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Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118
SE-221 00 Lund
Sweden

Editor: Gerhard Kristensson
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Abstract

This paper addresses the inverse problem of reconstructing a medium’s in-
stantaneous, nonlinear response to electromagnetic excitation. Using reflec-
tion and transmission data for an almost arbitrary incident field on a homo-
geneous slab, we are able to obtain the nonlinear constitutive relations for
both electric and magnetic fields, with virtually no assumptions made on the
specific form of the relations. It is shown that for a nonmagnetic material,
reflection data suffices to obtain the electrical nonlinear response. We also
show that the algorithms are well posed. Numerical examples illustrate the
analysis presented in this paper.

1 Introduction

There has been an increased interest in nonlinear electromagnetic materials recently,
much powered by the progresses in nonlinear optics. Especially the nonlinear effects
in optical fibers have been a great inspiration, i.e., the experimental verification
of soliton solutions [13, 14, 21], and the use of different field-dependent scattering
mechanisms for amplification of a propagating signal [1]. Some chaotic effects have
also been studied, as in [10].

The research in this field is largely conducted in the frequency domain, where
the nonlinearities manifest in the generation of multiple frequencies. In this paper,
we study nonlinear effects in the time domain, where the nonlinearities rather cause
a change of shape in a propagating pulse. This change of shape may ultimately
turn into a shock solution, where the pulse becomes discontinuous after a finite
propagation time, although this problem is not addressed in this paper.

We study a material which has an instantaneous, nonlinear response, i.e., we
do not consider memory effects of any kind. We further assume the material to
be passive, isotropic and homogeneous, and solve the problem of reconstructing
the constitutive relations. Then we are able to reconstruct the nonlinear relation
between E and D as well as between H and B with reflection and transmission
data from a finite slab for an (almost) arbitrary input signal. Since no further
assumptiosn have to be made regarding the specific form of the constitutive relations,
the reconstruction is model independent.

Previous work in the field include the propagation of pulses in nonlinear slabs,
where the paper by Kazakia and Venkataraman deserves special attention [18]. They
have obtained an analytical solution for the propagation of a step function through
a slab with some special constitutive functions. The wave propagation in more
complicated nonlinear materials have appeared, i.e., mixed nonlinearities [19], bi-
anisotropic and bi-isotropic media [5], and nonlinearities in chiral media [2, 23].

Though much work has been done on the direct problem of wave propagation,
our solution of the inverse problem of reconstructing the material seems to be novel.
It extends and improves the results in [20], where the inverse problem is solved for
a nonmagnetic material, based on measurements inside the material.

In Section 2 we formulate the stratified Maxwell equations, introduce the consti-
tutive relations for the studied materials and try to interprete the dynamics in terms
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known from the linear case. The main theory is contained in Section 3, where we
formulate the necessary boundary conditions and state the solution to our inverse
problems. Some numerical results are contained in Section 4.

2 Prerequisites

2.1 The Maxwell equations in one spatial dimension

In a source-free environment the Maxwell equations are

∇× E(r, t) + ∂tB(r, t) = 0

∇× H(r, t) − ∂tD(r, t) = 0.

Since we wish to study a homogeneous medium, it is sufficient to observe variations
for only one direction. We thus assume that the fields depend on only one spatial
variable, say z, in a Cartesian coordinate system (x, y, z). Then the curl operator
can be written ∇× = ẑ × I∂z = J∂z, where J denotes a rotation π/2 around the
z-axis, and the Maxwell equations become

J · ∂zE(z, t) + ∂tB(z, t) = 0

J · ∂zH(z, t) − ∂tD(z, t) = 0.

We now assume the fields to be linearly polarized and the material to be isotropic,
i.e., the D and B fields are parallell to the E and H fields, respectively, which
vary only in amplitude. This means we can write the Maxwell equations in a scalar
form,1

∂zE(z, t) + ∂tB(z, t) = 0

∂zH(z, t) + ∂tD(z, t) = 0,

where E, B, H and D denotes the field amplitudes (which may be negative). The
geometry of the scattering situation studied in this paper is depicted in Figure 1.

