bypassed, and when set to 1 signifies that the corresponding
instrument/segment is on the scan-path. Each leaf node has two
other attribute/value pairs: accesses, marking the number of
accesses, and length, marking the length of the shift-register
for the node’s corresponding instrument. Each internal node,
has also an accesses attribute whose value is the maximum

Algorithm 1: For the concurrent schedule
Input: A tree T describing the daisy-chained network
Output: OAT

1 while root.accesses > −1 do
2 SL := 0 ; // Scan-path length for the current access.
3 root.accesses := TraverseConc(root)
4 OAT := OAT + SL+ CUC

among the values for accesses found in that node’s subtree.

Below we detail the OAT calculations for concurrent and
sequential schedules.

1) Concurrent Schedule: The OAT calculation steps are
captured by Algorithm 1 in which each access to the instru-
ments (Lines 2–4) comprises of (1) resetting the variable SL
which stores the number of clocks needed to scan data through
the scan-path, (2) a call to TraverseConc() (Line 3) which
updates SL and returns the number of remaining accesses,
and (3) adding the counted number of cycles to OAT (Line 4)
which involves shifting SL bits and performing a CUC. The
algorithm terminates when there are no more accesses to be
performed and the last responses are also shifted out (i.e.,
root.accesses ≤ −1).

Function TraverseConc receives a tree node (corresponding
to a segment in the daisy-chained network) as input, and by
recursively calling itself (1) calculates the number of clocks
needed to shift data for the current access (stored in SL), and
(2) calculates and updates the remaining number of accesses
for each instrument/segment in the node’s subtree. If the C
ScanMux control bit for the segment represented by node con-
tains a logic zero (Line 3), the multiplexer control path (i.e., the
ScanMux control bits path) is selected and should be configured
such that the instruments/segments with remaining accesses
are placed on the scan-path while the rest are bypassed. This
reconfiguration involves (1) shifting one bit per each ScanMux
control bit in the segment (Line 2 and Line 4), and (2) updating
the node’s state to select the instrument path (Line 5). If,
however, the instrument path in the current segment is selected
(Lines 7–19), for every child node (instrument/segment) on the
path which has remaining accesses (Lines 10–17), if the child
node corresponds to

• an instrument, the algorithm reduces the remaining
number of accesses by one and adds the number
of required clocks for shifting the data through the
instrument’s shift-register to SL (Lines 10–12),

• a segment, the algorithm calls itself recursively
(Line 14).

2) Sequential Schedule: The OAT calculation can be per-
formed by traversing the tree and calculating the required num-
ber of clocks needed for network configuration and instrument
access, at each of the leaf nodes. Such tree traversal is shown
in Function TraverseSeq which as input receives an internal
tree node and calculates the number of clocks required to
sequentially access the instruments in the segment represented
by that subtree. When an instrument in a given segment is
being accessed, the rest of the instruments/segments in that
segment are bypassed which means that their corresponding
bypass registers are on the scan-path. This is handled by Line 1
which considers |node.children| − 1 bypass registers and one



Function TraverseConc(node)
1 Remaining := −1 ; // # of remaining accesses in node’s subtree
2 SL := SL+ 1 ; // +1 represents the C ScanMux control bit
3 if node.state = 0 then
4 SL := SL+ |node.children|
5 node.state := 1
6 Remaining := node.accesses

7 else
8 foreach child ∈ node.children do
9 if child.accesses > −1 then

10 if |child.children| = 0 then
11 child.accesses = child.accesses− 1
12 SL = SL+ child.length

13 else
14 child.accesses := TraverseConc (child)

15 if child.accesses < 0 then
16 node.state := 0

17 Remaining := max{Remaining, child.accesses}
18 else
19 SL := SL+ 1 ; // +1 for the bypass register

20 return Remaining

Function TraverseSeq(node)
1 SL := SL+ |node.children|
2 foreach child ∈ node.children do
3 OAT := OAT + SL+ 1 + CUC
4 if |child.children| > 0 then
5 TraverseSeq (child)

6 else
7 OAT :=

OAT +(child.length+SL+CUC) ·(child.accesses+1)

