
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Multiple-Shooting Optimization using the JModelica.org Platform

Rantil, Jens; Åkesson, Johan; Führer, Claus; Gäfvert, Magnus

2009

Link to publication

Citation for published version (APA):
Rantil, J., Åkesson, J., Führer, C., & Gäfvert, M. (2009). Multiple-Shooting Optimization using the JModelica.org
Platform. Paper presented at 7th International Modelica Conference, 2009, Como, Italy.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d4603934-936b-4a8b-98b2-9d8dcda237e1

Multiple-Shooting Optimization using

the JModelica.org Platform

Jens Rantil* Johan Åkesson†‡ Claus Führer* Magnus Gäfvert‡

** Department of Numerical Analysis, Lund University
† Department of Automatic Control, Lund University

*† Lund University ‡ Modelon AB
Sölvegatan 18 Ideon Science Park

SE-22100 Lund, Sweden SE-22370 Lund, Sweden
E-mail: claus@maths.lth.se E-mail: info@modelon.se

Abstract

Dynamic optimization addresses the problem of find-
ing the minimum of a cost function subject to a con-
straint comprised of a system of differential equations.
There are many algorithms to numerically solve such
optimization problems. One such algorithm is multi-

ple shooting. This paper reports an implementation of
a multiple shooting algorithm in Python. The imple-
mentation is based on the open source platform JMod-
elica.org, the integrator SUNDIALS and the opti-
mization algorithm scipy_slsqp. The JModelica.org
platform supports model descriptions encoded in the
Modelica language and optimization specifications ex-
pressed in the extension Optimica. The Modelica/Op-
timica combination provides simple means to express
complex optimization problems in a compact and user-
oriented manner. The JModelica.org platform in turn
translates the high-level descriptions into efficient C
code which can compiled and linked with Python. As
a result, the numerical packages available for Python
can be used to develop custom applications based on
Modelica/Optimica specifications. An example is pro-
vided to illustrate the capabilities of the method.

Keywords: optimization; optimal control; parame-

ter optimization; Modelica; Optimica; JModelica.org

1 Introduction

Dynamic optimization problems arise naturally in a
wide range of applications and domains. Common ex-
amples are parameter optimization problems, design
optimization, and optimal control. The key property

of a dynamic optimization problem, which also makes
such a problem hard to solve, is that it includes a con-
straint in form of a system of differential equations.

In this paper, we present an implementation of a
particular numerical method for solving dynamic opti-
mization problems, namely multiple shooting, [4, 20,
5]. In essence, a multiple shooting algorithm consists
of an integrator for simulation of the system dynam-
ics and evaluation of the cost function, and an opti-
mization algorithm which tunes the optimization pa-
rameters of the problem. The Python language [17]
was selected for implementation of the multiple shoot-
ing algorithm. Python has several advantages in the
context of scientific computing, since there are sev-
eral packages for high performance computing avail-
able, including Numpy [14] and Scipy [6]. Also, the
package Matplotlib [9] provides methods for data vi-
sualization in a MATLAB-like manner. The main ad-
vantage is, however, that Python is a full-fledged high-
level programming language offering strong support
for generic concepts such as object-orientation and
functional programming. Further more, Python has
bindings to other languages, e.g, C and Fortran, which
are common implementation languages for numerical
algorithms. Accordingly, Python is commonly used as
glue language in applications which integrate differ-
ent algorithms. A common way to interface C code
with Python is ctypes [7], which is based on load-
ing of dynamically linked libraries. For the multiple
shooting algorithm, Python is a suitable choice since it
allows the majority of the computationally expensive
subtasks to be delegated to precompiled C and Fortran
codes.

The implementation of the multiple shooting algo-
rithm is based on the JModelica.org open source plat-
form, [1]. JModelica.org offers support for dynamic
models formulated in Modelica [21] and optimization
specifications given in Optimica [2]. JModelica.org
also has a Python-based execution API for the evalu-
ation of the model equations, which has been used in
this work. The purpose of this work is twofold. Firstly,
solution of dynamic optimization problems by means
of a multiple shooting algorithm adds to the function-
ality of the JModelica.org platform. Secondly, the al-
gorithm provides an example of how different algo-
rithms can be integrated with the JModelica.org model
interface to create new algorithms.

