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Minimax Team Decision Problems

Ather Gattami, Bo Bernhardsson

Department of Automatic Control

Lund University

Box 118, SE-221 00 Lund, Sweden

E-mail: ather@control.lth.se

Abstract—We consider the problem of distributed decision
making in a quadratic game between a team of players and
nature. Each player has limited information that could be
different from the other players in the team. We show that
if there is a solution to the minimax team problem, then the
linear policies are optimal, and we show how to find the linear
optimal solution by solving a linear matrix inequality. The result
is used to solve the distributed H∞ control problem. It shows
that information exchange with neighbours on the graph only,
is enough to obtain a linear optimal policy.

I. INTRODUCTION

We consider the problem of static minimax team decision.

A team of players are to optimize a worst case scenario given

limited information of nature’s decision for each player. The

problem can be considered as the deterministic analog of

the stochastic team decision problems that were solved by

Radner [7].

An initial step for solving the static deterministic problem

was made by Didinsky and Basar [3], where they consider

a team of two players using a stochastic framework. The

solution given in [3] cannot easily be extended to more

than two players, since it uses common information for the

two players, a property that does not necessarily exist for

more than two players. Also, the one step delay H∞ control

problem is solved in [3].

In this paper, we solve the static minimax (or determin-

istic) team decision problem completely for an arbitrary

number of players, and show that the optimal solution is

linear and can be found by solving a linear matrix inequality.

Also, we show how to solve the dynamic finite-horizon

H∞ control problem, under some conditions that prevent

signaling, which is analogous to the distributed finite-horizon

stochastic LQG problem treated in Ho and Chu [4] and

its generalization in Gattami [6]. For the infinite-horizon

problem, similar conditions were obtained in [1] and [8].

We show that the information structure where subsystems

on a graph are restricted to exchange information with

neighbours only, is enough to obtain an optimal feedback

law which turns out to be linear. This reveals a broader class

of information structures that lead to tractable problems.

II. NOTATION

For a vector v, we denote the ith block component of v
by vi. The set of n×n symmetric matrices is denoted by Sn.

The pseudo-inverse of a matrix A is denoted by A†. We write

A � 0 (A ≻ 0) to denote that A is positive semi-definite

(positive definite). For matrix A partitioned symmetrically
in blocks, we denote the block in position (i, j) of A by
[A]ij .

III. THE MINIMAX TEAM DECISION PROBLEM

Consider the following team decision problem

inf
µ

sup
x 6=0

J(x, u)

||x||2

subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

(1)

where ui ∈ Rmi , m = m1 + · · · + mN , Ci ∈ Rpi×n.

J(x, u) is a quadratic cost given by

J(x, u) =

[
x
u

]T [
Qxx Qxu

Qux Quu

] [
x
u

]

,

where [

Qxx Qxu

Qux Quu

]

∈ Sm+n.

We will be interested in the case Quu ≻ 0 (this can be
generalized to Quu � 0, but the presentation of the paper
becomes more technical). The players u1,..., uN make up a

team, which plays against nature represented by the vector

x, using µ(x) =
(
µT

1 (C1x), · · · , µT
N (CNx)

)T
.

Proposition 1: The value of the game in (1) is γ∗ if and

only if for any ǫ > 0 there is a decision µǫ such that

γ∗ ≤ sup
x 6=0

J(x, µǫ(x))

||x||2
< γ∗ + ǫ.

Proof: The statement follows immediately from the

definition of the infimum.

Proposition (1) shows that if γ∗ is the value of the game in

(1), then for any given real number γ > γ∗, there exists a

policy µ such that J(x, µ(x))−γ‖x‖2 ≤ 0 for all x. Hence,
we can formulate the alternative team decision problem:

inf
µ

sup
x 6=0

J(x, u) − γ||x||2 ≤ 0

subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

(2)

The formulation above can be seen as the problem of looking

for suboptimal solutions to the game given by (1). Clearly,



Proposition 1 shows that the value of the game resulting from

the decision obtained in (2) approaches the optimal value in

(1) as γ approaches γ∗ (or as ǫ → 0). From now on we
will consider the equivalent game given by (2). Introduce

the matrix

C =








C1

C2

...