8 SL := SL− |node.children|

C ScanMux control bit (each internal node corresponds to
a C ScanMux control bit) on the path to each of the input
node’s direct child nodes. For each child node (Line 2), a
configuration step is considered (Line 3) to put the node’s
corresponding instrument/segment on the scan-path and put
the other instruments/segments in bypass. If the node is an
internal node (Line 4) the function calls itself recursively,
otherwise the number of clocks needed to access the instrument
corresponding to this leaf node is added to OAT (Line 7). On
return, one ScanMux control bit and |node.children|−1 bypass
registers for node’s subtree (i.e., in total |node.children|)
are reduced from the scan-path length (Line 8). In the OAT
calculation (Line 7), it is considered that each instrument i is
accessed Ai + 1 times (+1 for shifting out the last responses),
and that for each access SL+ Li bits should shifted followed
by performing a CUC. Function TraverseSeq is initially called
with the root node as the parameter.

E. Separate Control and Data TDRs

In this approach, there is one TDR for ScanMux control bits
and one TDR for instruments (Fig. 11). When the scan-path is
needed to be reconfigured, the TDR with control bits is accessed
(i.e., TDR-2). Then, after the scan-path is reconfigured, the
TDR with the instruments (i.e., TDR-1) is selected in order
to access the instruments. In this architecture, since ScanMux
control bits are not on the same scan-path as the instruments, it
is possible to pipeline the instrument data through the bypass

TDR-2

TDR-1
Instrument 1 Instrument N

S
U

S
U

TDO

From IR decoder

TDI

...

...

Fig. 11. Using separate TDRs for instruments and ScanMux control bits

registers, and therefore effectively reduce the time wasted in the
bypass registers. The overhead reduction can be understood by
referring to the work in [15] in which it is shown how pipelining
of data through bypass registers in a daisy-chained scan-path
results in extremely low test time overhead. This is in contrast
to the work in [11] which shows that time is wasted in passing
the bypass registers. The key difference between [11] and [15]
in their assumptions on bypass registers is that in [15] it is
assumed that bypass registers are dedicated to DFT, whereas
in [11] the bypasses are functional flip-flops converted to scan
registers. Since the contents of functional flip-flops change
during an execution step (application of stimuli), it is in general
not possible to pipeline the test patterns through them. Such
wasted time in passing the bypass registers was also present in
the daisy-chained approaches discussed in Section IV-D, in spite
of assuming dedicated bypass registers. The reason was that the
C ScanMux control bits (see Fig.9) were on the same scan-path
as the instruments, which required programming them with the
correct value for every access. This constraint is, however, not
present in the network shown in Fig. 11 since ScanMux control
bits are placed on a separate TDR, and therefore, it is possible
to reduce the access time overhead by pipelining the instrument
data through the bypass registers.

The access time calculation for the networks such as the
one in Fig. 11 can be done similar to the test application
time calculation in [11] for concurrent schedule, and to the
test application time calculation in [15] for sequential schedule.
However, as mentioned above, the calculations in [11] for the
concurrent schedule are done under the assumption that time
is wasted while scanning through the bypass registers—which
is not the case in the architecture presented here. Moreover,
in case of TAP-based networks, we need to take the IR scans
(needed to perform the network reconfigurations) into account
as well, which makes the access time calculation for TAP-based
networks different from the calculations in both [11] and [15].
Therefore, in the following, we present the complete OAT
calculations for the separate control and data TDRs approach.
We assume that initially TDR-1 is selected (Fig. 11).

Below we detail the OAT calculations for concurrent and
sequential schedules.

1) Concurrent Schedule: We start by the concurrent sched-
ule in which accesses to all instruments start at the same time.
When there are no more accesses to be performed to a particular
instrument, the scan-path is configured such that this instrument
is bypassed. OAT (Ttotal) consists of the time it takes to setup
the network by configuring the ScanMux control bits (Tsetup),
and the time it takes to perform the required number of accesses
(Taccess):

Ttotal = Tsetup + Taccess

Below we derive the formulas for Tsetup and Taccess.