2.2 Constitutive relations, passive materials

We consider the field strengths E and H to be the primary fields, and the flux
densities D and B as effects of these. If we assume that the material responds
instantaneous to excitation, we are studying the following situation:

D(z, t) = ε0Fe(E(z, t))

B(z, t) =
1

c0

Fm(η0H(z, t)),

where the constants c0 (speed of light in vacuum), ε0 (permittivity of vacuum), and
η0 (wave impedance of vacuum) are explicit for convenience. The functions Fe(E)

1We can also choose the equations ∂zE − ∂tB = 0 and ∂zH − ∂tD = 0, but it changes nothing.
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Figure 1: The scattering geometry studied in this paper.

and Fm(η0H) are generalizations of the linear optical responses, εrE and µrη0H,
respectively. This type of nonlinear constitutive response with a similar dynamic
is investigated in [3, 11, 20]. In nonlinear optics similar relations are often used,
although frequently in the context of the frequency domain, see for instance [1, 4].

Some thermodynamic restrictions can be put on the constitutive relations, see [6],
but these deal mainly with the symmetry of cross terms, which we do not take into
account here. Reference [20] discusses the restrictions on the functions Fe and Fm

in order to model passive media, though they call it dissipative.2 The result is that
for a passive, nonmagnetic material, F ′

e(x) ≥ a > 0 is a sufficient condition. In this
paper we generalize this to materials which also have F ′

m(x) ≥ b > 0, and call these
positive passive.

When demanding isotropy, we have the implication that a change of sign in the
electric and magnetic fields leads to a change of sign in the electric and magnetic
fluxes, i.e., (E, H) → (−E,−H) ⇒ (D, B) → (−D,−B). This is also true for
crystals with an inversion symmetry, see [4] for further discussions on symmetries.
This property implies that the constitutive functions should be odd, which will be
important in the future.

Eliminating the D and B fields using the constitutive relations, the scalar Max-
well equations become


∂zE +

1

c0

F ′
m(η0H)∂tη0H = 0

∂zη0H + η0ε0F
′
e(E)∂tE = 0

⇒




∂zE +
1

c0

F ′
m∂tη0H = 0

∂zη0H +
1

c0

F ′
e∂tE = 0,

(2.1)

where we have dropped the arguments for simplicity.

2With a passive material we mean that the electromagnetic energy produced in a region is
nonpositive for all times, i.e., the material is not active.
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2.3 The dynamics as a symmetric system, physical inter-
pretation

Though it is possible to directly introduce the well known Riemann invariants
1
2
(
∫ E

0

√
F ′

e(x) dx ±
∫ η0H

0

√
F ′

m(x) dx) as in [3, 11], we wish to follow a different ap-
proach, where we try to interprete our variables and make comparisons to the linear
case. We start by formulating the dynamics as(

F ′
e∂tE

F ′
m∂tη0H

)
+ c0

(
0 1
1 0

)
∂z

(
E

η0H

)
= 0,

which after division by the square root of the derivative of Fe and Fm leads to

( √
F ′

e∂tE√
F ′

m∂tη0H

)
+ c0


 0 1√

F ′
eF

′
m

1√
F ′

eF
′
m

0


 ( √

F ′
e∂zE√

F ′
m∂zη0H

)
= 0.

We now introduce the functions,

ge(E) =

∫ E

0

√
F ′

e(x) dx

gm(η0H) =

∫ η0H

0

√
F ′

m(x) dx.