2 Background

2.1 Modelica and Optimica

Modelica is a high-level language for encoding of
complex heterogeneous physical systems, supporting
object oriented concepts such as classes, components
and inheritance. Also, text-book style declarative
equations can be expressed as well as acausal com-
ponent connections representing physical interfaces.
While Modelica offers strong support for modeling of
physical systems, the language lacks important con-
structs needed when formulating dynamic optimiza-
tion problems, notably cost functions, constraints, and
a mechanism to select inputs and parameters to opti-
mize. In order to strengthen the optimization capa-
bilities of Modelica, the Optimica extension has been
proposed, [2]. Optimica adds to Modelica a small
number of constructs, which enable the user to conve-
niently specify dynamic optimization problems based
on Modelica models.

In the context of dynamic optimization, the use of
high-level description formats is particularly attrac-
tive, since the interfaces of algorithms for solution of
such programs are typically written in C or Fortran.
Implementing the optimization formulation for such
an algorithm may require a significant effort. In ad-
dition, once finalized, the implementation is typically
difficult to reuse with another algorithm. The JMod-
elica.org platform offers compilers for transforming
Modelica/Optimica specifications into efficient C code
which in turn may be interfaced with algorithms for
dynamic optimization. The user may then focus on
formulation of the actual problem at hand instead of
attending to the details of encoding it to fit the require-
ments of a particular algorithm.

2.2 Dynamic optimization

Dynamic optimization problems may be formulated in
many different ways, under different assumptions. In
this paper, we assume that the problem is stated on the
following form:

min
p,u

Φ(x(t f ;u, p), p)

subject to

ẋ = f (x,u, p)

(1)

where x is the system state, u are the inputs and p are
free parameters in the optimization. The cost function
is here assumed to be of Mayer type, that is, a function
of the terminal state values and the parameters are min-
imized1. The influence of the control variable u is im-
plicit through x. The state x is governed by an ordinary
differential equation (ODE). Indeed, this formulation
is somewhat limited. In particular, the dynamics of
physical systems are often described by differential al-
gebraic equations (DAEs). Also, inequality constraints
representing, e.g., bounds on states and inputs are of-
ten present. However, the formulation given above is
indeed general enough to demonstrate the concept of
the multiple shooting algorithm.

There are three main classes of dynamic optimiza-
tion problems, namely parameter optimization, opti-
mal control and parameter identification.

In parameter optimization, p is a vector containing
a finite number of parameters. The goal is to find a pa-
rameter vector p that minimizes Φ(x(t f ; p), p). p can
both contain model parameters and/or initial states of
the model. An example of a parameter optimization
problem would be to find the optimal wheel radius and
tire thickness in a car to minimize the noise in the com-
partment.

In optimal control, the goal is to find a function u(t)
that minimizes Φ(x(t f ;u)). This is usually done by
discretization of u, for example by means of piecewise
constant profiles or splines. Such an approximation
transforms the original problem into a parameter opti-
mization problem. An example of an optimal control
problem would be to minimize the fuel consumption
for a satellite moving from the moon to the earth.

Thirdly, in parameter identification, the objective is
to fit a model to existing measurements. Typically,
a perfect fit is usually not possible to obtain, due to
the presence of measurement noise. Instead, the best

1Notice that a Lagrange type cost function, i.e., a function of
the inputs, states and parameters integrated of the optimization in-
terval can be cast into a Mayer cost function by introducing an
additional state.

Figure 1: Shooting procedure.

fit according to some criteria penalizing the deviation
between the model outputs and the measurements is
sought.

2.3 Numerical methods for dynamic opti-

mization

There are two main branches within the family of di-
rect methods for dynamic optimization. Sequential

methods rely on state of the art numerical integra-
tors, typically also capable of computing state sensitiv-
ities, and on standard nonlinear programming (NLP)
codes. The controls are then usually approximated
by piece-wise polynomials (often piecewise constant
functions), which render the controls to be parameter-
ized by a finite number of parameters. These parame-
ters are then optimized. Simultaneous methods, on the
other hand, are based on collocation, and approximate
both the state and the control variables by means of
piece-wise polynomials, see [3] for an overview. This
strategy requires a fine-grained discretization of the
states, in order to approximate the dynamic constraint
with sufficient accuracy. Accordingly, the NLPs re-
sulting from application of simultaneous methods are
very large, but also sparse. In order to solve large-
scale problems, the structure of the problem needs to
be explored.