To derive the formula for Tsetup, assume that there are N
instruments, Ai is the number of accesses to be performed on
instrument i, where 1 < i < N , and that the instruments are
ordered on the scan-path such that A1 > A2 > · · · > AN . In
the concurrent schedule, the network is reconfigured each time
the access to an instrument is completed. Hence, there are N
reconfigurations needing a setup, and for each reconfiguration,
we need to switch to TDR-2, shift in the configuration data
into the ScanMux control bits, and switch back to TDR-1. This
setup time is captured in the following:

Tsetup = N · (Tswitch +N + Tswitch) (2)

where the first N represents that the network should be re-
configured N times, Tswitch represents the time to switch
TDRs (taking the TAP FSM from shifting data, to loading an
instruction and back to the shifting data state), and the second
N represents bits that are shifted in through ScanMux control
bits.

We now derive Taccess. Initially all instruments are included
in the scan-path and AN + 1 accesses are performed until the
access to instrument N (which has the least number of accesses)
is complete and the last responses are shifted out. The time it
takes to perform AN + 1 accesses is calculated as follows:

TN = (

N∑
i=1

Li + TCUC) · (AN + 1)− TCUC

where Li is the length of the shift-register for instrument i.
The reason that one TCUC is reduced from the calculated time
is that this TCUC is included in the time Tswitch for the next
network reconfiguration (i.e., in (2)).

At this point, instrument N should be bypassed, which
requires one reconfiguration. Performing the remainder of ac-
cesses for instrument N − 1 takes the following time:

TN−1 = 1 + (

N−1∑
i=1

Li + TCUC) · (AN−1 −AN )− TCUC

where 1 represents flushing the pipeline after the last access
(i.e., one extra clock is needed to shift the captured responses
out completely through the bypass flip-flop for instrument N ).
In the same manner, we get the following time for performing
the remainder of accesses for instrument 1:

T1 = (N − 1) + (L1 + TCUC) · (A1 −A2)− TCUC

where (N − 1) represents flushing the pipeline after the last
access through the bypass flip-flops for instruments 2 to N .
Finally, we can write Taccess as:

Taccess =

N∑
j=1

Tj

where Tj is (by assuming AN+1 = −1):

Tj = (N − j) + (

j∑
i=1

Li + TCUC) · (Aj −Aj+1)− TCUC (3)

The above OAT calculations are performed under the as-
sumption A1 > A2 > · · · > AN . But if there are instruments
with the same number of accesses, since accessing them starts

and ends at the same time, they share the same network
reconfiguration step, and also the flushing of the pipeline will
be performed once for all of them. Moreover, if instruments do
not appear on the scan path in the assumed order, it can happen
that two instruments are active with some bypass registers in
between them on the scan-path. In this case, instrument data
cannot (in general) be pipelined through those bypass registers.
The reason is that the captured responses from the instruments
at the beginning of the path might break the scan vectors which
are pipelined for the instruments further down the scan-path.
For these cases, to take the time wasted in the bypass registers—
that appear between active (i.e., not bypassed) instruments on
the scan-path—into account, (3) should be modified as:

Tj = Rb +Re+

(

j∑
i=1

Li +Rm + TCUC) · (Aj −Aj+1)− TCUC (4)

where Rb represents the number of bypass registers on the
scan-path preceding the first currently active instrument, Re

represents the number of bypass registers on the scan-path
after the last currently active instrument, and Rm represents the
number of bypass registers that appear between the currently
active instruments. Equation (4) shows that the bypass registers
represented by Rm contribute to the access time (as overhead)
for every access, whereas those represented by Rb and Re only
increase the time once per reconfiguration (to flush the pipelined
data). For the experiments we have performed (Section V), we
implemented an algorithm based on the formulas presented in
this section, that calculate Rb, Re, and Rm values based on
the placement of the currently active instruments on the scan-
path, and therefore takes into account the time wasted passing
through the bypass registers.

2) Sequential Schedule: In the sequential schedule, instru-
ments are accessed one at a time and the accesses for each
instrument is completed before accessing any other instrument.
The order of accesses has no impact on OAT (Ttotal), which
can be written again as Ttotal = Tsetup + Taccess. Regardless
of the number of accesses, Tsetup can be written as:

Tsetup = N · (Tswitch +N + Tswitch)

Assuming that Ti is the time it takes to complete Ai accesses
for instrument i, we have:

Taccess =

N∑
i=1

Ti

where

Ti = N − 1 + (Li + TCUC) · (Ai + 1) (5)

In (5), N − 1 represents the bypass flip-flops that should be
flushed after the last access to instrument i.