These functions can be thought of as the generalizations of the linear expressions√
εrE and

√
µrη0H. The product of the derivative of the functions, g′

eg
′
m, which

appears in the wave speed below, can be viewed as the generalization of
√

εrµr, the
relative refractive index. Furthermore, for an isotropic, positive passive material,
the g-functions are odd and monotonous, since the integrands are always even and
positive. With these functions we can write the dynamics as

∂t

(
ge(E)

gm(η0H)

)
+

c0

g′
e(E)g′

m(η0H)

(
0 1
1 0

)
∂z

(
ge(E)

gm(η0H)

)
= 0,

which in the new variables u1 = ge(E) and u2 = gm(η0H) is the symmetric system

∂t

(
u1

u2

)
+ c(u1, u2)

(
0 1
1 0

)
∂z

(
u1

u2

)
= 0, (2.2)

where the wave speed c is

c(u1, u2) =
c0

g′
e(g

−1
e (u1))g′

m(g−1
m (u2))

= c0

(
d

du1

g−1
e (u1)

) (
d

du2

g−1
m (u2)

)
. (2.3)

This result generalizes the nonmagnetic case given in Reference [20].

3 Methods to solve the inverse problem

In this section we demonstrate the methods used to solve the propagation problem
and to resolve the boundary conditions. We also state our inverse problems of
reconstructing the materials constitutive relations.
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3.1 Wave splitting

The symmetric system (2.2) can be written as a system of one-dimensional wave
equations with the wave splitting, see References [8, 9, 20],(

u1

u2

)
=

(
1 1
1 −1

) (
u+

u−

)
⇔

(
u+

u−

)
=

1

2

(
1 1
1 −1

) (
u1

u2

)
.

This change of variables is exactly the introduction of the Riemann invariants of
the one-dimensional Maxwell equations, which was mentioned in Section 2.3. The
dynamics (2.2) now becomes

∂t

(
u+

u−

)
+ c(u+ + u−, u+ − u−)

(
1 0
0 −1

)
∂z

(
u+

u−

)
= 0, (3.1)

with c defined by (2.3). This is a system of one-dimensional wave equations, which
couple only through the wave speed c.

Analytical solutions for the wave propagation have been found in [18, 22] for
some special constitutive relations. These solutions could be used to benchmark an
algorithm for the wave propagation, though this is not performed in this work.

3.2 Propagation along characteristics

We can solve the propagation problem of the system (3.1) via the method of char-
acteristics. A characteristic curve for this kind of differential equations is one on
which the dependent variables are constant. We study the development of the vari-
ables u±(z, t) on the path (z, t) = (ζ±(τ), τ), where ζ±(τ) = ζ0 ±

∫ τ

0
c(u′) dτ ′. The

notation c(u′) is short hand for c(u(ζ±(τ ′), τ ′)), and u = (u+, u−). The variation of
u±(z, t) along these curves are

d

dτ
u±(ζ±(τ), τ) =

∂u±

∂t
+

dζ±(τ)

dτ

∂u±

∂z
=

∂u±

∂t
± c(u)

∂u±

∂z
= 0,

since u± satisfy the differential equations ut ± cuz = 0. Thus, we conclude that u+

is constant along the characteristic path ζ(τ) = ζ0 +
∫ τ

0
c(u′) dτ ′, and u− is constant

along the characteristic path ζ(τ) = ζ0 −
∫ τ

0
c(u′) dτ ′.

This means we can find the values of the fields at a point (z, t) if we can trace the
characteristics to some boundary where they are known. If only one of the waves is
present, it is particularly simple; then the characteristics are straight lines, with a
slope given by the boundary values, see for instance [20].

3.3 Boundary conditions

Since we want to study propagation in a nonlinear slab, we must solve the problem of
satisfying the boundary conditions. In this paper, we are studying a slab imbedded
in vacuum. The generalization to more general linear materials should be obvious
from the method used.
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The solution is based on the wave splitting, which allows us to determine in
which direction the energy of the fields are travelling. In the surrounding vacuum,
the splitting is made by definition of incident, reflected and transmitted field. The
boundary conditions we have to satisfy are the usual, i.e., continuity of the tangential
electrical and magnetic field strengths. Since we are assuming normal incidence,
this means continuity of the total fields E and H. Inside the slab, the electric and
magnetic fields can be expressed as

Eslab = g−1
e (u+ + u−)

η0Hslab = g−1
m (u+ − u−).