2.3.1 Sequential shooting methods

In a sequential method, the control variables are pa-
rameterized by a finite number of parameters, for ex-
ample by using a piece-wise polynomial approxima-
tion of u. Given fixed values of the parameters, the
cost function of the optimization problem (1) can be
evaluated simply by integrating the dynamic system.
The parameters may then, in turn, be updated by an
optimization algorithm, and the procedure is repeated,
as illustrated in Figure 1. When the optimization algo-
rithm terminates, the optimal parameter configuration
is returned. Since the parameters determine the control
profiles, which are then used to compute x(t f), the cost
function can be written as Φ(x(t f ;u(p), p), p) = Φ(p).

The infinite dimensional optimization problem is thus
transformed into a finite dimensional problem. For
these reasons, sequential methods are also referred to
as control parameterization methods. For a thorough
description of single shooting algorithms, see [22].

Typically, the convergence of an optimization algo-
rithm can be improved by providing it with gradients
of the cost function with respect to the parameters.
While finite differences is a simple method for obtain-
ing gradients, it is not well suited for in this particular
application due to scaling problems and limited accu-
racy, [19]. Taking the full derivative of the cost func-
tion Φ(x(t f ;u(p), p), p) = Φ(p), we obtain

dΦ

dp

∣

∣

∣

∣

t f

=
∂Φ

∂x

T ∂x

∂ p

∣

∣

∣

∣

∣

t f

. (2)

While ∂Φ
∂x is usually straightforward to compute, the

quantity ∂x
∂ p

= xp, referred to as the state sensitivity

with respect to the parameter p, needs attention. A
common approach for computing state sensitivities is
derived by differentiating the differential equation ẋ =
f (x,u, p) with respect to p:

d

dp

dx

dt
=

d

dp
f (x,u, p) (3)

⇒
d

dt

(

∂x

∂ p

)

=
∂ f

∂x

∂x

∂ p
+

∂ f

∂u

∂u

∂ p
+

∂ f

∂ p
(4)

which gives the sensitivity equations

ẋp(t) =
∂ f

∂x
xp(t)+

∂ f

∂u

∂u

∂ p
+

∂ f

∂ p
. (5)

This suggests a method for computing derivatives by
solving results a matrix valued differential equation. If
the number of states of the system is nx and the num-
ber of parameters is np, then nx× np additional equa-
tions must be integrated. This operation is computa-
tionally expensive, although the efficiency of the inte-
gration can be increased by exploring the structure of
the sensitivity equations. There is also software avail-
able which supports integration of the sensitivity equa-
tions, for example DASPK, [13] and SUNDIALS [18].

2.3.2 Multiple shooting

An extension of the single shooting algorithm is mul-
tiple shooting. In a multiple shooting algorithm, the
optimization interval [t0, t f] is divided into a number of
subintervals [ti, ti+1], see Figure 2. New optimization
variables corresponding to the initial conditions for the
states in each subinterval, are then introduced. This

t

x(t)

t1 t2 t3 t4

x1

x2 x3
x4

d1 d2 d3

Seg.1 Seg.2 Seg.3 Seg.4

Figure 2: In a multiple shooting method, the control
horizon is divided into a number of segments, which
are integrated independently.

enables the dynamics, as well as the sensitivity matri-
ces, to be computed independently in each segment. In
order to enforce continuity of the state profiles, equal-
ity constraints are introduced in the optimization prob-
lem which ensure that the defects, di = x(t+i+1)−x(t−i+1)
are equal to zero.

In an optimization loop some of the intermediate
control profiles u and parameter values p may get un-
physical values. This can result in stability problems,
when numerical integration has to be performed over
longer time intervals. Also the computed sensitivity
matrices may become unreliable. This is the advantage
of multiple shooting algorithms compared to the sin-
gle shooting algorithm. If the integration is performed
over shorter intervals the numerical stability proper-
ties of the algorithm are improved. Another advantage
of multiple shooting algorithms is that state inequality
constraints can be more easily accommodated. Since
the initial states in each segment are optimization vari-
ables, algebraic inequality constraints can be enforced
for the states variables at the segment junctions. How-
ever, it has to be emphasized, that only the state vari-
ables at the segment junctions, ti, can be restricted by
inequality constraints.