V. EXPERIMENTAL RESULTS

In this section, we present results for the comparison of the
presented design approaches, in terms of OAT and hardware
overhead. To perform the comparison, a set of on-chip instru-
ments representing those in an advanced system-on-a-chip are
needed. We created a benchmark based on the UltraSPARC T2
processor [16], which contains 48 MBIST engines, eight LBIST
engines, and about 70 high-speed serial lanes. We assumed that



TABLE I. THE INSTRUMENT TYPES, THE SCENARIOS, AND THE NUMBER OF ACCESSES FOR EACH INSTRUMENT TYPE PER SCENARIO

Instruments Scenarios and their assigned weights (in parentheses)
Type Count S1 (1) S2 (100) S3 (1) S4 (1) S5 (100) S6 (1) S7 (10) S8 (10)

Sequential Concurrent Concurrent Sequential Concurrent Sequential Concurrent Concurrent
1 20 100 10 10 10 10 10 10 10000
2 20 10000 0 0 0 0 0 0 10000
3 10 100 10 10 10 10 10 10 10000
4 40 100000 10 10 100000 100 10 10 10000
5 10 10 100 10 10 10 100000 100000 10000

a BIST technology such as Intel’s IBIST [17] is applied to the
high-speed serial links, and we ended-up with a list containing
more than a hundred on-chip instruments having on average
a shift-register length of about 20 flip-flops. Given the above
observations, we constructed a benchmark with 100 instruments
each having an interface shift-register length of 20 flip-flops.

Moreover, we assumed eight access scenarios for which
Table I presents the considered set of instruments and how
they are accessed. In Table I, column 1 lists that there are five
types of instruments, column 2 lists how many of each type of
instrument are considered, and columns 3–10 list the number of
accesses for each instrument type for each scenario. In Table I,
under the headers for columns 3–10, the access schedules as
well as the weights assigned to scenarios (within parentheses),
are presented.

In the following, we describe two sets of experiments we
have performed to examine (1) the robustness of the studied
approaches against new scenarios not known at design time
(Section V-A), and (2) the robustness of two of the selected
approaches against general access schedules (Section V-B).

A. Robustness Towards New Scenarios

1) Aim: In this set of experiments, we consider three cases:
(A) when the networks corresponding to each of the approaches
in Section IV are designed and optimized for scenario S1 (i.e.,
by using the number of accesses and the access schedule for
S1), but are later (when the chip is manufactured) used to
access the instruments according to scenarios S2–S8 as well,
(B) when the networks are designed and optimized for scenarios
S1–S5, but are later used to access the instruments according
to scenarios S6–S8, and (C) when all scenarios are known at
the design time and therefore the networks are designed and
optimized for all scenarios.

For the experiments, we calculated OAT for each of the
scenarios listed in Table I, by the use of the algorithms
proposed in Section IV-D (for the “Daisy-chained” approach),
algorithms based on the formulas presented in Section IV-E
(for the “Separate control and data TDRs” approach), and the
algorithms presented in [7] (for the rest of the approaches). In
the access time calculations, CUC is considered to take four
test clock cycles, and Tswitch for the case of “Separate control
and data TDRs” is assumed to take 19 test clock cycles.

As baseline approach for the comparison, we use the non-
reconfigurable scan network (Section II), and refer to it as
“Regular scan-chain” in the presentation of the experimental
results. OAT is calculated using the formula presented for
the non-reconfigurable scan network (Section II), considering
l =

∑N
i=1 Li and assuming Ta = 4 (TAP overhead, i.e.,

CUC). When accessing instruments according to the concurrent
schedule, p is considered as max1≤i≤N{Ai}, where Ai is the

number of accesses for instrument i. For sequential access p is
considered as

∑N
i=1 Ai.

As the metric for comparison of the networks (i.e., com-
paring the corresponding considered design approaches), the
weighted sum of OATs for each scenario was calculated for
each of the approaches, as Sum =

∑
s∈S(OATs ×Ws) . The

weights are those assigned to each scenario (Table I).