In vacuum, the magnetic field strength is related to the electric field strength via
η0H

± = ±E±, where the ± indicate right(left) propagating fields.
It is possible to define local reflection and transmission coefficients which look

exactly like the linear ones, where the square root of the relative permittivity is
replaced by g′

e(E) =
√

F ′
e(E) and the square root of the relative permeability by

g′
m(η0H) =

√
F ′

m(η0H), see for instance [18]. The problem with this approach is
that the fields E and H will depend on the sought reflected and transmitted fields.
We prefer to simply state the equations we have to solve for the desired fields.

3.3.1 The left boundary

In vacuum, z < 0, we have an incident field from the left Ei, and a reflected field
into vacuum, Er. In the slab two fields are present: a right propagating field u+, and
a left propagating field u−. The continuity of electric and magnetic fields implies
that {

Ei + Er = g−1
e (u+ + u−)

Ei − Er = g−1
m (u+ − u−)

⇔
{

ge(E
i + Er) = u+ + u−

gm(Ei − Er) = u+ − u−.
(3.2)

This gives two, generally nonlinear, equations from which the desired fields u+ and
Er can be determined:{

2Ei = g−1
e (u+ + u−) + g−1

m (u+ − u−)

2u− = ge(E
i + Er) − gm(Ei − Er).

The incident field is, of course, supposed to be known, but also the left propagating
field u− can be thought of as known. This is because this field can be traced back in
time via a characteristic curve into the slab, and is therefore, from a computational
point of view, known. We have noted earlier that for a positive passive material,
the g-functions are monotonous, which means that their inverses are too. The
above equations are therefore monotonous in the sought variables, and easy to solve
numerically.

3.3.2 The right boundary

At the right boundary, z = d, we have just a transmitted field in the vacuum, but
we still have both right and left propagating fields in the slab. Continuity of the
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fields now gives {
Et = g−1

e (u+ + u−)

Et = g−1
m (u+ − u−)

⇔
{

ge(E
t) = u+ + u−

gm(Et) = u+ − u−.
(3.3)

From this we get the following equations to determine u− and Et:{
2u+ = ge(E

t) + gm(Et)

2u− = ge(E
t) − gm(Et).

We can consider the field u+ as known, since it can be traced back in time into the
slab. The same conclusions as above about the solvability of these equations apply
here.

3.4 Inverse problems

The objective of this paper is to find methods from which the material properties
can be obtained from measurements outside the slab, i.e., the incident, reflected,
and transmitted fields.

3.4.1 Reflection

If we can ignore the left-propagating field at the left boundary, i.e., u− = 0, the
boundary conditions (3.2) become

Ei + Er = g−1
e (u+)

Ei − Er = g−1
m (u+).

A situation where this approximation applies is a half space or a sufficiently thick
slab, in which the reflection from the right boundary, z = d, does not appear until
after some later time. We thus have a relation between the measurable quantities
Ei + Er and Ei − Er,

ge(E
i + Er) = gm(Ei − Er),

and the composite function g−1
e (gm(·)) (or its inverse g−1

m (ge(·))) can be deter-
mined. The derivative of this function can be shown to correspond to the wave
impedance. E = ±g−1

e (gm(η0H)) are the electric fields which combined with η0H
gives a left(right) propagating wave in the slab.

In nonlinear optics, the materials can often be considered as nonmagnetic. This
implies gm(x) = x, and we can easily determine the electric response function ge,
from which we get Fe or the wave speed c. The strength of the input signal Ei

directly determines which range of Fe we can reconstruct.
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Figure 2: Method for extracting the travel time for different field amplitudes.
Since equal amplitudes travel with equal speed, they arrive with the same time
separation and the travel time is t′1 − t1.