2.4 The JModelica platform

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [1]. JModel-
ica.org features compilers supporting code generation
of Modelica models to C, a C API for evaluating model
equations and their derivatives and optimization algo-
rithms. The compilers and the model C API have also
been interfaced with Python in order to enable script-
ing and custom application development. In order to
support formulation of dynamic optimization of Mod-
elica models, JModelica.org supports the Optimica ex-
tension [2] of the Modelica language. Optimica offers
constructs for encoding of cost functions, constraints,
the optimization interval with fixed or free end points

as well as the specification of the transcription scheme.
The C API providing functions for evaluating the

model equations, cost function and constraints is enti-
tled the JModelica.org Model Interface (JMI). The C
code generated by the compiler front-end is compiled
with a runtime library into a shared object file which
in turn is loaded into Python, using the ctypes library.
The JMI C functions can then be conveniently called
from a Python shell or script. In addition, the input
and return types of the C functions (typically pointers
to vectors of double type) are mapped onto the types
used by the Numpy package. This approach grants
for a seamless integration between JMI and algorithms
and data structures provided by Numpy and Scipy.

3 Implementation

As described in Section 2.3.2, a multiple shooting
algorithm relies on a simulation algorithm, prefer-
able capable of computing sensitivities, and a numer-
ical optimization algorithm for algebraic optimization
problems. The remaining part of the multiple shooting
algorithm then consists of providing a non-linear pro-
gram (NLP) to the optimization algorithm and to in-
voke the simulation algorithm in order to obtain func-
tion evaluations and derivative information. This part
also includes representation of parameterized control
signals, to keep track of optimization parameters, and
to interface with the model execution API.

The simulation algorithm SUNDIALS [8, 18] was
chosen for integration of the system dynamics. SUN-
DIALS is a high-quality integration package which
is the latest evolution of a branch of ODE and DAE
solvers including, e.g., DASSL. SUNDIALS contains
a set of integration methods based on variable step
size variable order multi-step methods using either the
backward differentiation formula (BDF) or the more
accurate Adams-Moulton formulae. BDF methods are
well known for their good numerical stability proper-
ties for highly damped problems. In the context of this
work, SUNDIALS has two major advantages. Firstly,
it supports computation of sensitivity matrices. Sec-
ondly, there is a freely available Python interface for
SUNDIALS; PySUNDIALS [16].

As for the optimization algorithm, the method
scipy_slsqp was used, which is a Python wrap of
the sequential quadratic programming algorithm [11].
This method is one of a variety of optimiza-
tion algorithms interfaced by the Python package
OpenOpt [12], which is a package that provides a uni-
fied interface to a large number of optimization algo-

Figure 3: Architecture of the multiple shooting algo-
rithm.

rithms.
The architecture of the algorithm is depicted in Fig-

ure 3. SUNDIALS is implemented in C, and inter-
faced to Python by the PySUNDIALS package. In or-
der to provide convenient means to simulate models
compiled with the JModelica.org compilers, an inter-
face between PySUNDIALS and the Python wrappers
of the JMI functions has been developed. This inter-
face also supports computation of sensitivities, which
is needed by the multiple shooting algorithm. Compu-
tation of sensitivities requires a slightly more complex
setup than simulation, since in the former case, the
sensitivity parameters need to be specified. SUNDI-
ALS can make use of Jacobians provided by a model
execution interface. As for simulation, the Jacobian
of the right hand side of the ODE with respect to the
states is required, and it is also standard for simula-
tion oriented interfaces to provide such a function. In
the case of sensitivity computations, however, the Ja-
cobians with respect also to the inputs (in the case of
an optimal control problem) and the parameters are re-
quired. These Jacobians are also available in the JMI
interface. In the first implementation of the multiple
shooting algorithm, Jacobians are not propagated to
SUNDIALS. Rather, this is left for future improve-
ments.