2) Calculation of Hardware Overhead: Regarding the hard-
ware overhead, the total number of flip-flops and multiplexers
used to construct the networks are reported. The aim is not
to report an exact component/gate count, but rather a relative
metric to enable us to compare the networks. To this end, only
the shift and update flip-flops and scan multiplexers are consid-
ered. As examples of how the hardware overhead is calculated
in the experiments, the hardware overhead calculation for the
network in Fig. 7 and its daisy-chained counterpart in Fig. 9,
is presented here:

• The network in Fig. 7 is considered to have eight flip-
flops (four shift and four update flip-flops), and four
muxes.

• The network in Fig. 9 is considered to have 16 flip-
flops (six shift, six update, and four bypass flip-flops),
and six muxes.

For the “Multiple networks” approach, the reported numbers
are the sum over all networks designed for each of the
scenarios. Moreover, the number of tristate buffers used to
share instruments among these networks are also reported. As
mentioned in Section IV-C, if an instrument is shared among
multiple networks, each network should separately dedicate
hardware resources (e.g., a SIB) to that instrument, which
effectively increases the hardware overhead for this approach
in comparison with other approaches. As an example, the
hardware overhead for the network in Fig. 8 is calculated as
eight flip-flops, four muxes, and two tristate buffers. In Fig. 8, if
instead of one instrument, all instruments were shared by both
networks, the hardware overhead would increase to 12 flip-
flops, six muxes and six tristate buffers, as each network would
have to dedicate a SIB to each of the three shared instruments.

3) Presentation and Discussion of the Results: Tables II–
IV present the results of the experiments in details. The tables
have the same layout where the first column lists the examined
approaches. Columns 2–4 present the used hardware compo-
nents for the construction of the network corresponding to each
of the approaches. The hardware components are reported as
the number of flip-flops (represented by column “F.F.”), two-
input multiplexers (“Mux”), and tristate buffers (“Buf.”) used
to share an instrument shift-register among multiple networks
(Fig. 8). Columns 5–12 list for each scenario the product of
the OAT and the assigned weight for that scenario. Column
“Sum” presents the sum of values in columns 5–12, to be



TABLE II. EXPERIMENTAL RESULTS FOR CASE A WHEN THE NETWORKS ARE OPTIMIZED ONLY FOR S1, BUT USED FOR S1–S8

Approach Hardware overhead∗ Weighted OAT (OATs ×Ws) SumF.F. Mux Buf. S1 S2 S3 S4 S5 S6 S7 S8
Regular scan-chain 0 0 0 8,423,014,404 20,240,400 22,044 8,016,803,604 20,240,400 2,005,404,804 2,004,020,040 200,420,040 20,690,165,736
Flat network 200 100 0 521,196,904 4,620,800 18,848 496,059,624 10,020,800 124,096,824 304,158,080 210,422,080 1,670,593,960
Flat daisy-chain 302 101 0 521,207,300 4,463,500 17,980 496,070,020 9,593,500 124,107,220 295,151,350 200,521,100 1,651,131,970
Hierarchical network 304 152 0 147,054,246 4,143,800 19,388 139,024,576 9,687,400 57,032,776 245,169,380 215,625,500 817,757,066
Hierarchical daisy-chain 562 205 0 147,056,424 3,995,000 18,710 139,026,754 9,262,300 57,034,954 236,163,500 205,726,870 798,284,512
Multiple networks - - - - - - - - - - - -
Multiple daisy-chains - - - - - - - - - - - -
Separate control and data TDRs 300 100 0 100,900,100 4,387,000 17,988 96,030,160 9,534,800 24,037,360 286,152,700 200,421,380 721,481,488
∗F.F., Mux, and Buf. represent the total number of flip-flops, multiplexers, and tristate buffers, respectively
†This approach is not applicable when designing for one scenario.