CN








.

C is a p × n matrix, where p = p1 + p2 + · · · + pN . For

any given vector y, a vector x with y = Cx can be written
as x = C†y + (I − C†C)ỹ, for some ỹ. x̃ = (I − C†C)ỹ
can be seen as the unobservable part of x from the vector y,
and x̂ = C†y is the observable part. We will now show how
to eliminate the unobservable part of x from our problem.
Define

Qγ =

[
Qxx − γI Qxu

Qux Quu

]

, (3)

and let V be given by

V =

[
I − C†C C† 0

0 0 I

]

. (4)

Then,

J(x, u) − γ‖x‖2 =

[
x
u

]T

Qγ

[
x
u

]

=

[
C†y + (I − C†C)ỹ

u

]T

Qγ

[
C†y + (I − C†C)ỹ

u

]

=





ỹ
y
u





T

V T QγV





ỹ
y
u



 .

(5)

Let V T QγV be partitioned as

V T QγV = Z =





Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33



 ,

Z11 ∈ R(n−p)×(n−p), Z22 ∈ Rp×p, Z33 ∈ Rm×m.

(6)

Thus, we have

[
x
u

]T

Qγ

[
x
u

]

=





ỹ
y
u





T

Z





ỹ
y
u



 .

Then, the game (2) can be equivalently formulated as

inf
µ

sup
yi=Cix,x 6=0

sup
ỹ





ỹ
y
u





T

Z





ỹ
y
u





subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

(7)

Proposition 2: Let Z be the matrix given by (6). Then,
the value of the game

inf
µ

sup
yi=Cix,x 6=0

sup
ỹ





ỹ
y
u





T

Z





ỹ
y
u





subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

can be zero only if Z11 � 0.

Proof: If Z11 � 0, then ỹ can be chosen in the direction
of the eigenvector corresponding to the positive eigenvalue

of Z11, which makes the value of the game arbitrarily large.

Hence, a necessary condition for the game to have value zero

is that Z11 � 0.

To ease the exposition of the paper, we will consider the

case where Z11 ≺ 0. The case where Z11 is semi-definite

can be treated similarly, but is more technical, and therefore

omitted here.

Proposition 3: If Z11 ≺ 0, then

sup
ỹ





ỹ
y
u





T

Z





ỹ
y
u



 =

[
y
u

]([
Z22 Z23

Z32 Z33

]

−

[
Z21

Z31

]

Z−1
11

[
Z21

Z31

]T
)[

y
u

]

.

(8)

Proof: Completion of squares gives




ỹ
y
u





T

Z





ỹ
y
u



 =

(

ỹ + F

[
y
u

])T

Z11

(

ỹ + F

[
y
u

])

+

+

[
y
u

]([
Z22 Z23

Z32 Z33

]

−

[
Z21

Z31

]

Z−1
11

[
Z21

Z31

]T
)[

y
u

]
(9)

where F is given by

F = Z−1
11

[
Z21

Z31

]T

. (10)

Since Z11 ≺ 0, the quadratic form in (9) is maximized for

ỹ = −F

[
y
u

]

, which proves our proposition.

Introduce now the matrix

Q =

[
Q11 Q12

Q21 Q22

]

=

[
Z22 Z23

Z32 Z33

]

−

[
Z21

Z31

]

Z−1
11

[
Z21

Z31

]T

.