The main task of the multiple shooting algorithm
is to provide call-back functions for evaluation of the
cost function and constraints to the optimization al-
gorithm. At this level, the optimization problem is a
purely algebraic NLP; the dynamic part is handled by
SUNDIALS and is in effect hidden from the optimizer.

OpenOpt provides standardized interfaces to differ-
ent classes of optimization problems. Amongst them
is a class which supports non-linear cost functions,

Tank 2Tank 1

Tank 3 Tank 4

u1
u2

γ1 γ2

1− γ1 1− γ2

Pump 1
Pump 2

Figure 4: A schematic picture of the quadruple tank
process

equality constraints, and bounded optimization vari-
ables. OpenOpt also interfaces a number of different
solvers which support this class of problems. This ap-
proach makes it trivial to test different optimization
algorithms with very minor changes to the code. In
essence, the OpenOpt interface requires Python func-
tions for evaluation of the cost function, the constraints
and, if available, their derivatives. These functions, in
turn, invoke integration and sensitivity computation by
means of SUNDIALS. Also, functions in JMI are di-
rectly invoked, e.g., to evaluate the cost function. In ef-
fect, the multiple shooting algorithm provides an inter-
face between the optimization algorithm on one hand
and the simulation of the dynamic system and associ-
ated sensitivities on the other hand.

4 An Example

The quadruple-tank laboratory process, see Figure 4,
has been used to demonstrate the multiple shooting al-
gorithm. The model presented here is derived in [10].
The process consists of four tanks, organized in pairs
(left and right), where water from the two upper tanks
flows into the two lower tanks. A pump is used to pour
water into the upper left tank and the lower right tank.
A valve with fixed position is used to allocate pump
capacity to the upper and lower tank respectively. A

Table 1: Parameter values of the Quadruple Tank

Parameters Values Unit
A1,A3 2.8e-3 [m2]
A2,A4 3.2e-3 [m2]
a1,a3 7.1e-6 [m2]
a2,a4 5.7e-6 [m2]
k1,k2 3.14e-6, 3.29e-6 [m3/Vs]
γ1,γ2 0.7, 0.7
g 9.81 [m/s2]

second pump is used to pour water into the upper right
tank and lower left tank. The control variables are the
pump voltages. Let the states of the system be defined
by the water levels of the tanks (expressed in m) x1,
x2, x3 and x4 respectively. The maximum level of each
tank is 20 cm. The dynamics of the system is given by

ẋ1 = −
a1

A1

√

2gx1 +
a3

A1

√

2gx3 +
γ1k1

A1
u1

ẋ2 = −
a2

A2

√

2gx2 +
a4

A2

√

2gx4 +
γ2k2

A2
u2

ẋ3 = −
a3

A3

√

2gx3 +
(1− γ2)k2

A3
u2

ẋ4 = −
a4

A4

√

2gx4 +
(1− γ1)k1

A4
u1

(6)

where the Ai:s and the ai:s represent the cross sec-
tion area of the tanks and the holes respectively. The
parameters γi:s determine the position of the valves
which control the flow rate to the upper and lower
tanks respectively. The control signals are given by
the the ui:s. Numerical values of the parameters are
given in Table 1.

We consider two different stationary operation
points corresponding to constant control inputs and
where ẋ = 0. The first operating point, call it
A, is defined by the control inputs uA1 = uA2 =
2.0, and the second, call it B, is defined by uB1 =
uB2 = 2.5. The corresponding stationary state val-
ues are xA = (0.041,0.066,0.0039,0.0056) and xB =
(0.064,0.10,0.0062,0.0087). Based on the operating
points A and B, the following optimal control problem
is defined:

min
u(t)

∫ t f

0
α

4

∑
i=1

(xi(t)− xBi)
2 +

2

∑
i=1

(ui(t)−uBi)
2dt (7)

where α is a constant weight. Notice that this cost
function is not on the form (1) and can therefore not
be directly implemented. Instead, an additional state,

optimization QuadTank_Opt

(objective = x_5(finalTime),

startTime = 0, finalTime = 50)

import SI = Modelica.SIunits;