TABLE III. EXPERIMENTAL RESULTS FOR CASE B WHEN THE NETWORKS ARE OPTIMIZED FOR S1–S5, BUT USED FOR S1–S8

Approach Hardware overhead∗ Weighted OAT (OATs ×Ws) SumF.F. Mux Buf. S1 S2 S3 S4 S5 S6 S7 S8
Regular scan-chain 0 0 0 8,423,014,404 20,240,400 22,044 8,016,803,604 20,240,400 2,005,404,804 2,004,020,040 200,420,040 20,690,165,736
Flat network 200 100 0 521,196,904 4,620,800 18,848 496,059,624 10,020,800 124,096,824 304,158,080 210,422,080 1,670,593,960
Flat daisy-chain 302 101 0 521,207,300 4,463,500 17,980 496,070,020 9,593,500 124,107,220 295,151,350 200,521,100 1,651,131,970
Hierarchical network 286 143 0 147,621,527 4,014,100 19,190 139,021,159 9,672,800 39,431,119 233,168,410 214,724,180 787,672,485
Hierarchical daisy-chain 517 187 0 147,623,483 3,857,500 18,435 139,023,115 9,243,200 39,433,075 224,161,750 204,824,460 768,185,018
Multiple networks 1172 586 400 147,054,246 3,798,200 18,620 138,621,398 9,468,200 35,082,177 215,164,820 210,522,950 759,730,611
Multiple daisy-chains 1940 677 400 147,056,424 3,632,000 17,752 138,623,769 9,035,000 35,090,463 206,157,200 200,622,840 740,235,448
Separate control and data TDRs 300 100 0 100,900,100 4,387,000 17,988 96,030,160 9,534,800 24,037,360 286,152,700 200,421,380 721,481,488
∗F.F., Mux, and Buf. represent the total number of flip-flops, multiplexers, and tristate buffers, respectively

TABLE IV. EXPERIMENTAL RESULTS FOR CASE C WHEN THE NETWORKS ARE OPTIMIZED FOR S1–S8, AND USED FOR S1–S8

Approach Hardware overhead∗ Weighted OAT (OATs ×Ws) SumF.F. Mux Buf. S1 S2 S3 S4 S5 S6 S7 S8
Regular scan-chain 0 0 0 8,423,014,404 20,240,400 22,044 8,016,803,604 20,240,400 2,005,404,804 2,004,020,040 200,420,040 20,690,165,736
Flat network 200 100 0 521,196,904 4,620,800 18,848 496,059,624 10,020,800 124,096,824 304,158,080 210,422,080 1,670,593,960
Flat daisy-chain 302 101 0 521,207,300 4,463,500 17,980 496,070,020 9,593,500 124,107,220 295,151,350 200,521,100 1,651,131,970
Hierarchical network 306 153 0 155,788,222 3,946,600 19,342 147,619,236 9,852,300 33,030,696 224,170,660 215,724,470 790,151,526
Hierarchical daisy-chain 567 207 0 155,790,032 3,785,900 18,546 147,621,046 9,423,000 33,032,506 215,163,590 205,824,850 770,659,470
Multiple networks 1868 934 680 147,054,246 3,798,200 18,620 138,621,398 9,468,200 30,833,900 215,164,820 210,422,080 755,381,464
Multiple daisy-chains 3086 1076 680 147,056,424 3,632,000 17,752 138,623,769 9,035,000 30,836,216 206,157,200 200,521,100 735,879,461
Separate control and data TDRs 300 100 0 100,900,100 4,387,000 17,988 96,030,160 9,534,800 24,037,360 286,152,700 200,421,380 721,481,488
∗F.F., Mux, and Buf. represent the total number of flip-flops, multiplexers, and tristate buffers, respectively

used as the comparison metric. For Case A, since the networks
were designed and optimized for one scenario, the “Multiple
Networks” and “Multiple daisy-chains” approaches are not
applicable.

From the “Sum” columns of Tables II–IV it can be seen that
Sum for “Regular scan-chain”, “Flat network”, and “Flat daisy-
chain” is at least two times larger than Sum for the rest of the
approaches. “Separate control and data TDRs” shows the best
Sum among all which makes it specifically interesting given that
it has a fixed architecture (which does not change with the usage
scenario). Therefore, it can be expected that by adding even
more scenarios, more or less the same behavior (in comparison
with other approaches in terms of OAT) can be expected from
this approach. “Multiple networks” and “Multiple daisy-chains”
also show a low Sum as well as good results for the individual
scenarios, but at the cost of a very high hardware overhead.
In this regard, showing a low Sum for Case C (for which
there exists an optimized network for each scenario in “Multiple
networks” and “Multiple daisy-chains”) is no surprise, but for
Case B where S6, S7, and S8 were not initially known at
design time, we still observe good results from these two
approaches. “Hierarchical network” also shows good results
given its relatively low hardware overhead. However, it might
be that the low Sum we observe for this approach cannot
be expected for additional scenarios, since we already see an
increase in Sum when going from Case B to Case C (in which
all scenarios are considered at design time) for this approach.