(11)

Recall that Z33 = Quu ≻ 0, and Z11 ≺ 0, which implies that
Q22 ≻ 0. Now using Proposition (3), the game described by
(7) reduces to

inf
µ

sup
yi=Cix,x 6=0

[
y
u

]T

Q

[
y
u

]

subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

(12)



Hence, we consider the problem of finding policies µi(yi)
such that ui = µi(yi) and

[
Cx
u

]T

Q

[
Cx
u

]

≤ 0

for all x. Now we are ready to state the main result of the
paper where we show linearity of the optimal decisions:

Theorem 1: Let Q22 ≻ 0 and yi = Cix, i = 1, ..., N . If
there exist policies µi(yi) such that

sup
x 6=0

[
Cx
µ(y)

]T [
Q11 Q12

Q21 Q22

] [
Cx
µ(y)

]

≤ 0, (13)

then there exist linear policies µi(yi) = Kiyi that satisfy

(13).

Proof: Assume existence of policy µ that satisfies (13).
If yi = Cix = 0 for some i, then the optimal decision for
player i is to set µi(0) = 0. To see this, take y = 0. Then
[

y
µ(y)

]T

Q

[
y

µ(y)

]

=

[
0

µ(0)

]T

Q

[
0

µ(0)

]

= µT (0)Q22µ(0).

Since Q22 ≻ 0, we see that µ(0) = 0 is the optimal decision.
In particular, µi(0) = 0 is the optimal decision for decision
maker i.
Now suppose that yi 6= 0 for i = 1, 2, ..., N . DefineKi(yi)
as

Ki(yi) =
µi(yi) · y

T
i

‖yi‖2
, yi 6= 0, (14)

for i = 1, ..., N . Also, define K(x) as

K(x) =








K1(C1x) 0 · · · 0
0 K2(C2x) · · · 0
...

...
. . .

...

0 0 · · · KN (CNx)








. (15)

It is easy to check that (13) is equivalent to

xT CT

[
I

K(x)

]T [
Q11 Q12

Q21 Q22

] [
I

K(x)

]

Cx ≤ 0, ∀x 6= 0.

(16)

Hence, we have obtained an equivalent problem for which

the existence of policies µi is the same as the existence of

matrix functions K1(y1), ..., KN (yN ) and K(x) satisfying
(15) and (16). Note that the problem of searching for

linear policies corresponds to that of searching for constant

matrices Ki(Cix) = Ki. Furthermore, (16) is equivalent to

the problem of finding a matrix function M(X) such that

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX ≤ 0, ∀X = xxT 6= 0.

(17)

To see this, take a matrix M(X) satisfying (17), for X =
xxT 6= 0. Then, K(x) = M(xxT ) satisfies (16). Conversely,
given K(x) satisfying (16), we can take M(xxT ) = K(x)
and (17) is satisfied.

Now if for a given matrix X 6= 0 and M = M(X)
the inequality in (17) is satisfied, then the same matrix M
satisfies (17) with the matrix X/Tr X instead of X . Thus,

since we are considering matrices X = xxT 6= 0, it is
enough to consider matrices X with Tr X = 1. Define the
set

S1 = {X : x ∈ Rn, X = xxT ,Tr X = 1}

Then (17) implies that

max
X∈S1

min
M(X)

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX ≤ 0. (18)

We will now extend the set of matrices X from S1 to the

set

S = {X : X � 0,Tr X = 1}.

That is, we will consider the extended problem

max
X∈S

min
M(X)

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX. (19)

Clearly, we have that

max
X∈S1

min
M(X)

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX ≤

max
X∈S

min
M(X)

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX.

(20)

LetM∗(X) be the optimal decision to the extended minimax
problem (19), and suppose that

max
X∈S

min
M(X)

Tr CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX = α

for some real number α. This is equivalent to

max
X∈S

min
M(X)

Tr

{

CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX − αX

}

=

= 0
(21)

Note that

max
X∈S

min
M(X)

Tr

{

CT

[
I

M(X)

]T

Q

[
I

M(X)

]

CX − αX

}

is the dual to the following convex optimization problem (see

Boyd et al [2]):

min
M,s

s

subject to CT

[
I
M

]T

Q

[
I
M

]

C − αI � sI.
(22)