3.4.2 Transmission

If we neglect the fields that are reflected at the right boundary, z = d, we are
considering a problem where the wave speed depends on only one variable, and
the u+-fields propagate independently of the u−-fields. This means that the char-
acteristic curves for the right-going fields are straight lines, which can be used to
our advantage. Since the left propagating wave induced by an internal reflection is
rather small compared with the direct wave, this is an acceptable approximation.

We assume that the right propagating field has a pulse shape of some sort, i.e.,
for z = 0+, there are two times for which the right propagating field u+ assumes
the same value, u+(0, t1) = u+(0, t1 + τ). Since the wave speed depends only on u+

when we neglect left propagating field, these two points will appear with the same
time separation on the right side of the slab (z = d−), u+(d, t′1) = u+(d, t′1 + τ).
This can be used to find the propagation time, t′1 − t1, and thereby the wave speed
c(u+).

One complication is that we can only measure the fields outside the slab, but
using the boundary conditions (3.2) and (3.3),{

2u+ = ge(E
i + Er) + gm(Ei − Er)

2u+ = ge(E
t) + gm(Et),

we find that there is a one-to-one correspondence between the incident field strength
and the u+-level, and between the transmitted field strength and the u+-level. This
means that if Ei(t1) = Ei(t1+τ), then there is a time t′1 for which Et(t′1) = Et(t′1+τ),
and we have found our transmission time t′1 − t1.
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In other words, we take a segment of a certain length of the time axis, and fit
this into the curves Ei(t) and Et(t). The time difference between the fits is the
travel time for this particular amplitude, see Figure 2. This does not work with
shock solutions, but the only consequence is that we cannot get any information on
the travel time for the amplitudes over which the shock occurs.

We have the following relationships determined by reflection data and transmis-
sion time:

Ei + Er = g−1
e (gm(Ei − Er))

c(Ei + Er, Ei − Er) =
c0

g′
e(E

i + Er)g′
m(Ei − Er)

.

If we denote the measurable quantities Ei + Er and Ei − Er by e and h, we have
the experimentally determined functions

e(h) = g−1
e (gm(h))

c(e, h) =
c0

g′
e(e)g

′
m(h)

.

The derivative of e with respect to h is de
dh

= g′m(h)
g′e(e)

, corresponding to the wave

impedance. We can thus find g′
e(e)

2 = F ′
e(e) and g′

m(h)2 = F ′
m(h) by combining

these relations:

F ′
e(e) =

c0
dh
de

c(e, h(e))
⇒ Fe(e) =

∫ h(e)

0

c0dh′

c(e(h′), h′)

F ′
m(h) =

c0
de
dh

c(e(h), h)
⇒ Fm(h) =

∫ e(h)

0

c0de′

c(e′, h(e′))
.

From these expressions we conclude that there is a one-to-one correspondence be-
tween Fe,m and c(e, h) once the relation between e and h is given. Since this is
given by ge(e) − gm(h) = 0, and ge,m are monotonous functions, this is a one-to-one
relation. With shockfree propagation of a pulseshaped signal, the transmitted signal
should also be pulseshaped, see e.g., the example in Figure 2. Then the wavespeed
c(e, h(e)) = c(e(h), h) must be unique, and we conclude that the reconstructed func-
tions are unique, always exist, and depend continuously on the data. Thus the
algorithm is well posed.

3.5 Implementation of the forward problem

In order to obtain the reflected and transmitted fields from the slab, an FDTD-
algorithm in Matlab has been used. The algorithm is based on interpolating the
wave speed and fields between two neighboring points in the grid with a linear
function, and tracing the characteristics back one time step, see Figure 3. The
tracing is made by searching for the point in the grid for which the interpolated
wave speed points to the new grid point. The method is described in [12].

This method does not handle discontinuous solutions, but rather smears the
discontinuity over 10-20 grid points. Since we never use shock solutions in our
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Slope = c

t

z

1 2

Figure 3: Backtracing of characteristics in the calculation grid of the forward
problem. The new u+-value is linearly interpolated from the two grid points between
which the characteristic crosses the previous time step. With a suitable choice of
∆t and ∆z these are always the two points 1 and 2 shown.

reconstruction algorithm, this is not a problem. When tested, the travel times for
the shocks seem to be correct, though.