Table V presents the robustness metric (see Section III) for
each of the approaches under each of the considered cases.
It can be seen that “Separate control and data TDRs” shows
the smallest value and therefore is the most robust among the
studied approaches. Since this approach has a fixed architecture,

TABLE V. ROBUSTNESS OF DIFFERENT APPROACHES

Approach Robustness metric
Case A Case B Case C

Flat network 2.42 2.42 2.42
Flat daisy-chain 2.44 2.44 2.44
Hierarchical network 0.57 0.35 0.34
Hierarchical daisy-chain 0.59 0.37 0.36
Multiple networks - 0.33 0.30
Multiple daisy-chains - 0.35 0.32
Separate control and data TDRs 0.13 0.13 0.13

its robustness metric is the same for all cases (a similar argu-
ment applies to “Flat network” and “Flat daisy-chain”, as well).
Moreover, since the placement of instruments on the scan-path
for the experiments was chosen randomly, and therefore the
benefits of pipelining instrument data is only partially exploited
(see Section IV-E1), it can be expected that even for future
scenarios a similar degree of robustness will be observed.
It is notable that under Case A, “Hierarchical network” and
“Hierarchical daisy-chain” (which were optimized only for one
scenario) show a relatively good degree of robustness. This can
be explained by the hierarchical design of these networks: For
example, for “Hierarchical network”, the average number of
SIBs on the scan-path is less than 16 SIBs which should be
compared to the average of 100 SIBs for the “Flat network”.

To sum up, the “Separate control and data TDRs” and
“Hierarchical network” approaches, show good results, in terms
of OAT, hardware overhead, and robustness.

B. Robustness Against General Schedules

For the scenarios listed in Table I, we have considered se-
quential and concurrent access schedules. However, to evaluate
the robustness of the networks against general schedules, we



80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

1 5 10 20 50 100

O
ve

ra
ll 

A
cc

es
s 

Ti
m

e

Number of concurrently accessed instruments

Separate control and data TDRs Hierarchical network

Fig. 12. Change in OAT as concurrency increases

performed an experiment in which the instruments in scenario
S1 are accessed according to partially concurrent schedules in
groups of 5, 10, 20, 50, and 100 concurrent instruments. As for
the approaches, we took “Hierarchical network” (this time only
optimized for S1) and “Separate control and data TDRs”, which
had performed reasonably well in the previous experiment
(regarding OAT, hardware overhead, and robustness).

The result of OAT calculation is presented as the chart in
Fig. 12. For “Separate control and data TDRs”, we assumed
a random order of the instruments on the scan-path so that
the pipelining of data through bypass registers cannot be
fully exploited (see Section IV-E1). A general observation
is that the “Separate control and data TDRs” approach still
performs better than the “Hierarchical network” approach in
all cases. It can also be seen that as concurrency increases,
OAT decreases, which is mainly because overhead of CUC
(and SIB programming in case of “Hierarchical network”) is
amortized over multiple concurrent accesses [7]. Moreover, the
OAT reduction for “Separate control and data TDRs” from
sequential access (denoted by “1” in the chart) to five concurrent
instruments is not as significant as the corresponding drop in
OAT for “Hierarchical network”. The reason is that the positive
effect of sharing the CUC overhead is partially countered by
a significant increase in overhead from bypass registers (i.e.,
passing data through those bypass registers that appear between
active instruments on the scan-path, preventing pipelining of
instrument data through them). This overhead from bypass
registers does not decrease much as concurrency increases and
therefore, for the case of fully concurrent access (denoted by
“100” in the chart), OAT for both approaches become almost
similar.

As for robustness, since applying any change in the access
schedule (e.g., a change in concurrency, as is the case here)
can be regarded as creating a new usage scenario, the same
metric defined in Section III can be calculated and used for
this experiment, as well. To do so, we calculated the ratio of
OAT to instrument data for all the cases presented in Fig. 12
and got 0.05 for “Separate control and data TDRs” and 0.24
for “Hierarchical network’. The lower standard deviation for
the former confirms that the “Separate control and data TDRs”
approach is robust against changes in the concurrency in the
schedule, as well.