Strong duality holds since the primal problem (22) is convex

(Q22 ≻ 0) and Slater’s condition is satisfied, see [2]. Thus,
existence of a decision matrix M(X) = M∗(X) fulfilling
(21) implies existence of a constant matrix M(X) = K that
fulfills

max
X

Tr

{

CT

[
I
K

]T

Q

[
I
K

]

CX − αX

}

= 0. (23)

Now take any positive semi-definite matrix X of rank k ≤ n
and TrX = 1. Then, we can write X as

X =

k∑

i=1

λiXi,



where Xi = xix
T
i , ‖xi‖ = 1, xT

i xj = 0 for i 6= j, λi > 0,

and
∑k

i=1 λi = 1 (see Horn and Johnson [5], pp.457). Let

X∗ =
∑k

i=1 λiXi be

X∗ = arg max
X∈S

Tr

{

CT

[
I
K

]T

Q

[
I
K

]

CX − αX

}

.

This gives together with equation (23):

Tr CT

[
I
K

]T

Q

[
I
K

]

CX∗ = Tr αX∗ = α.

Let Xj be the matrix for which

Tr CT

[
I
K

]T

Q

[
I
K

]

CXi

is maximized among X1, ..., Xk. Then

α = Tr CT

[
I
K

]T

Q

[
I
K

]

CX∗

=

k∑

i=1

λiTr CT

[
I
K

]T

Q

[
I
K

]

CXi

≤
k∑

i=1

λiTr CT

[
I
K

]T

Q

[
I
K

]

CXj

= Tr CT

[
I
K

]T

Q

[
I
K

]

CXj ≤ 0.

Hence, we have proved that the worst case is attained for

a matrix X with rank 1, and the extension of the set S1 to

the set S does not increase the cost. We conclude that the
optimal decision can be taken to be a linear decision with

µ(y) = Ky, and the proof is complete.

IV. COMPUTATION OF THE OPTIMAL TEAM DECISION

In the previous section we showed that for the minimax

team problem given by (2), the linear policy u = KCx is
optimal, where K is given by

K =








K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...

0 0 · · · KN








. (24)

Now the problem of finding linear policies satisfying (16)

can be written as the following convex feasability problem:

Find K

such that

[
C

KC

]T [
Q11 Q12

Q21 Q22

] [
C

KC

]

� 0.
(25)

where Q22 ≻ 0 The inequality in (25) can be written as
where

R − (KC − LC)T Q22(KC − LC) � 0, (26)

L = Q−1
22 Q21, and R = −CT Q11C + CT Q12Q

−1
22 Q21C.

First note that a necessary condition for which (26) to be

satisfied is that R � 0. If R � 0, then using the Schur

complement gives that inequality (26) can be written as an

LMI [
R (KC − LC)T

KC − LC Q−1
22

]

� 0,

which can be computationally solved efficiently.

V. RELATION WITH THE STOCHASTIC MINIMAX TEAM

DECISION PROBLEM

In this section we consider the stochastic minimax team

decision problem

min
K

max
E‖x‖2=1

E

{

xT

[
C

KC

]T [
Q11 Q12

Q21 Q22

] [
C

KC

]

x

}

.

Taking the expectation of the cost in the stochastic problem

above yields the equivalent problem

min
K

max
TrX=1

Tr

[
C

KC

]T [
Q11 Q12

Q21 Q22

] [
C

KC

]

X

where X is a positive semi-definite matrix, and is the

covariance matrix of x, i. e. X = E xxT . Hence, we

see that the stochastic minimax team problem is equivalent

to the deterministic minimax team problem, where nature

maximizes with respect to all covariance matrices X of the
stochastic variable x with variance E ‖x‖2 = E xT x =
Tr X = 1.

VI. TEAM DECISION PROBLEMS AND SIGNALING

Consider a modified version of the static team problem

posed in the previous section, where the observation yi for

every decision maker i is affected by the inputs of the other
decision makers, that is

yi = Cix +
∑

j

Dijuj ,

where Dij = 0 if decision maker j does not affect the
observation yi. The modified optimization problem becomes

inf
µ

sup
x

[
x
u

]T

Q

[
x
u

]

subject to yi = Cix +
∑

j

Dijuj

ui = µi(yi)

for i = 1, ..., N.