The spacetime is scaled by the wave speed in vacuum, so that we may consider
a dimensionless spacetime with a wave speed in vacuum equal to one. The slab
studied has thickness 1, and is discretized with 100 grid points. The step size in
time is chosen the same as that for space. This guarantees that when tracing the
characteristic back in time, we stay within the nearest grid points in space. The
electric and magnetic fields are scaled with a factor such that the nonlinear effects
are appreciably strong with numerical field strengths of a few units. This means
that some constants multiplying the fields in the constitutive relations have to be
scaled also, see Reference [20].

4 Numerical results

4.1 Reflection

When implementing this reconstruction, it is difficult not committing the inverse
crime, i.e., using the same algorithm for both simulating data and reconstructing
the constitutive functions, leading to a perfect match, see Reference [7].

It is therefore meaningless to present any results for reconstruction with pure
reflection data, unless some measured data is available, which is not the case at the
present time. The reconstruction is anyway used in the transmission reconstruction,
where we get good results.
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4.2 Transmission

Simulations have been run, giving reflection and transmission data for a given input
signal. When using our reconstructing algorithm, it is vital to construct an input
signal which does not evolve into a shock. Since the shocks form at the back edge of
a pulse [20], this is achieved by using an incident field which rises very rapidly and
decays very slowly. Moreover, if the pulse rises fast enough so that its peak value
is obtained before the reflected field at the back has returned, we also get an exact
map of the relation ge(E) = gm(η0H), since then ge(E) − gm(η0H) = u− = 0.

It should be stressed that it is not necessary to make the measurement of reflected
and transmitted fields simultaneously. This is because the reflected field is only used
to establish the relation between incident and reflected fields.

The reconstruction is based on neglecting the field reflected from the back edge.
To investigate the validity of this approximation the following test has been made.
The left propagating field was neglected in the solution of the forward problem,
which gives perfect reconstruction. Then we used the full forward problem, and the
reconstruction was comparable to the first case. This shows that our approximation
of the travel time is good, at least for the materials studied in this paper. In
Appendix A we show that the approximation is good provided the nonlinearity is
weak, i.e., if the second derivative of the constitutive relations is small.

Figures 4 and 5 show the calculated fields and the reconstructed constitutive
functions for a material with a nonlinear saturated Kerr effect, i.e., a material which
saturates as a linear material at some field strength [20]. The fields are calculated
using the full forward problem, i.e., the left propagating field u− in the slab is
present. In Appendix A we show that the relative error in travel time for these
fields is less than 10−3.

5 Discussion and conclusions

It has been shown that it is possible to reconstruct the constitutive functions of
a nonlinear slab, with the help of reflection and transmission data, not necessarily
measured simultaneously. The algorithm is based on the fact that equal amplitudes
travel with almost equal and constant speeds. When one of the constitutive functions
is known, for instance for a nonmagnetic material, the other function is obtained
with reflection data only. The algorithms seem to be robust and simple, and may be
useful for measuring instantaneous nonlinear effects, with virtually no assumptions
made on the specific form of the constitutive function, i.e., the inverse algorithm is
model independent.

Since the algorithm is based on shock free propagation, it is necessary to con-
struct a suitable input signal. When measuring reflected and transmitted field simul-
taneously, the input signal should rise fast enough so that its maximum is reached
before the first reflection from the back boundary turns up, and then decrease slow
enough not to create a shock in the transmitted field. This may be a difficult field
to create.