/ / Process parameters parameter

SI.Area A1=2.8e3, A2=3.2e3,

A3=2.8e3, A4=3.2e3;

parameter SI.Area a1=7.1e6, a2=5.7e6,

a3=7.1e6, a4=5.7e6;

parameter SI.Acceleration g=9.81;

parameter Real k1_nmp(unit="m/s/V") =

3.14e6,

k2_nmp(unit="m/s/V") =

3.29e6;

parameter Real g1_nmp=0.70, g2_nmp=0.70;

/ / I n i t i a l tank leve ls

parameter SI.Length x1_0 = 0.04102638;

parameter SI.Length x2_0 = 0.06607553;

parameter SI.Length x3_0 = 0.00393984;

parameter SI.Length x4_0 = 0.00556818;

/ / Reference values

parameter SI.Length x1_r = 0.06410371;

parameter SI.Length x2_r = 0.10324302;

parameter SI.Length x3_r = 0.006156;

parameter SI.Length x4_r = 0.00870028;

parameter SI.Voltage u1_r = 2.5;

parameter SI.Voltage u2_r = 2.5;

/ / Tank leve ls

SI.Length x1(start=x1_0);

SI.Length x2(start=x2_0);

SI.Length x3(start=x3_0);

SI.Length x4(start=x4_0);

/ / Inputs

input SI.Voltage u1(free=true);

input SI.Voltage u2(free=true);

/ / Cost function weight parameter

Real alpha = 40000;

Real x_5(start=0);

equation

der(x1) = a1/A1*sqrt(2*g*x1) +

a3/A1*sqrt(2*g*x3)

+ g1_nmp*k1_nmp/A1*u1;

der(x2) = a2/A2*sqrt(2*g*x2) +

a4/A2*sqrt(2*g*x4) +

g2_nmp*k2_nmp/A2*u2;

der(x3) = a3/A3*sqrt(2*g*x3)

+ (1g2_nmp)*k2_nmp/A3*u2;

der(x4) = a4/A4*sqrt(2*g*x4) +

(1g1_nmp)*k1_nmp/A4*u1;

der(x_5) = alpha*((x1_r x1)^2 +

(x2_r x2)^2 +

(x3_r x3)^2 +

(x4_r x4)^2) +

(u1_r u1)^2 +

(u2_r u2)^2;

end QuadTank_Opt;

Listing 1: An Optimica specification of the quadruple
tank optimization problem.

Figure 5: Optimal state profiles

Figure 6: Optimal control profiles

x5, is introduced. The additional state is governed by
the differential equation

ẋ5 = α
4

∑
i=1

(xi(t)− xBi)
2 +

2

∑
i=1

(ui(t)−uBi)
2 (8)

The optimization criteria may now be written as

min
u(t)

x5(t f) (9)

The initial state values are assumed to be fixed and
equal to xA. Hence, the optimal control problem is de-
fined as to transfer the state of the system from operat-
ing point A to operating point B. The Optimica spec-
ification for the optimal control problem is given in
Listing 1.

The problem was solved using the multiple shoot-
ing algorithm, with the control signal parameterized

to be constant over ten interval. Correspondingly, the
number of intervals in the multiple shooting algorithm
was set to ten. The optimization parameters, i.e., the
control variable values in the ten elements and the ini-
tial state values in elements 2-9, were initialized in the
following way. First, the control inputs were set to
u1 = u2 = 2.5, and the dynamics was simulated over
the optimization interval. The control variable values
were then all set to 2.5 and the initial state values of
each interval were initialized from the simulated state
profiles.

The optimal state profiles are shown in Figure 5.
The upper plot shows the levels in the lower tanks,
where x1 corresponds to the solid curve and x2 cor-
responds to the dashed curve. The lower plot shows
the levels in the upper tanks; x3 in solid and x4 in
dashed. Also, the target values corresponding to oper-
ating point B are represented by the dash dotted lines.
As can be seen, the state profiles approach the target
values. The optimal control profiles are shown in 6,
where u1 is given in the upper plot and u2 in the lower
plot. As expected, the control signals approach the sta-
tionary values corresponding to operating point B.

5 Summary and future work

In this paper, an implementation of a multiple shoot-
ing algorithm has been presented. The implementa-
tion is done in Python and is based on the JMod-
elica.org open source platform, the numerical inte-
gration package SUNDIALS and the optimization al-
gorithm scipy_slsqp. It has been shown how the
JModelica.org Python interface, providing access to
functions for evaluation of the model equations, can
be explored in order to develop custom algorithms in
Python.