(27)

The problem above is in general very complex if decision

maker i does not have access to the information about the
decisions ui that appear in yi. We say that the problem give

rise to a signaling incentive for decision maker j. If we
assume that decision maker i has the value of uj available

for every j such that Dij 6= 0, then she can form the new
output measurement given yi

ȳi = yi −
∑

j

Dijuj = Cix,

which transforms the problem to a static team problem

without signaling, and the optimal solution is linear and can

be found according to Theorem 1 and section IV. Note that



1

2

3

4

Fig. 1. The graph reflects the interconnection structure of the dynamics
between four systems. The arrow from node 2 to node 1 indicates that
system 1 affects the dynamics of system 2 directly.

if decision maker i has the information available that every
decision maker j has, then the decision uj is also available

to decision maker i.

VII. DISTRIBUTED H∞ CONTROL

In this section, we will treat the distributed linear quadratic

H∞ control problem with information constraints, which can

be seen as a dynamic team decision problem. The idea is to

transform the dynamic team problem to a static one, and then

explore information structures for every time step.

Consider an example of four dynamically coupled systems

according to the graph in Figure 1. The equations for the

interconnected system are given by






x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)







︸ ︷︷ ︸

x(k+1)

=







A11 0 A13 0
A21 A22 0 0
0 A32 A33 A34

0 0 0 A44







︸ ︷︷ ︸

A







x1(k)
x2(k)
x3(k)
x4(k)







︸ ︷︷ ︸

x(k)

+

+







B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4







︸ ︷︷ ︸

B







u1(k)
u2(k)
u3(k)
u4(k)







︸ ︷︷ ︸

u(k)

+







w1(k)
w2(k)
w3(k)
w4(k)







︸ ︷︷ ︸

w(k)

.

(28)

For instance, the arrow from node 2 to node 1 in the graph

means that the dynamics of system 2 are directly affected

by system 2, which is reflected in the system matrix A,
where the block A21 6= 0. On the other hand, system 2 does
not affect system 1 directly, which implies that A12 = 0.
Because of the “physical” distance between the subsystems,

there will be some constraints on the information available

to each node.

The observation of system i at time k is given by

yi(k) = Cixi(k),

where

Ci =







Ci1 0 0 0
0 Ci2 0 0
0 0 Ci3 0
0 0 0 Ci4







. (29)

Here, Cij = 0 if system i does not have access to yj(k). The
subsystems could exchange information about their outputs.

Every subsystem recieves the information with some time

delay, that is reflected by the interconnection structure. Let

Ik
i denote the set of observations yj(n) and control signals

uj(n) available to node i up to time k, n ≤ k, j = 1, ..., N .
Consider the following (general) dynamic team decision

problem:

inf
µ

sup
w

J(u, w)

subject to x(k + 1) = Ax(k) + Bu(k) + w(k)

yi(k) = Cix(k)

ui(k) = µi : Ik
i 7→ Rpi

for i = 1, ..., N.

(30)

where

J(u, w) = xT (M)QfxT (M)+

+

M−1∑

k=0

{[
x(k)
u(k)

]T

Q

[
x(k)
u(k)

]

− γ‖w(k)‖2

}

(31)

Q =

[
Qxx Qxu

Qux Quu

]

∈ Sm+n,

Qf � 0, Q � 0, Quu ≻ 0, x(k) ∈ Rn, yi(k) ∈ Rmi ,

ui(k) ∈ Rpi .

Now write x(k) and y(k) as

x(k) = Atx(k − t) +

t−1∑

n=0

AnBu(k − n − 1)+

+
t−1∑

n=0

Anw(k − n − 1),

yi(k) = CiA
tx(k − t) +

t−1∑

n=0

CiA
nBu(k − n − 1)+

+

t−1∑

n=0

CiA
nw(k − n − 1).