An interesting fact is that it is conceivable to have a material with nonlinear
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Figure 4: Incident, reflected and transmitted fields. Fe(E) = 1.5E + 2 E3

E2+1
,

Fm(H) = H + 2 H3

H2+1
, i.e., we have a saturated nonlinearity in both fields.

behavior in both electric and magnetic fields. If the media changes from being
dominantly electric to being dominantly magnetic, or vice versa, we may get a very
small reflection for a very strong incident wave. This might have some implications
on the theory of nonreflecting materials, or provide a new kind of electric shutter.
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Appendix A Estimate of error in travel time

To simplify the notation in this section, we will write H instead of η0H. When using
the approximation of straight characteristics, we assume that the travel time can be
written

τ1 =
d

c(u+)
=

d

c(u+, 0)
=

d

c0

√
F ′

e(E)F ′
m(H)

∣∣∣
ge(E)−gm(H)=0

.
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Figure 5: Reconstructed functions, from the fields in figure 4. The circles are the
reconstructed values, and the solid lines are the true functions.

The electric and magnetic fields are determined from reflection data, and can under
suitable conditions be the fields that do not contain a left-going field in the slab.
This is the condition ge(E)− gm(H) = u− = 0. The true travel time however, is the
integral along the characteristic

τ2 =

∫ d

0

dz′

c(u+, u−)
.

We now wish to expand this expression in terms of the left-going amplitude u−,
since this should be small in comparison with the right-going amplitude u+. This
expansion is then compared with the travel time τ1. We have

1

c(u+, u−)
=

1

c(u+, 0)
+

∂

∂u−
1

c(u+, u−)

∣∣∣∣
u−=0

· u− + O((u−)2).

The derivative of the slowness is proportional to the derivative of
√

F ′
e(E)F ′

m(H),

∂

∂u−

√
F ′

e(E)F ′
m(H) =

F ′′
e (E)

2
√

F ′
e(E)

√
F ′

m(H)
dE

du− +
√

F ′
e(E)

F ′′
m(H)

2
√

F ′
m(H)

dH

du−

=
F ′′

e (E)

2F ′
e(E)

√
F ′

m(H) −
√

F ′
e(E)

F ′′
m(H)

2F ′
m(H)

,
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where the last line follows from E = g−1
e (u+ + u−) and H = g−1

m (u+ − u−). This
means that if the second derivatives of the constitutive relations are small, the error
in travel time is guaranteed to be small. This corresponds to the weak nonlinearity
approximation. From the relation ge(E) − gm(H) = 0 we have

dE

dH
= −−g′

m(H)

g′
e(E)

=

√
F ′

m(H)√
F ′

e(E)
.

which helps us simplify the above expression to

1

2

√
F ′

e(E)

(
dE

dH

d

dE
ln F ′

e(E) − d

dH
ln F ′

m(H)

)
=

1

2

√
F ′

e(E)
d

dH
ln

F ′
e(E)

F ′
m(H)

=
√

F ′
e(E)

d

dH
ln

dH

dE
=

√
F ′

e(E)
1

dH
dE

d

dH

dH

dE

=
√

F ′
e(E)

dE

dH

d

dH

dH

dE
=

√
F ′

m(H)
d

dH

dH

dE
.

This can be written in various ways, which all involve a twice differentiated relation
between E and H. The error in travel time is

τ2 − τ1 =

∫ d

0

dz′

c(u+, u−)
− d

c(u+)
=

∫ d

0

(
1

c(u+, u−)
− 1

c(u+)

)
dz′,

and with our expansion of 1/c and the fact that u+ is constant on its characteristic
curve, we have the estimate

c0

d
|τ2 − τ1| <

∣∣∣∣√F ′
m(H)

d

dH

dH

dE

∣∣∣∣ · |u−|max,

which is interpreted as an error of travel time relative to propagation in vacuum.
This is dimensionless and constitutes an upper bound on the relative error. A typical
field strength in Figure 4 is E = 2.00, which implies H = 2.17. From the figure
we conclude a maximum left propagating field strength of about 0.1, and we have
a relative error of less than 0.0085 · 0.1 < 10−3. Thus, we see that the error made
when using the full forward problem, i.e., using real data, is very small.
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