VI. CONCLUSION AND FUTURE WORK

Integrated circuits contain a high number of embedded
instruments which are accessed at several points during the life

cycle, from wafer sort to in-field test. At each point, referred to
as a scenario in this work, some instruments but typically not all
are accessed. Different from previous works that only assumed
one scenario with a fixed number of accesses, we studied and
compared seven 1687 network design approaches in terms of
overall access time, hardware overhead, and robustness. We
compared the networks against several known scenarios as well
as when scenarios not known at design time were added. The
results indicate that the approach using two separate JTAG
test data registers for the instrument access network, one to
configure the access network and one to access the instruments,
results in best overall access time and robustness at low
hardware cost. While we made use of sequential, concurrent,
and general schedules in the experiments, we will as a future
work further study the impact of general schedules. We will also
explore architectures that make use of broadcasting, which is
suitable when instruments of the same type are accessed at the
same time. Finally, we will perform a more detailed hardware
overhead comparison that also takes routing into account.

REFERENCES

[1] M. Keim et al., “Industrial Application of IEEE P1687 for an Automotive
Product,” in Euromicro Conference on Digital System Design (DSD),
Sept 2013, pp. 453–461.

[2] K. Yamasaki et al., “External Memory BIST for System-in-Package,” in
Proc. IEEE Int’l Test Conf. (ITC), 2005.

[3] A. Carbine and D. Feltham, “Pentium(R) Pro Processor Design for Test
and Debug,” in Proc. IEEE Int’l Test Conf. (ITC), 1997, pp. 294–303.

[4] Z. Conroy et al., “Board Assisted-BIST: Long and Short Term Solutions
for Testpoint Erosion – Reaching into the DFx Toolbox,” in Proc. IEEE
Int’l Test Conf. (ITC), 2012.

[5] A. Margulis et al., “Evolution of Graphics Northbridge Test and Debug
Architectures Across Four Generations of AMD ASICs,” IEEE Design
& Test, vol. 30, no. 4, pp. 16–25, Aug 2013.

[6] IEEE association, “IEEE Std 1149.1-2001, IEEE Standard Test Access
Port and Boundary-Scan Architecture,” 2001.

[7] F. G. Zadegan et al., “Access Time Analysis for IEEE P1687,” IEEE
Transactions on Computers, vol. 61, no. 10, pp. 1459–1472, Oct. 2012.

[8] “IEEE Standard for Test Access Port and Boundary-Scan Architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), 2013.

[9] IJTAG, “IJTAG - IEEE P1687,” Mar. 2012. [Online]. Available:
http://grouper.ieee.org/groups/1687

[10] F. G. Zadegan et al., “Design automation for IEEE P1687,” in Proc.
Design, Automation Test in Europe Conference (DATE), March 2011.

[11] J. Aerts and E. J. Marinissen, “Scan Chain Design for Test Time
Reduction in Core-Based ICs,” in Proc. IEEE Int’l Test Conf. (ITC),
1998, pp. 448–457.

[12] S. Samaranayake et al., “Dynamic Scan: Driving Down the Cost of Test,”
Computer, vol. 35, no. 10, pp. 63–68, 2002.

[13] L. D. Whetsel, “Hierarchical Scan Selection,” Oct. 3 1989, US Patent
4,872,169.

[14] R. Baranowski, M. Kochte, and H.-J. Wunderlich, “Modeling, Verifica-
tion and Pattern Generation for Reconfigurable Scan Networks,” in Proc.
IEEE Int’l Test Conf. (ITC), 2012, pp. 1–9.

[15] T. Waayers, R. Morren, and R. Grandi, “Definition of a Robust Modular
SOC Test Architecture; Resurrection of the Single TAM Daisy-Chain,”
in Proc. IEEE Int’l Test Conf. (ITC), 2005.

[16] Sun Microsystems, Inc., “UltraSPARC T2 Supplement to the Ultra-
SPARC Architecture 2007,” Draft D1.4.3, 19 Sep. 2007.

[17] J. Nejedlo, “IBIST (Interconnect Built-in-Self-Test) Architecture and
Methodology for PCI Express,” in Proc. IEEE Int’l Test Conf. (ITC),
vol. 2, 2003, pp. 114–122.