(32)

Note that the summation over n is defined to be zero when
t = 0.
Theorem 2: Consider the optimization problem given by

(30). The problem has no signaling incentive if and only if

yj(k) ∈ Ik
i ⇒

uj(k − n − 1) ∈ Ik
i for [CiA

nB]ij 6= 0
(33)

for all n such that 0 ≤ n < t, and t = 0, ..., M − 1.
In addition, an optimal solution to the optimization problem

given by (30) is linear in the observations Ik
i if condition

(33) is satisfied, and has a solution that can be found by

solving a linear matrix inequality.



Proof: Introduce

x̄ =










w(N − 1)
w(N − 2)
...

w(0)
x(0)










, ūi =








ui(N)
ui(N − 1)

...

ui(0)








,

Then, we can write the cost function J(x, u) as

[
x̄
ū

]T

Q̄

[
x̄
ū

]

.

Consider the expansion given by (32). The problem here is

that yi(k) depends on previous values of the control signals
u(n) for n = 0, ..., k−1. The components uj(k−n−1) that
yi(k) depends on are completely determined by the structure
of the matrix [CiA

nB]ij . This means that, to avoid signaling,
it is enough for node i to have the information of uj(k−n−1)
available at time k if the element [CiA

nB]ij 6= 0. Thus, we
have proved the first statement of the theorem.

Now if condition (33) is satisfied, we can form the new

output measurement

y̌i(k) = yi(k) −

k−1∑

n=0

CiA
nBu(k − n − 1)

= Akx(0) +

k−1∑

n=0

CAnw(k − n − 1).

(34)

Let

ȳi(k) =








y̌i(k)
y̌i(k − 1)
...

y̌i(0)








.

With these new variables introduced, the optimization prob-

lem given by equation (30) reduces to the following static

team decision problem:

inf
µ

sup
x̄

[
x̄
ū

]T

Q̄

[
x̄
ū

]

subject to ui(k) = µi(ȳi(k))

for i = 1, ..., M.

(35)

and the optimal solution ū is linear according to Theorem 1,
and can be obtained by solving a linear matrix inequality as

described in section IV, QED.

In fact, using the static team formulation reveals a much more

general information structure. It turns out to be enough to

exchange information with the neighbours on the graph. We

illustrate this by an example:

Example 1: Consider the example presented at the begin-

ning of this section. The dynamics of the second subsystem

is given by

x2(k + 1) = A21x1(k) + A22x2(k) + B2u2(k) + w2(k).

If at time k+1, subsystem 2 has information about the state
of its neighbours x1(k), then it has knowledge about the
value of w2(k):

w2(k) = x2(k + 1) − A21x1(k) − A22x2(k) − B2u2(k).

Hence, if we restrict the control law u2(k+1) to be a function
of x1(k), x2(k), u2(k) (information about the state of its
neighbour and its own state and control input at time step

k), and restrict it to be based only on the information about
w2(k), then we can set u2(k + 1) = µ2(w2(k)). The same
information restriction can be similarly imposed on the other

subsystems. Just as before, the dynamic H∞ team problem

can be reduced to the static team problem (35), where ui(k+
1) = µi(wi(k)). This problem has an optimal solution that is
linear and can be found by solving a linear matrix inequality.

VIII. CONCLUSIONS AND FUTURE WORK

We have fully solved the minimax (or deterministic) team

decision problem completely for an arbitrary number of

players, and show that the optimal solution is linear and can

be found by solving a linear matrix inequality. Also, we show

how to solve the finite-horizon H∞ control problem, under

some conditions that prevent signaling, which is analogous

to the distributed stochastic LQG problem treated in Gattami

[6]. It turns out that the information structure restricted to

exchange information with neighbours only from one time

step in the past, is enough to obtain a linear optimal feedback

by solving a linear matrix inequality. This marks a starting

point for a broader class of information structures that lead

to tractable problems, which will be the subject for future

work.
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