There are several improvements that would increase
the applicability of the algorithm. The control vari-
able parameterization is currently limited to one con-
stant value per multiple shooting element. Implement-
ing support for arbitrarily many elements in the pa-
rameterization of control variables as well as support
for piecewise linear control profiles would be suitable
extensions. The performance of the algorithm may
be further improved by providing high accuracy Jaco-
bians, available in JMI, to SUNDIALS. In addition,
extending the sensitivity analysis of SUNDIALS to
support discontinuities, see [15], would enable opti-
mization of hybrid systems.

References

[1] J. Åkesson, T. Bergdahl, M. Gäfvert, and
H. Tummescheit. The JModelica.org Open
Source Platform. In 7th International Modelica

Conference 2009. Modelica Association, 2009.

[2] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th

International Modelica Conference 2008. Mod-
elica Association, March 2008.

[3] L.T. Biegler, A.M. Cervantes, and A Wachter.
Advances in simultaneous strategies for dynamic
optimization. Chemical Engineering Science,
57:575–593, 2002.

[4] H.G. Bock and K. J. Plitt. A multiple shooting
algorithm for direct solution of optimal control
problems. In Ninth IFAC world congress, Bu-
dapest, 1984.

[5] R. Bulirch. Die Mehrzielmethode zur nu-
merischen Lösung von nichtlinearen Randw-
ertproblemen und Aufgaben der optimalen
Steuerung. Technical report, Carl-Cranz-
Gesellschaft, 1971.

[6] Inc. Enthought. SciPy, 2009. http://www.

scipy.org/.

[7] Python Software Foundation. ctypes: A for-
eign function library for Python, 2009. http:

//docs.python.org/library/ctypes.html.

[8] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L.
Lee, R. Serban, D. E. Shumaker, and C. S. Wood-
ward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Trans.

Math. Softw., 31(3):363–396, 2005.

[9] J. Hunter, D. Dale, and M. Droettboom. mat-
plotlib: python plotting, 2009. http://

matplotlib.sourceforge.net/.

[10] Karl Henrik Johansson. Relay Feedback and

Multivariable Control. PhD thesis, Department
of Automatic Control, Lund Institute of Technol-
ogy, Sweden, September 1997.

[11] Dieter Kraft. TOMP - Fortran modules for opti-
mal control calculations. ACM Transactions on

Mathematical Software, 20(3):262–281, 1994.

[12] Dmitrey L. Kroshko. OpenOpt Home Page,
2009. http://www.openopt.org/Welcome.

[13] T. Maly and L. R. Petzold. Numerical meth-
ods and software for sensitivity analysis of
differential-algebraic systems. Applied Numer-

ical Mathematics, 20(1-2):57–82, 1996.

[14] T. Oliphant. Numpy Home Page, 2009. http:

//numpy.scipy.org/.

[15] A. Pfeiffer. Numerische Sensitivitätsanalyse un-

stetiger multidisziplinärer Modelle mit Anwen-

dungen in der gradientenbasierten Optimierung

(Numerical sensitivity analysis of discontinuous

multidisciplinary models with applications in

gradient based optimization). PhD thesis, Martin
Luther University Halle-Wittenberg, 2008.

[16] Open Source Project. Pysundials.
http://pysundials.sourceforge.net,
May 2009.

[17] Open Source Project. Python programming lan-
guage. http://www.python.org, May 2009.

[18] Open Source Project. Suite of nonlinear and dif-
ferential/algebraic equation solvers (sundials).
http://www.llnl.gov/casc/sundials/,
May 2009.

[19] O. Rosen and R. Luus. Evaluation of gradients
for piecewise constant optimal control. Comput.

chem. Engng., 15(4):273–281, 1991.

[20] J. Stoer and R. Bulirsch. Introduction to Numer-

ical Analysis. Springer-Verlag, New York and
Berlin, 1980.

[21] The Modelica Association. The Modelica As-
sociation Home Page, 2007. http://www.

modelica.org.

[22] V. Vassiliadis. Computational solution of

dynamic optimization problem with general

differential-algebraic constraints. PhD thesis,
Imperial Collage, London, UK, 1993.

